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Abstract

We present a novel framework for exemplar based im-
age translation. Recent advanced methods for this task
mainly focus on establishing cross-domain semantic corre-
spondence, which sequentially dominates image generation
in the manner of local style control. Unfortunately, cross-
domain semantic matching is challenging; and matching
errors ultimately degrade the quality of generated images.
To overcome this challenge, we improve the accuracy of
matching on the one hand, and diminish the role of match-
ing in image generation on the other hand. To achieve
the former, we propose a masked and adaptive trans-
former (MAT) for learning accurate cross-domain corre-
spondence, and executing context-aware feature augmen-
tation. To achieve the latter, we use source features of
the input and global style codes of the exemplar, as sup-
plementary information, for decoding an image. Besides,
we devise a novel contrastive style learning method, for
acquire quality-discriminative style representations, which
in turn benefit high-quality image generation. Experimen-
tal results show that our method, dubbed MATEBIT, per-
forms considerably better than state-of-the-art methods, in
diverse image translation tasks. The codes are available at
https://github.com/AiArt-HDU/MATEBIT.

1. Introduction

Image-to-image translation aims at transfer images in
a source domain to a target domain [16, 50]. Early stud-
ies learn mappings directly by Generating Adversarial Net-
works (GANs), and have shown great success in various ap-
plications [2, 42]. Recently, exemplar based image transla-
tion [29,30,45], where an exemplar image is used to control
the style of translated images, has attracted a lot of attention.
Such methods allow high flexibility and controllability, and
have a wide range of potential applications in social net-
works and metaverse. For example, people can transfer a
facial sketch to an artistic portrait, in the style of oil paint-
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Figure 1. Visualization of correspondence maps. The red point is
the query position. Full Corr. and Masked Corr. denote the full
correspondence [45] and masked one in our method, respectively.
CAM denotes visualization by Class Activation Mapping [48].

ings or avatars. Despite the remarkable progress, yielding
high-fidelity images with consistent semantic and faithful
styles remains a grand challenge.

Early pioneering works [15, 21, 35] attempt to globally
control the style of generated images. However, such meth-
ods ignore spatial correlations between an input image and
an exemplar, and may fail to produce faithful details. Re-
cently, some advanced methods [25, 44, 45, 49] first estab-
lish the cross-domain semantic correspondence between an
input image and an exemplar, and then use it to warp the
exemplar for controlling local style patterns. In these meth-
ods, the quality of generated images relies heavily on the
learned correspondence [39]. Unfortunately, cross-domain
semantic matching is challenging, since there is no reliable
supervision on correspondence learning [45]. As a result,
potential matching errors ultimately lead to degraded arti-
facts in generated images.

To combat this challenge, we propose to boost the match-
ing accuracy on one hand, and to diminish the role of match-
ing in image generation on the other hand. Inspired by the
great success of Transformers [6, 10, 26, 41], we first devise
a Masked and Adaptive Transformer (MAT) for learning ac-
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curate cross-domain correspondence and executing context-
aware feature augmentation. Previous works [44, 45, 49]
have used the vanilla attention mechanism [41] for learning
full correspondence. However, the initial attention typically
involves ambiguous correspondences (2nd row in Fig. 1).
To mitigate these limitations, in MAT, we use a masked
attention to distinguish the correspondence as reliable or
not, and then reliability-adaptively aggregate representa-
tions. Besides, the Feed-Forward Network (FFN) [41] in
vanilla transformers neglects contextual correlations inside
an image. We thus replace FFN by an adaptive convolution
block [28], where the coordinate attention [12] and depth-
wise separable convolution [5] are used to capture contex-
tual correlations and to improve efficiency. With a joint
consideration of matching reliability and contextual correla-
tions, MAT gradually focuses on accurate correspondences
and emphasizes on features of interest (3rd row in Fig. 1).

In addition, to boost both the semantic consistency and
style faithfulness, we supplementally use semantic features
of the input image and global style codes of the exemplar for
decoding an image. To this end, we first design our whole
network following the U-Net architecture [16]. Besides, we
devise a novel contrastive style learning (CSL) framework
for acquiring discriminative style representations. Recently,
Zhang et al. [47] propose a similar CSL method, where the
target exemplar is used as a positive sample, and the other
exemplars as negative ones. Differently, we use low-quality
images, generated during early training stages, as negative
samples. In this way, our style codes are desired to dis-
criminate not only subtle differences in style, but also those
in perceptual quality. Ultimately, the learned global style
codes, cooperating with the local style control induced by
MAT, in turn benefit high-quality image generation.

