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Abstract

While lightweight ViT framework has made tremendous
progress in image super-resolution, its uni-dimensional
self-attention modeling, as well as homogeneous aggre-
gation scheme, limit its effective receptive field (ERF) to
include more comprehensive interactions from both spa-
tial and channel dimensions. To tackle these drawbacks,
this work proposes two enhanced components under a
new Omni-SR architecture. First, an Omni Self-Attention
(OSA) block is proposed based on dense interaction princi-
ple, which can simultaneously model pixel-interaction from
both spatial and channel dimensions, mining the potential
correlations across omni-axis (i.e., spatial and channel).
Coupling with mainstream window partitioning strategies,
OSA can achieve superior performance with compelling
computational budgets. Second, a multi-scale interaction
scheme is proposed to mitigate sub-optimal ERF (i.e., pre-
mature saturation) in shallow models, which facilitates lo-
cal propagation and meso-/global-scale interactions, ren-
dering an omni-scale aggregation building block. Extensive
experiments demonstrate that Omni-SR achieves record-
high performance on lightweight super-resolution bench-
marks (e.g., 26.95dB@Urban100 ×4 with only 792K pa-
rameters). Our code is available at https://github.
com/Francis0625/Omni-SR.

1. Introduction
Image super-resolution (SR) is a long-standing low-level

problem that aims to recover high-resolution (HR) images
from degraded low-resolution (LR) inputs. Recently, vi-
sion transformer [14, 51] based (i.e., ViT-based) SR frame-
works [5, 30] have emerged, showing significant perfor-
mance gains compared to previously dominant Convolu-
tional Neural Networks (CNNs) [66]. However, most at-
tempts [30] are devoted to improving the large-scale ViT-
based models, while the development of lightweight ViTs
(typically, less than 1M parameters) remains fraught with
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Figure 1. Typical self-attention schemes [30,59] can only perform
uni-dimensional (e.g., spatial-only) interactions, and.

difficulties. This paper focuses on boosting the restoration
performance of lightweight ViT-based frameworks.

Two difficulties hinder the development of lightweight
ViT-based models: 1) Uni-dimensional aggregation oper-
ators (i.e., spatial [30] only or channel [59] only) impris-
ons the full potential of self-attention operators. Contem-
porary self-attention generally realizes the interaction be-
tween pixels by calculating the cross-covariance of the spa-
tial direction (i.e., width and height) and exchanges context
information in a channel-separated manner. This interac-
tion scheme ignores the explicit use of channel informa-
tion. However, recent evidences [59] and our practice show
that self-attention in the channel dimension (i.e., compu-
tationally more compact than spatial self-attention) is also
crucial in low-level tasks. 2) Homogeneous aggregation
schemes (i.e., Simple hierarchical stacking of single opera-
tors, e.g., convolution, self-attention) neglect abundant tex-
ture patterns of multi-scales, which is urgently needed in
SR task. Specifically, a single operator is only sensitive to
information of one scale [6,12], e.g., self-attention is sensi-
tive to long-term information and pays little attention to lo-
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cal information. Additionally, stacking of homogeneous op-
erators proves to be inefficient and suffers from premature
saturation of the interaction range [8], which is reflected as
a suboptimal effective receptive field. The above problem
is exacerbated in lightweight models because lightweight
models cannot stack enough layers.

In order to solve the above problems and pursue higher
performance, this work proposes a novel omni-dimension
feature aggregation scheme called Omni Self-Attention
(OSA) exploiting both spatial and channel axis informa-
tion in a simultaneous manner (i.e., extends the interaction
into three-dimensional space), which offers higher-order
receptive field information, as shown in Figure 1. Un-
like scalar-based (a group of important coefficient) chan-
nel interaction [19], OSA enables comprehensive informa-
tion propagation and interaction by cascading computation
of the cross-covariance matrices between spatial/channel
dimensions. The proposed OSA module can be plugged
into any mainstream self-attention variants (e.g., Swin [34],
Halo [50]), which provides a finer granularity of important
encoding (compared to the vanilla channel attention [19]),
achieving a perceptible improvement in contextual aggre-
gation capabilities. Furthermore, a multi-scale hierarchical
aggregation block, named Omni-Scale Aggregation Group
(i.e., OSAG for short), is presented to achieve tailored en-
coding of varying scales of texture patterns. Specifically,
OSAG builds three cascaded aggregators: local convolution
(for local details), meso self-attention (focusing on mid-
scale pattern processing), and global self-attention (pursu-
ing global context understanding), rendering an omni-scale
(i.e., local-/meso-/global-scale simultaneously) feature ex-
traction capability. Compared to the homogenized feature
extraction schemes [27, 30], our OSAG is able to mine
richer information producing features with higher informa-
tion entropy. Coupling with the above two designs, we es-
tablish a new ViT-based framework for lightweight super-
resolution, called Omni-SR, which exhibits superior restora-
tion performance as well as covers a larger interaction range
while maintaining an attractive model size, i.e., 792K.