With the proposed techniques above, our full model,
dubbed MATEBIT, diminishes the impact of position-wise
matching on image quality, and integrates both local and
global style control for image generation. Experimental
results show that MATEBIT generates considerably more
plausible images than previous state-of-the-art methods, in
diverse image translation tasks. In addition, comprehen-
sive ablation studies demonstrate the effectiveness of our
proposed components. Finally, we perform interesting ap-
plications of photo-to-painting translation and Chinese ink
paintings generation.

2. Relate Work
Exemplar Based Image Translation. Recently, exem-

plar based image translation has attracted increasing atten-
tion. For example, Park et al. [35] learn an encoder to map
the exemplar image into a global style vector, and use it to
guide image generation. Such a global style control strat-
egy enables style consistency in whole, but fails to pro-
duce subtle details. Most recently, researchers propose a

matching-then-generation framework [39]. Specially, they
first establish dense correspondence between an input and
an exemplar, and then reshuffle the exemplar for locally
control the style of synthesize images. For example, Zhang
et al. [45] establish position-wise correspondence based on
the Cosine attention mechanism and warp the exemplar cor-
respondingly. Afterwards, the warped image dominates the
generation of images in the manner of SPADE [35]. To re-
duce the cost of matching in high-resolution image gener-
ation, Zhou et al. [49] introduce a hierarchical refinement
of semantic correspondence from ConvGRU-PatchMatch.
Besides, Liu et al. [25] used a dynamic pruning method for
learning hierarchical sparse correspondence. They also use
reliability-adaptive feature integration to improve the qual-
ity of generated images.

Previous methods merely use global or local style con-
trol, and the latter relies heavily on the learned correspon-
dence. Besides, they consider little about contextual corre-
lations inside an image. In this paper, we use both global
and local style control to boost the style consistency. Be-
sides, we take contextual correlations into consideration and
execute reliability-adaptive feature augmentation.

Transformers. Transformers [41] have shown incred-
ible success from the field of natural language process-
ing (NLP) [19] to computer vision (CV) [6, 26]. Multi-
head attention (MHA) and FFN are key components in a
Transformer, and have been used in exemplar based im-
age translation. However, they induce unreliable matching
results and neglect context correlations in feature transla-
tion. In our MAT, we combat these limitations by replacing
them with a masked attention and a context-aware convolu-
tion block, respectively. Recently, researchers use semantic
masks to facilitate representation learning [4, 8, 37], where
a mask predictor is required. Differently, we use a ReLU
function to mask over the attention layer, for distinguishing
correspondence as reliable or not (Sec. 3.1). In general,
MAT follows a concise and efficient architecture.

Contrastive Learning. Contrastive learning has shown
its effectiveness in various computer vision tasks [9,13,34].
The basic idea is to learn a representation by pushing pos-
itive samples toward an anchor, and moving negative sam-
ples away from it. Different sampling strategies and con-
trastive losses have been extensively explored in various
downstream tasks. For example, Chen et al. [3] and He et al.
[9] obtain positive samples by augmenting original data. In
the field of image translation, Park et al. [34] propose patch-
wise contrastive learning by maximizing the mutual infor-
mation between cross-domain patches. Similarly, Zhang et
al. [47] use contrastive learning for acquiring discriminative
style representations. In the task of exemplar based image
translation, Zhan et al. [44] use contrastive learning to align
cross-domain images to a consistent semantic feature space,
so as to boost the accuracy of matching. Differently, we
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Figure 2. Overview of our image translation network, MATEBIT.

use early generated images as negative samples, so that the
learned style representations can discriminate subtle differ-
ences in both style and perceptual quality (Sec. 3.2).