We extensively experiment with the proposed frame-
work with both qualitative and quantitative evaluations on
mainstream open-source image super-resolution datasets.
It is demonstrated that our framework achieves state-of-
the-art performance at the lightweight model scale (e.g.,
Urban100×4: 26.95dB, Manga109×4: 31.50dB). More
importantly, compared to existing ViT-based super-solution
frameworks, our framework shows superior optimization
properties (e.g., convergence speed, smoother loss land-
scape), which endow our model with better robustness.

2. Related Works
Image Super-resolution. CNNs have achieved remark-

able success in image SR task. SRCNN [13] is the first
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Figure 2. Illustration of spatial attention and channel attention.
These typical attention paradigms only model uni-dimensional
(i.e., spatial-only / channel-only) interaction.

work to introduce CNNs into the SR field. Many meth-
ods [25, 48, 66] employ skip connection to speed up net-
work convergence and improve the reconstruction quality.
Channel Attention [66] is also proposed to enhance the rep-
resentation ability of the SR model. In order to obtain bet-
ter reconstruction quality with limited computing resources,
several methods [23,38,42,47] explore lightweight architec-
tural design. DRCN [26] utilizes the recursive operation to
reduce the number of parameters. DRRN [47] introduces
global and local residual learning on the basis of DRCN
to accelerate training and improve the quality of details.
CARN [1] employs cascading mechanism upon a resid-
ual network. IMDN [22] proposes an information multi-
distillation block to archive better time performance. An-
other line of research is to utilize model compression tech-
niques, e.g., knowledge distillation [15, 17, 65] and neural
architecture search [11]) to reduce computing costs. Re-
cently, a series of transformer-based SR models [5,8,30,37]
emerge with superior performance. Chenet al. [5] develop
a pre-trained model for the low-level computer vision task
using the transformer architecture. Based on Swin trans-
former [34], SwinIR [30] proposes a three-stage framework,
refreshing the state-of-the-art of SR task. More recently,
some works [5, 29] explore ImageNet pre-training strategy
to further enhance SR performance.

Lightweight Vision Transformer. Due to the urgent de-
mands for applying networks to resource-constrained de-
vices, lightweight vision transformer [14, 51] has attracted
widespread attention. Many attempts [7,9,10,37,41,43,57,
62] have been made to develop lightweight ViTs with com-
parable performance. A series of methods focus on combin-
ing convolutions with transformers to learn both local and
global representations. For instance, LVT [57] introduces
convolution in self-attention to enrich low-level features.
MobileViT [41] replaces matrix multiplication in convo-
lutions with transformer layers to learn global representa-
tions. Similarly, EdgeViTs [43] employs an information
exchange bottleneck for full spatial interactions. Differ-
ent from interpreting convolutions into vision transformers,
LightViT [21] proposes aggregated self-attention for better
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Figure 3. The overall architecture of the proposed Omni-SR framework and structure of OSAG and Omni Self-Attention (OSA).

information aggregation. In this work, we resort to ViT ar-
chitecture to achieve lightweight and accurate SR.

3. Methodology

3.1. Attention Mechanisms in Super-Resolution

Two attention paradigms are widely adopted in SR to as-
sist in analyzing and aggregating comprehensive patterns.

Spatial Attention. Spatial attention can be regarded as
an anisotropic selection process. Spatial self-attention [37,
51] and spatial gate [10, 58] are predominantly applied. As
shown in Figure 2, spatial self-attention calculates the cross-
covariance along the spatial dimension, and the spatial gate
generates the channel-separated masks. Neither of them can
transmit information between channels.

Channel Attention. There are two categories of channel
attention, i.e., scalar-based [19] and covariance-based [59],
proposed to perform channel recalibration or transmit pat-
terns among channels. As shown in Figure 2, the former
predicts a group of importance scalars to weigh different
channels, while the latter computes a cross-covariance ma-
trix to enable channel re-weighting and information trans-
mission simultaneously. Compared to spatial attention,
channel attention handles spatial dimension isotropically,
and thus, the complexity is significantly reduced, which also
impairs the accuracy of aggregation.

Several attempts [44,55] have proved that both spatial at-
tention and channel attention are beneficial for SR task and
their characteristics are complementary to each other, thus
integrating them in a computationally compact way would
bring notable benefits in expressive capability.

3.2. Omni Self-Attention Block

To mine all the correlations hidden in the latent variables,
we propose a novel self-attention paradigm called Omni
Self-Attention (OSA) block. Unlike existing self-attention
paradigms (e.g., spatial self-attention [5, 37, 51]) that only
indulge in unidimensional processing, OSA establishes the
spatial and channel context simultaneously. The obtained
two-dimensional relationship is highly necessary and bene-
ficial, especially for lightweight models. On the one hand,
as the network deepens, important information is scattered
into different channels [19], and it is critical to deal with
them in a timely manner. On the other hand, although spa-
tial self-attention takes advantage of the channel dimension
in calculating the covariance, it does not transmit the in-
formation between channels (refer to Sec. 3.1). Given the
above conditions, our OSA is designed to transmit both spa-
tial and dimensional information in a compact manner.

The proposed OSA calculates the score matrices corre-
sponding to the space and channel direction through se-
quential matrix operations and rotation, as illustrated in Fig-
ure 3. Specifically, suppose X ∈ RHW×C denotes the input
feature, where H and W are the width and height of the in-
put, and C is the channel number. Firstly, X is embedded
to query, key and value matrices Qs,Ks, V s ∈ RHW×C

through linearly projection. We calculate the production
of query and key to get the spatial attention map of size
RHW×HW . Then we perform the spatial attention to ob-
tain the intermediate aggregated results. Note that win-
dow strategy is usually used to significantly reduce the re-
source overhead. Next stage, we rotate the input query
and key matrices to get the transposed query and key matri-
ces Qc,Kc ∈ RC×HW , and also rotate the value matrices
to get the value matrix V c ∈ RC×HW for the subsequent
channel-wise self-attention. The obtained channel-wise at-
tention map of size RC×C models channel-wise relation-



ships. Finally, we get the final aggregated YOSA by the in-
verse rotation of the channel attention output Yc. The whole
OSA process is formulated as follows:

Qs = X · Wq, Ks = X · Wk, V s = X · Wv, (1)

Ys = As(Qs,Ks, V s) = SoftMax(QsKsT ) · V s, (2)

Qc = R(Q′), Kc = R(K′), V c = R(V ′), (3)

Yc = Ac(Qc,Kc, V c) = SoftMax(KcQcT ) · V c, (4)

YOSA = R−1(Yc), (5)

where Wq,Wk,Wv denote the linear projection matri-
ces for the query, key, and value, respectively. Q′,K ′, V ′

are the input embedding matrices of channel-wise self-
attention, which are embedded from fore spatial self-
attention or or copied directly from Qs,Ks, V s. R(·) de-
notes the rotation operation around spatial axis and R−1(·)
is the inverse rotation. Some normalization factors are omit-
ted for the sake of simplicity. In particular, this design
shows compelling properties that can integrate the element-
wise results of two matrix operations (i.e., spatial-/channel-
matrix operation), thereby enabling omni-axial interactions.
Note that our proposed OSA paradigm can be a drop-in re-
placement of the Swin [30,34] attention block to higher per-
formance with less parameters. Benefiting from the smaller
attention map size of channel self-attention, the proposed
OSA is less computationally intensive compared to the cas-
cade shifted-window self-attention scheme in Swin.

Discussion with other hybrid attention paradigms. Com-
pared to previous hybrid channel and spatial attention works
like CBAM [55] and BAM [44], their scalar-based at-
tention weights only reflect the relative degree of impor-
tance, without further inter-pixel information exchange,
leading to limited relation modeling capability. Several re-
cent works [8] also incorporate channel attention with spa-
tial Self-attention, but these attempts only resort to scalar
weights for channel recalibration, while our OSA paradigm
enables channel-wise interaction to mine the potential cor-
relations in omni-axis. Performance comparison of differ-
ent attention paradigms can be found in Sec. 4.4.