3. The Proposed Method

Given an input image xA in domain A and an exemplar
image yB in domain B, our goal is to generate a target image
xB which preserves semantic structures in xA but resembles
the style of similar parts in yB . Fig. 2 shows an overview
of our translation network G. Specially, we first align xA

and yB to an intermediate feature space by encoders EA and
EB , respectively. Afterwards, we use a Masked and Adap-
tive Transformer (MAT) for correspondence learning and
feature augmentation. Finally, a decoder DB produces an
output image x̂B based on the augmented features, as well
as the source features and target style codes. Details are
described below.

3.1. Masked and Adaptive Transformer (MAT)

In order to establish accurate cross-domain correspon-
dence, we propose a novel and concise Transformer archi-
tecture, i.e. MAT. In general, the architecture of MAT (Fig.
3b) follows that of vanilla Transformers (Fig. 3a) [41]. Dif-
ferently, we use masked attention to distinguish reliable and
unreliable correspondence, instead of using multi-head at-
tention. Besides, we use Positional Normalization (PONO)
[23] and an Adaptive Convolution (AdaConv) block [28],
instead of LN and MLP-based FFN, respectively. MAT is
desired to gradually concentrate on accurate matching, and
to reliability-adaptively augment representations with con-
textual correlations.

Masked Correspondence Learning. Let XA ∈
RH×W×C and YB ∈ RH×W×C be the representations of
xA and yB in the intermediate feature space, with height H ,
width W , and C channels. We first map XA to the query
Q ∈ RHW×C , and YB to the key K ∈ RHW×C and value
V ∈ RHW×C , by using 1×1 convolutions, respectively. As
shown in Fig. 3d, we add positional encoding (PE) to XA

and YB , for embedding spatial correlations. Afterwards,
we learn the initial correspondence A ∈ RHW×HW fol-
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Figure 3. Detailed architectures. (a) Vanilla Transformer block,
(b) MAT block, (c) AdaConv block, and (d) Masked Attention.

lowing the Cosine attention mechanism [45], i.e.

A(u, v) =
Q̃(u)K̃(v)T

||Q̃(u)|| · ||K̃(v)||
, (1)

with Q̃(u) = Q(u)− Q̄(u), K̃(v) = K(v)− K̄(v), where
u, v ∈ [1, ...,HW ] are position indices; Q̄(u) and K̄(v) are
the means of Q(u) and K(v), respectively. A(u, v) is the
matching score between Q(u) and K(v).

Previous methods [44, 45] typically use the initial corre-
spondence map A to reshuffle an exemplar for controlling
local patterns in image synthesis. However, induced by the
difficulties in cross-domain correspondence learning, A in-
volves unreliable match scores (Fig. 3d). As a result, the
reshuffled image will lead to implausible artifacts in gen-
erated images. To combat this limitation, we distinguish
initial matching scores as reliable or not, according to their
signs [32]. The masked correspondence map becomes:

Amask = ReLU(A), (2)

In DynaST [25], two networks are used to predict the reli-
ability mask of correspondence. However, it’s challenging



to effectively train the network, because there is no super-
vision on matching during training. In contrast, ReLU con-
tains no learnable parameters and ultimately leads to supe-
rior performance over DynaST (Sec. 4.1).

Reliability-Adaptive Feature Aggregation. For re-
gions with reliable correspondence in xA, we use Amask

to warp the value features, V, derived from the exemplar:

Xcor = ÃmaskV, with Ãmask = softmax(α ·Amask),
(3)

where α is a scaling coefficient to control the sharpness of
the softmax function. In default, we set its value as 100.

For regions with unreliable correspondence in xA, Xcor

provides an average style representation of V. We further
extract complementary information from the query, Q, de-
rived from the input. Inspired by SPADE [35], we first
transfer Q to the target domain by using pixel-wise mod-
ulation parameters (i.e., γ for scale and β for bias) learned
from xA. The modulation is formulated by:

Qnorm = γ(xA)
Q− µ(Q)

σ(Q)
+ β(xA), (4)

where µ(Q) and σ(Q) are the mean value and standard de-
viance of Q. Afterwards, we select the translated features
of unreliably corresponded regions in xA by:

Xuncor = (1−
∑

j
Amask)⊙Qnorm, (5)

where the summation is along the second dimension; ⊙ de-
notes point-wise production with broadcasting. Since γ and
β are learned from the input image xA, the modulated fea-
tures preserve the semantic information of xA. Besides,
constraints on the generated image will push the selected
features convey to the style of yB .