3.3. Omni-Scale Aggregation Group

How to utilize the proposed OSA paradigm to build
a high-performance and compact network is another key
topic. Although hierarchical stacking of windows-based
self-attention (e.g., swin [30, 34]) has become mainstream,
various works have found that the window-based paradigms
are very inefficient for large-range interactions, especially
for shallow networks. It is worth pointing out that large-
range interaction can provide a pleasing effective receptive
field, which is crucial for improving image restoration per-
formance [37]. Unfortunately, direct global interaction is
resource-prohibitive and detracts from local aggregation ca-
pabilities. Taking these points into account, we propose

Local-level Meso-level Global-level

Figure 4. Illustration of omni-scale aggregation scheme. Our pro-
posed Omni-SR contains three types of feature aggregation at local
level, meso and global level, respectively.

an Omni-Scale Aggregation Group (i.e., OSAG for short)
to pursue progressive receptive field feature aggregation
with low computational complexity. As shown in Figure 3,
OSAG mainly consists of three stages: local, meso and
global aggregations. Specifically, a channel attention [19]
enhanced inverted bottleneck [18] is introduced to fulfill
the local pattern process with limited overhead. Based
on the proposed OSA paradigm, we derive two instances
(i.e., Meso-OSA and Global-OSA) responsible for the in-
teraction and aggregation of meso and global information.
Note that the proposed omni self-attention paradigm can
be used for different purposes. Meso-OSA performs atten-
tion within a group of non-overlap patches, which restricts
Meso-OSA to only focus on meso-scale pattern understand-
ing. Global-OSA samples data point sparsely across the
entire feature within an atrous manner, endowing Global-
OSA with the ability to achieve global interactions at a com-
pelling cost.

The only difference between Meso-OSA and Global-
OSA is the window partition strategy, as shown in Figure 4.
In order to achieve meso-scale interaction, Meso-OSA split
the input feature X into non-overlapping blocks with size
P × P . Note that after window partition, the block di-
mensions are gathered onto the spatial dimension (i.e., -2
axis): (H,W,C) → (H

P
× P, W

P
× P,C) → (HW

P2 , P 2, C).
While the Global-OSA divides the input feature into a uni-
form G × G grid, with each lattice having an adaptive size
of H

G × W
G . Similar to Meso-OSA, the grid dimension is

also gathered on the spatial axis (i.e.-2 axis): (H,W,C) →
(G× H

G
, G× W

G
, C) → (G2, HW

G2 , C) → (HW
G2 , G2, C).

3.4. Network Architecture
Overall Structure. Based on the Omni Self-Attention

paradigm and the Omni-Scale Aggregation Group, we fur-
ther develop a lightweight Omni-SR framework to achieve
high-performance image super-resolution. As shown in
Figure 3, Omni-SR consists of three parts, i.e., shallow
feature extraction, deep feature extraction, and image re-
construction. Specifically, given the LR input ILR ∈
RH×W×Cin , we first use a 3 × 3 convolution HSF to ex-
tract shallow feature X0 ∈ RH×W×C as

X0 = HSF(ILR), (6)

where Cin and C denote the channel number of the in-
put and shallow feature. The convolution layer provides
a simple way to convert the input from image space into



high-dimensional feature space. Then we use K stacked
omni-scale aggregation groups (OSAG) and one 3× 3 con-
volution layer HCONV in a cascade manner to extract deep
featureFDF. Such a process can be expressed as

Xi = HOSAGi(Xi−1), i = 1, 2, . . . ,K,

XDF = HCONV(XK),
(7)

where HOSAGi
represents the i-th OSAG, X1, X2, . . . , XK

denote intermediate features. Following [30], we also use
a convolutional layer at the end of feature extraction to get
better feature aggregation. Finally we reconstruct the HR
image IHR by aggregating shallow and deep features as

IHR = HRec(X0 +XDF), (8)

where HRec(·) denotes the reconstruction module. In detail,
PixelShuffle [46] is used to up-sample the fused feature.

Omni-Scale Aggregation Group (OSAG). As shown in
Figure 3, each OSAG contains a local convolution block
(LCB), a meso-OSA block, a global-OSA block, and an
ESA block [27, 33]. The whole process can be formulated
as

Xres = HGlobal-OSABi(HMeso-OSABi(HLCBi(Xi−1))), (9)

Xi = HESAi(HConvi(Xres +Xi−1)), (10)

where Xi−1 and Xi represents the input and output feature
of i-th OSAG. After the mapping of convolution layers, we
insert a Meso-OSAB for window-based self-attention and a
Global-OSAB to enlarge the receptive field for better infor-
mation aggregation. At the end of OSAG, we reserve the
convolutional layer and ESA block following [27, 66].

In specific, LCB is implemented as a stack of point-
wise and depthwise convolutions with a CA module [24]
between them to adaptively re-weight channel-wise fea-
tures. This block aims to aggregate local contextual in-
formation as well as to increase the trainability of the net-
work [56]. Two types of OSA blocks (i.e., Meso-OSA block
and Global-OSA block) are then followed to obtain inter-
actions from different regions. Based on different window
partition strategies, Meso-OSA block seeks inner-block in-
teraction, and Global-OSA blocks aim for global mixing.
OSA blocks follow typical Transformers designs with Feed-
forward network (FFN) and LayerNorm [2], and the only
difference is that the origin self-attention operation is re-
placed with our proposed OSA operator. For FFN, we adopt
the GDFN proposed by Restormer [59]. Combining these
individuals seamlessly, the designed OSAG enables infor-
mation propagation between any pair of tokens in the fea-
ture map. We use the ESA module proposed in [27, 33] to
further refine the fused feature.

Optimization Objective. Following prior works [30, 31,
53, 67], we train the model by minimizing a standard L1

loss between model prediction ÎHR and HR label IHR as
follows:

L = ∥IHR − ÎHR∥1. (11)

4. Experiments
4.1. Experimental Setup

Datasets and Metrics. Following previous work [30,31,
38,49,66], DIV2K [49] and Flickr2K [49] are used as train-
ing datasets. For a fair comparison, we employ two training
protocols, i.e., training with DIV2K only and training with
DF2K (DIV2K + Flickr2K). Note that the model trained
with DF2K is marked with small †. For testing, we adopt
five standard benchmark datasets: Set5 [4], Set14 [60],
B100 [39], Urban100 [20] and Manga109 [40]. PSNR and
SSIM [54] are adopted to evaluate the SR performance on
the Y channel of the transformed YCbCr space.

Implementation Details. During training, we augment
the data with random horizontal flips and 90/270-degree ro-
tations. LR images are generated by bicubic downsampling
[63] from HR images. OSAG number is set to 5, and chan-
nel number of the whole network is set to 64. The attention
head number and window size are set to 4 and 8 for both
Meso-OSAB and Global-OSAB. We use AdamW [36] op-
timizer to train the model with a batch size of 64 for 800K
iterations. The initial learning rate is set to 5 × 10−4 and
halved for every 200k iterations. In each training batch, we
randomly crop LR patches of size 64 × 64 as input. Our
method is implemented with PyTorch [45], and all experi-
ments are conducted on one NVIDIA V100 GPU. Note that
no other data augmentation (e.g., Mixup [61], RGB chan-
nel shuffle) or training skills (e.g., pre-training [29], cosine
learning schedule [35]) are employed. It should be pointed
out that we maintain the consistency of model parameters
in the ablation study by adjusting the channels of 1×1 con-
volution.

4.2. Comparison with the SOTA SR methods

To evaluate the effectiveness of Omni-SR, we com-
pare our model with several advanced lightweight SR
methods under a scale factor of 2/3/4. In particular,
former works, VDSR [25], CARN [1], IMDN [22],
EDSR [31], RFDN [32], MemNet [48], MAFFSRN [42],
LatticeNet [38], RLFN [27], ESRT [37] and SwinIR [30]
are introduced for comparison.

Quantitative results. In Table 1, the quantitative com-
parisons of different lightweight methods are presented on
five benchmark datasets. With a similar model size, the
performance of our Omni-SR surpasses existing methods
with a notable margin on all benchmarks. In particular,
compared to other transformer architectures with compa-
rable parameters like SwinIR [30] and ESRT [37], the pro-
posed Omni-SR obtains the best performance. The results



Table 1. Quantitative comparison (PSNR/SSIM) for lightweight image SR with state-of-the-art methods on benchmark datasets. The best
and second-best results are marked in red and blue colors, respectively. “†” indicates that model is trained on DF2K.

Method Years Scale Params Set5 Set14 BSD100 Urban100 Manga109
(K) PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