Ideally, Xcor and Xuncor would complement each other
and facilitate both semantic consistency and style rele-
vance in image generation. To this end, we integrate Xcor,
Xuncor, and Q by:

Xagg = PONO(Xcor +Xuncor +Q). (6)

In PONO [23], features at each position are normalized de-
pendently. Compared to LN in vanilla transformers and
DynaST [25], PONO boosts the flexibility in reliability-
adaptive feature aggregation.

Context-Aware Feature Augmentation. Inspired by
ConvNeXT [28], we replace FFN by an AdaConv block
to position-adaptively emphasize informative representa-
tions. Besides, we use the coordinate attention (CoordAt-
ten) module [12] to capture contextual correlations.

The architecture of the AdaConv block is as shown in
Fig. 3c. We fist use the depthwise convolution (Dwise)
to update representations in each channel separately; and
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then use two pointwise convolutions (Pwise) to automati-
cally emphasize representations of interest, at every posi-
tion. The Gaussian Error Linear Unit (GELU) activation
function and Layer Norm (LN) are used after the first Pwise
layer [28]. Notably, CoordAtten is used after the Dwise
layer for modeling long-range dependencies in an image.
Specially, CoordAtten produces cross-channel and position-
sensitive attention maps, which helps our model to more ac-
curately locate the representations of interest [12].

Finally, the output of a MAT block is obtained with a
residual connection, i.e. XMAT = AdaConv(Xagg) +
Xagg. In the implementation, we stack three MAT blocks
in default to gradually refine the correspondence and to aug-
ment informative representations (Fig. 1). Empirical verifi-
cations will be given in Sec. 4.2.

Benefits of MAT. Fig. 3d illustrates the impact of MAT.
The query point locates over the left eye of the source im-
age. Here we show the magnitudes of its correspondence
over the exemplar, in the third layer of MAT. Obviously, the
original correspondence A covers both eyes of the exem-
plar. In contrast, the masked correspondence Amask accu-
rately concentrates over the left eye. Such superiority sig-
nificantly boost the quality of ultimate images.

3.2. Contrastive Style Learning (CSL)

In MATEBIT, we use the encoder EB to extract local
style information XB , and then a MLP to extract global
style codes z. XB and z perform local and global style con-
trol on generated images, respectively (Sec. 3.3). To boost
the discriminative capacity of style representations, as well
as the quality of generated images, we propose a novel con-
trastive style learning (CSL) method (as shown in Fig 4).

In our settings, the exemplars are drawn by human artists
and thus considered as high-quality. In contrast, the images
generated in early training stages are typically low-quality.
Inspired by the idea of contrastive learning [9], we use the
exemplar yB as the positive sample, while a collection of
early generated images as negative. Let z denotes style



codes of the generated image x̂B , z+ that of exemplar yB ,
and {z−1 , z

−
2 , ..., z

−
m} the style codes of m negative sam-

ples. CSL learns style representations by maximizing the
mutual information between anchors and positive samples,
while minimizing that between anchors and negative sam-
ples. Our contrastive style loss is computed by:

Lstyle = − log
exp(z

T z+

τ )

exp(z
T z+

τ ) +
∑m

j=1 exp(
zT z−

j

τ )
, (7)

where τ = 0.07 and m = 1024. In the implementation, we
use a queue to cache negative style vectors.

3.3. Translation network

To boost both the semantic consistency and style faith-
fulness, we additionally use source semantic features and
global style codes for decoding an image. Specially, we de-
sign our whole translation network following U-Net (Fig.
2), where the multi-level features in EA are skip-connected
to the decoder DB , for supplementing informative sematic
structures of the input image xA. Besides, we use the style
codes z to globally control the style of generated images,
in the manner of AdaIN [14]. Specially, z is mapped to
channel-wise modulating factors by fully-connected (FC)
layers. In this way, we diminish the impact of correspon-
dence learning on image generation, and provide reliable
style control for even unmatched regions.

In summary, our translation network allows both local
and global style control, and reuses the semantic features of
input images. As a result, the generated image is desired
to present consistent semantic to the input xA and faithful
style to the exemplar yB . More details of our network are
available in the supplementary material.