VDSR [25] CVPR16

×2

666 36.66 / 0.9542 33.05 / 0.9127 31.90 / 0.8960 30.76 / 0.9140 37.22 / 0.9750
MemNet [48] ICCV17 678 37.78 / 0.9597 33.28 / 0.9142 32.08 / 0.8978 31.31 / 0.9195 37.72 / 0.9740
SRMDNF [64] CVPR18 1511 37.79 / 0.960 33.32 / 0.915 32.05 / 0.8985 31.33 / 0.9204 38.07 / 0.9761
CARN [1] ECCV18 1,592 37.76 / 0.9590 33.52 / 0.9166 32.09 / 0.8978 31.92 / 0.9256 38.36 / 0.9765
IMDN [22] MM19 694 38.00 / 0.9605 33.63 / 0.9177 32.19 / 0.8996 32.17 / 0.9283 38.88 / 0.9774
RFDN-L [32] ECCV20 626 38.08 / 0.9606 33.67 / 0.9190 32.18 / 0.8996 32.24 / 0.9290 38.95 / 0.9773
MAFFSRN [42] ECCV20 402 37.97 / 0.9603 33.49 / 0.9170 32.14 / 0.8994 31.96 / 0.9268 - / -
LatticeNet [38] ECCV20 756 38.15 / 0.9610 33.78 / 0.9193 32.25 / 0.9005 32.43 / 0.9302 - / -
RLFN [27] CVPRW22 527 38.07 / 0.9607 33.72 / 0.9187 32.22 / 0.9000 32.33 / 0.9299 - / -
SwinIR [30] ICCVW21 878 38.14 / 0.9611 33.86 / 0.9206 32.31 / 0.9012 32.76 / 0.9340 39.12 / 0.9783
Omni-SR Ours 772 38.22 / 0.9613 33.98 / 0.9210 32.36 / 0.9020 33.05 / 0.9363 39.28 / 0.9784
Omni-SR† Ours 772 38.29 / 0.9617 34.27 / 0.9238 32.41 / 0.9026 33.30 / 0.9386 39.53 / 0.9792
VDSR [25] CVPR16

×3

666 33.66 / 0.9213 29.77 / 0.8314 28.82 / 0.7976 27.14 / 0.8279 32.01 / 0.9340
MemNet [48] ICCV17 678 34.09 / 0.9248 30.00 / 0.8350 28.96 / 0.8001 27.56 / 0.8376 32.51 / 0.9369
EDSR [31] CVPRW17 1,555 34.37 / 0.9270 30.28 / 0.8417 29.09 / 0.8052 28.15 / 0.8527 33.45 / 0.9439
SRMDNF [64] CVPR18 1,528 34.12 / 0.9254 30.04 / 0.8382 28.97 / 0.8025 27.57 / 0.8398 33.00 / 0.9403
CARN [1] ECCV18 1,592 34.29 / 0.9255 30.29 / 0.8407 29.06 / 0.8034 28.06 / 0.8493 33.50 / 0.9440
IMDN [22] MM19 703 34.36 / 0.9270 30.32 / 0.8417 29.09 / 0.8046 28.17 / 0.8519 33.61 / 0.9445
RFDN-L [32] ECCV20 633 34.47 / 0.9280 30.35 / 0.8421 29.11 / 0.8053 28.32 / 0.8547 33.78 / 0.9458
MAFFSRN [42] ECCV20 807 34.45 / 0.9277 30.40 / 0.8432 29.13 / 0.8061 28.26 / 0.8552 - / -
LatticeNet [38] ECCV20 765 34.53 / 0.9281 30.39 / 0.8424 29.15 / 0.8059 28.33 / 0.8538 - / -
ESRT [37] CVPRW22 770 34.42 / 0.9268 30.43 / 0.8433 29.15 / 0.8063 28.46 / 0.8574 33.95 / 0.9455
SwinIR [30] ICCVW21 886 34.62 / 0.9289 30.54 / 0.8463 29.20 / 0.8082 28.66 / 0.8624 33.98 / 0.9478
Omni-SR Ours 780 34.70 / 0.9294 30.57 / 0.8469 29.28 / 0.8094 28.84 / 0.8656 34.22 / 0.9487
Omni-SR† Ours 780 34.77 / 0.9304 30.70 / 0.8489 29.33 / 0.8111 29.12 / 0.8712 34.64 / 0.9507
VDSR [25] CVPR16

×4

666 31.35 / 0.8838 28.01 / 0.7674 27.29 / 0.7251 25.18 / 0.7524 28.83 / 0.8870
MemNet [48] ICCV17 678 31.74 / 0.8893 28.26 / 0.7723 27.40 / 0.7281 25.50 / 0.7630 29.42 / 0.8942
EDSR [31] CVPRW17 1,518 32.09 / 0.8938 28.58 / 0.7813 27.57 / 0.7357 26.04 / 0.7849 30.35 / 0.9067
SRMDNF [64] CVPR18 1,552 31.96 / 0.8925 28.35 / 0.7787 27.49 / 0.7337 25.68 / 0.7731 30.09 / 0.9024
CARN [1] ECCV18 1,592 32.13 / 0.8937 28.60 / 0.7806 27.58 / 0.7349 26.07 / 0.7837 30.47 / 0.9084
IMDN [22] MM19 715 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838 30.45 / 0.9075
RFDN-L [32] ECCV20 643 32.28 / 0.8957 28.61 / 0.7818 27.58 / 0.7363 26.20 / 0.7883 30.61 / 0.9096
MAFFSRN [42] ECCV20 830 32.20 / 0.8953 26.62 / 0.7822 27.59 / 0.7370 26.16 / 0.7887 - / -
LatticeNet [38] ECCV20 777 32.30 / 0.8962 28.68 / 0.7830 27.62 / 0.7367 26.25 / 0.7873 - / -
RLFN [27] CVPRW22 543 32.24 / 0.8952 28.62 / 0.7813 27.60 / 0.7364 26.17 / 0.7877 - / -
ESRT [37] CVPRW22 751 32.19 / 0.8947 28.69 / 0.7833 27.69 / 0.7379 26.39 / 0.7962 30.75 / 0.9100
SwinIR [30] ICCVW21 897 32.44 / 0.8976 28.77 / 0.7858 27.69 / 0.7406 26.47 / 0.7980 30.92 / 0.9151
Omni-SR Ours 792 32.49 / 0.8988 28.78 / 0.7859 27.71 / 0.7415 26.64 / 0.8018 31.02 / 0.9151
Omni-SR† Ours 792 32.57 / 0.8993 28.95 / 0.7898 27.81 / 0.7439 26.95 / 0.8105 31.50 / 0.9192
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Figure 5. (a) PSNR improvement of Omni-SR variants with dif-
ferent OSAG number (K) over the smallest Omni-SR model (K=1)
for 4 × SR. (b) The number of model parameters vs. PSNR of dif-
ferent lightweight methods on Urban100 dataset for 4 × SR.

showcase that the omni-axis (i.e., spatial + channel) inter-
action introduced by OSA can effectively boost the model’s
contextual aggregation capabilities, which promises supe-
rior SR performance. Coupling with large training dataset
DF2K, the performance can be further improved, especially
on Urban100. We suppose that such a phenomenon can
be ascribed to the images in Urban100 have many simi-
lar patches, and the long-term relationship introduced by

OSAG can bring great benefits for detail restoration. More
importantly, with similar parameters, our model reduces
28% of computational complexity (Omni-SR: 36G FLOPs
vs. SwinIR: 50G FLOPs @1280×720), showing its effec-
tiveness and efficiency.

Visual comparison. In Figure 6, we also provide a
visual comparison of different lightweight SR methods at
×4 scale. We can observe that the HR images constructed
by Omni-SR contain more fine-grained details, while other
methods generate blurred edges or artifacts in complicated
areas. For instance, in the 1st row, our model is able to re-
store the detailed texture of the wall pleasantly, which all
other methods fail to restore. Visual results also validate
the effectiveness of the proposed OSA paradigm, which can
perform omni-axis pixel-wise interaction modeling, thus
obtaining a more powerful reconstruction capability.

Trade-off between Model Size and Performance. In
experiments, we set the number of OSAG as 5 to make the
model size around 800K for a fair comparison with other
methods. We also explore model performance with smaller
parameter sizes by reducing OSAG number K. As shown
in Figure 5(a), compared to the smallest model variant with
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Figure 6. Visual comparison for ×4 SR methods. The patches for comparison are marked with red boxes. (Best viewed by zooming.)

K=1, increasing the number of OSAG leads to stable per-
formance improvements. In Figure 5(b), we present PSNR
vs. parameters of different methods. It can be found that
Omni-SR achieves the best results under various settings,
showing its effectiveness and scalability.

4.3. Analysis of Omni Self-Attention

In this section, we illustrate the optimization features of
OSA and further uncover its underlying mechanism. Self-
attention is a low-bias operator, which makes its optimiza-
tion difficult and requires more training epochs. For this,
we introduce the additional channel-wise interaction to al-
leviate it. In Figure 7(a), we show the loss curves of dif-
ferent self-attention paradigms on the DIV2K training set,
including spatial self-attention, channel self-attention, and
the proposed omni self-attention. We can see that our OSA
presents a obviously superior convergence speed. More im-
portantly, the performance at the final epoch is also sig-
nificantly ahead of them. The above phenomenon clearly
shows that our OSA has superior good optimization char-
acteristics. Further, we delve into why channel-wise in-
teractions lead to these improvements. We calculate the
normalized entropies [52] of the hidden layer features of
the network composed of the above three computational
primitives. We illustrate the entropy results in Figure 7(c).

As shown in the figure, in all outgoing layers, our OSA-
encoded features show higher entropy, indicating that our
OSA encodes richer information. More information may
come from various scales, and this information can help the
operators to reconstruct the exact details faster. We spec-
ulate that this is the potential reason why our OSA shows
better optimization properties. In addition, following previ-
ous works [8, 16], we also resort to LAM analysis. DI [16]
metric can measure the furthest interaction distance of the
model. From Figure 8 we can observe that Omni-SR gen-
erally has the highest max diffusion index than other meth-
ods, showing that our OSA paradigm can effectively capture
long-range interactions.