3.4. Loss functions

Our whole network is end-to-end optimized to jointly
achieve high-fidelity image generation and accurate cor-
respondence. Following [45], we obtain training triplets
{xA, yB , xB} from the ready-made data pair {xA, xB},
where yB is a geometrically warped version of xB . The
generated image is denoted by x̂B = G(xA, yB). Our loss
functions are similar to [45], except for the previous con-
trastive style loss Lstyle and the structural loss Lstr below.

Semantic alignment Loss. For accurate cross-domain
correspondence learning, the encoders EA and EB should
align xA and xB to consistent representations. The corre-
sponding semantic alignment loss is:

Lalign = ∥EA(xA)− EB(xB)∥1 . (8)

Correspondence Loss. Ideally, if we warp yB in the
same way as Eq.3, the resulting image should be exactly
xB . We thus constrain the learned correspondence by:

Lcorr =
∥∥∥ÃT

maskyB ↓ −xB ↓
∥∥∥
1
, (9)

where ↓ indicates down-sampling yB and xB to the size (i.e.
width and height) of XA.

Perceptual Loss. The generated image x̂B should be
semantic-consistent with the ground truth xB in term of se-
mantic. We thus use the perceptual loss:

Lperc = ∥φl(x̂B)− φl(xB)∥1 , (10)

where φl denotes the activations after layer relu4 2 in pre-
trained VGG19 [40] , which represent high-level semantics.

Contextual Loss. In addition, the generated image
should be in the same style as the exemplar. In addition
to the previous contrastive style loss (Eq.7), we additionally
use the contextual loss (CX) [31] to constrain on local style
consistency. The contextual loss is computed by:

Lctx = − log

(∑
l

wlCX(φl(x̂B), φl(yB))

)
(11)

where wl balances the terms of different VGG19 layers.
Structural Loss. The generated image should preserve

semantic structures in the input image. Correspondingly, we
use the Learned Perceptual Image Patch Similarity (LPIPS)
[46] between their boundaries as the structural loss:

Lstr = LPIPS(H(x̂B),H(xB)), (12)

where H is the HED algorithm [43], which has been widely
used for extracting semantic boundaries in an image.

Adversarial loss. Finally, we add a discriminator D to
distinguish real images in domain B and the generated im-
ages [7]. The adversarial loss is:

LD
adv = −E[h(D(yB))]− E[h(−D(x̂B))],

LG
adv = −E[D(x̂B)],

(13)

where h(t) = min(0,−1+ t) is the hinge loss function [1].
Total loss. In summary, our overall objective function is,

min
G

max
D

λ1Lstyle + λ2Lalign + λ3Lcorr + λ4Lstr

+ λ5(Lperc + Lctx) + λ6(LG
adv + LD

adv)
(14)

where λ denotes the weight parameters.

4. Experiments
Implementation details. We apply spectral normaliza-

tion [33] to all the layers in the translation network and dis-
criminator. We use the Adam [20] solver with β1 = 0 and
β2 = 0.999. The learning rates for the generator and dis-
criminator are set as 1e−4 and 4e−4 respectively, following
TTUR [11]. The experiments are conducted using 4 24GB
RTX3090 GPUs. Limited by the computation load, we re-
strict the resolution of generated images to 256× 256 in all
translation tasks.



Table 1. Comparison on the Metfaces [18], CelebA-HQ [22], Ukiyo-e [36],Cartoon [36], AAHQ [24], and DeepFashion [27] datasets.

CelebA-HQ Metfaces Cartoon Ukiyo-e AAHQ DeepFashion Time ↓

FID ↓ SWD ↓ Texture ↑ Color ↑ Semantic↑ FID ↓ SWD ↓ FID ↓ SWD ↓ FID ↓ SWD ↓ FID ↓ SWD ↓ FID ↓ SWD ↓ (s)