4.4. Ablation Study

Effect of Omni Self-Attention. The core idea of our
framework is to extend the vanilla self-attention with a
channel-wise relationship to build omni-axis pixel-wise in-
teraction. Based on Omni-SR framework, we design sev-
eral variant models, and their SR results are reported in
Table 2. We first simply remove the channel-wise com-
ponent to form a spatial-only variant (Omni-SRsp), and its
performance is degraded by 0.13dB compared to the full
model. Such a significant degradation justifies the impor-
tance of channel interactions. Note that Omni-SRsp still
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Figure 8. The distribution of DI values for different methods on
Urban100. Top-left points with show a narrow area of interest, and
right-bottom points show a large area of interest.

outperforms SwinIR by 0.04dB@Urban100 ×4, which ben-
efits from the global interaction introduced by grid window
partition. Similarly, we remove the spatial self-attention
component to derive a channel self-attention variant, Omni-
SRca, and such a modification also leads to undesirable per-
formance degradation. Besides, we use the most widely
adopted channel and spatial attention configurations (i.e.,
SE [19] and CBAM [55]) to act as alternative operators for
channel and spatial aggregation. Both substitutions (Omni-
SRSE, Omni-SRCBAM) hurt PNSR performance compared
to the full model. The above results show that the specific
interaction paradigm (e.g., scalar-based, covariance-based)
is equally important, and our channel interaction based on
the covariance matrix shows great advantages.

Effect of Omni-Scale Aggregation Group. In Omni-
SR, we propose a local-meso-global interaction scheme
(i.e., OSAG) to pursue progressive feature aggregation. To
investigate its effectiveness, we design three different kinds
of interaction schemes based on Omni-SR framework: Sep-
arated scheme, Mixed scheme, and our fully designed
Omni scheme (i.e., our proposed OSAG), and the abla-
tion study results are shown in Figure 7(a). In the figure,
we employ different words (e.g., “Local”, “Meso+Global”)
to represent specific schemes, e.g., “Local” denotes us-
ing Local-Conv block to replace Meso-OSA and Global-
OSA; “Local+Global” represents replace original cascaded
Meso-OSA and Global-OSA with cascaded Local-Conv
and Global-OSA. We can observe that single interaction
schemes (e.g., “Local”) perform the worst. Interestingly,

Table 2. Ablation studies of omni self-attention on Urban100.
Omni-SR(∗) denotes different modifications. ‘SA’ and ‘S-SA’ de-
note spatial gate and spatial self-attention. ‘CA’ and ‘C-SA’ denote
channel gate and channel self-attention. We maintain the consis-
tency of model parameters by adjusting the channels of 1×1Conv.

Model SA S-SA CA C-SA FLOPs ×2 ×3 ×4
Omni-SRsp ✗ ✓ ✗ ✗ 33G 32.88 28.72 26.51
Omni-SRSE ✗ ✓ ✓ ✗ 34G 32.83 28.71 26.50
Omni-SRCBAM ✓ ✗ ✓ ✓ 34G 32.92 28.76 26.53
Omni-SRca ✗ ✗ ✗ ✓ 33G 32.65 28.60 26.45
Omni-SRfull ✗ ✓ ✗ ✓ 36G 33.05 28.84 26.64

the “Global” scheme is inferior to the “Meso” one due to its
poor optimization properties of global self-attention [3, 34,
50]. Once two interaction operators are combined, the per-
formance improves steadily. Among them, “Meso+ Global”
setting achieves the second-best performance. Furthermore,
combining all three interaction schemes together, we obtain
the best performing scheme, i.e., “Omni”. From the above
experiments, we can infer that obvious performance gains
can be obtained by introducing various-scale interactions,
which also illustrates the feasibility and effectiveness of our
proposed OSAG.

5. Conclusion
In this work, we propose Omni-SR, a lightweight frame-

work for image SR. We propose the Omni Self-attention
paradigm for simultaneous spatial and channel interactions,
mining all the potential correlations across omni-axis. Fur-
thermore, we propose an omni-scale aggregation scheme to
effectively enlarge the receptive fields with low computa-
tional complexity, which encodes contextual relations in a
progressively hierarchical manner. Extensive experiments
on public benchmark datasets and comprehensive analyti-
cal studies validate its prominent SR performance.
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