SPADE [35] 31.5 26.9 0.927 0.955 0.922 45.6 26.9 97.5 30.5 45.6 26.9 79.4 32.1 36.2 27.8 0.196
CoCosNet [45] 14.3 15.2 0.958 0.977 0.949 25.6 24.3 66.8 27.1 38.3 13.9 62.6 21.9 14.4 17.2 0.321
CoCosNet-v2 [49] 13.2 14.0 0.954 0.975 0.948 23.3 22.4 66.4 27.0 32.1 11.0 62.4 22.8 13.0 16.7 1.573
MCL-Net [44] 12.8 14.2 0.951 0.976 0.953 23.8 24.5 67.9 27.9 32.4 12.4 64.4 22.2 12.9 16.2 0.309
DynaST [25] 12.0 12.4 0.959 0.978 0.952 29.2 28.6 62.8 26.5 38.9 14.2 67.2 24.0 8.4 11.8 0.214
MATEBIT (ours) 11.5 13.2 0.966 0.986 0.949 26.0 19.1 64.4 27.6 30.3 11.5 56.0 19.5 8.2 10.0 0.185
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Figure 5. Results on the Metfaces [18], CelebA-HQ [22], Ukiyo-e [36], Cartoon [36], AAHQ [24], and DeepFashion [27] datasets.

Datasets. We mainly conduct experiments on the fol-
lowing datasets. (1) CelebA-HQ [22] contains 30,000 fa-
cial photos. We chose 24,000 samples as the training set
and 3000 as the test set. (2) Metfaces [18] consists of
1336 high-quality artistic facial portraits. (3) AAHQ [24]
consists of high-quality facial avatars. We randomly select
1500 samples for training and 1000 samples for testing. (4)
Ukiyo-e [36] consists of high-quality Ukiyo-e faces. We
randomly select 3000 and 1000 samples for training and
testing, respectively. (5) Cartoon [36] consists of 317 car-
toon faces. (6) DeepFashion [27] consists of 800,00 fash-
ion images. On CelebA-HQ, we connect the face landmarks
for face region, and use Canny edge detector to detect edges
in the background. On DeepFashion, we use the officially
provided landmarks as input. On the other datasets, we use
HED [43] to obtain semantic edges.

4.1. Comparison with state-of-the-art

We select several advanced models, including SPADE
[35], CoCosNet [45], CoCosNet-v2 [49], MCL-Net [44],
and DynaST [25], for comparison. For a fair comparison,
we retrain their models at resolution 256 × 256 under the
same settings as ours.

Quantitative evaluation. We adopt several criteria to
fully evaluate the generation results. (1) Fréchet Inception
Score (FID) [38] and Sliced Wasserstein distance (SWD)
[17] are used to evaluate the image perceptual quality. (2)
To assess style relevance and semantic consistency of trans-
lated images [45], we compute the color, texture, and se-
mantic metrics based on VGG19 [40]. Specifically, the co-
sine similarities between low-level features (i.e. relu1 2
and relu2 2) are used to measure color and texture rele-
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Figure 6. More results generated by MATEBIT. Images shown in
the left-bottom corner are source images or exemplars.

vance, respectively; the average cosine similarity between
high-level features (i.e. relu3 2, relu4 2, and relu5 2)
measures the semantic consistency.

The quantitative comparison results are shown in Table
1. Compared to existing methods, our model consistently
achieves superior or highly competitive performance across
all the datasets. Especially, MATEBIT significantly im-
proves the style relevance in both texture and color. On the
complicated AAHQ dataset, which contains diverse styles
of avatars, MATEBIT dramatically decreases both FID and
SWD. Such superiority indicates that our generated images
are of better perceptual quality; and present consistent ap-
pearance to similar parts in exemplars. We additionally re-
port the average time each method costs for generating an
image. Our method shows the best efficiency and is signifi-
cantly faster than previous methods.

Qualitative comparison. Fig 5 illustrates images gen-
erated by different methods. Obviously, previous meth-
ods present geometric distortions, blurring artifacts, in-
consistent colors, or identity inconsistency. In contrast,
MATEBIT consistently produces appealing results, includ-
ing more results shown in Fig. 6. Specially, our results pre-
serve the semantic structure of input images, and present
consistent appearance with semantically similar regions in
exemplars. Previous methods suffer serious degradations
mainly due to the matching errors in full correspondence
learning. In our method, we distinct reliable and unreliable
correspondence, and release the role of matching in image
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Figure 7. Impact of the number of MAT blocks on performance.
Table 2. Results of ablation studies on MetaFaces.

FID ↓ SWD ↓ Texture ↑ Color ↑ Semantic↑

w/o MAT 27.7 22.3 0.883 0.852 0.856
w/o ReLU 30.1 20.0 0.916 0.956 0.928
w/o MAT (→ Full Corr. [45]) 34.1 19.7 0.872 0.969 0.902
w/o AdaConv (→ FFN [41]) 34.3 20.1 0.841 0.971 0.896

w/o Lstyle 30.3 20.8 0.874 0.848 0.908
w/o Lstyle (→ LCAST [47] ) 31.0 19.8 0.904 0.983 0.921

w/o Lstr 28.4 21.8 0.915 0.983 0.911
w/o skip connection 47.0 27.7 0.925 0.958 0.902
w/o global style z 27.6 21.2 0.927 0.961 0.925

Full Model 26.0 19.1 0.938 0.984 0.927

generation. As a result, our method stably transfers a source
image to the target style of an exemplar.

4.2. Ablation study

Impacts of MAT. We present a comprehensive analy-
sis to justify the important component in our architecture,
i.e. MAT. We here modify our full model by (1) removing
the MAT module (i.e. w/o MAT), (2) removing ReLU in
MAT (i.e. w/o ReLU), (3) replacing MAT with three-layer
full correspondence learning modules [45] (i.e. Full Corr.),
and (4) replacing the AdaConv with FFN [45] (i.e. w/ Ada-
Conv). The results in Table 2 show that removing MAT or
ReLU dramatically hurts the performance. Besides, using
the full correspondence learning in [45] or using FFN also
significantly decreases the texture relevance and semantic
consistency. Correspondingly, these model variants leads to
inferior results in terms of textures or colors, compared to
our full model (Fig. 8). Recall the visualized correspon-
dence in Fig. 1, our method learns remarkably accurate cor-
respondence, which ultimately benefits the quality of gen-
erated images. In addition, Fig. 7 shows that both the se-
mantic consistency and style realism broadly improve with
the number of MAT blocks and peak at three. All these ob-
servations demonstrate our motivation that MAT gradually
refines cross-domain correspondence and augments infor-
mative representations for generating high-quality images.

Contrastive Style Loss. To verify the effectiveness of
the proposed contrastive style learning methodology, we
train our model by (1) removing the style loss (i.e. w/o
Lstyle) and (2) replacing Lstyle with the loss used in CAST
[47] (i.e. w/ LCAST). In CAST, only high-quality exem-
plars in different styles are used as negative samples. Differ-
ently, we use low-quality generated images in diverse styles
as negative samples. From both Table 2 and Fig. 8, we
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Figure 8. Comparison of generated images by different variants of our model, on Metfaces [18].
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Figure 9. Our method can transfer facial photos to artistic portraits
in the style of exemplars.

observe that: (1) without Lstyle, although the generated im-
ages show high semantic consistency, they present low style
relevance; (2) LCAST benefits the style relevance, but leads
to inferior performance to Lstyle. These comparison results
meet our expectation that: our CSL methodology enables
the learned style codes to discriminate subtle divergences
between images with different perceptual qualities. Such
discriminability facilitates pushes the network to generate
high-quality images.

Skip connections & global style control. In MATEBIT,
we use skip connections to supplement input semantic in-
formation. Removing skip connections dramatically hurts
the semantic inconsistency and the quantitative results. Be-
sides, using global style vector z increases subtle details,
e.g. the colors over the mouth, rings, and hairs.

In summary, MAT learns accurate correspondence and
enables context-aware feature augmentation; the contrastive
style learning benefits the style control and high-quality im-
age generation; and the U-Net architecture helps the preser-
vation of semantic information. Ultimately, all these bene-
fits make our model significantly outperform previous state-
of-the-art methods in generating plausible images.

4.3. Applications

Artistic Portrait Generation. An potential application
of our method is transferring a facial photo to an artistic
portrait, in the style of an exemplar. We here apply the pre-
viously learned models to randomly selected facial photos
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Figure 10. Chinese ink paintings generation (1st & 3rd rows), as
well as photo-to-painting translation (2nd & 4th rows).

from CelebA-HQ [22]. As illustrated in Fig. 9, our method
can generate appealing portraits with consistent identity and
faithful style appearance.

Chinese Ink Painting Generation. To verify the ca-
pacity of our model in generating complex images, we ad-
ditionally apply it to generate Chinese Ink paintings. Spe-
cially, we collect paintings of landscapes and facial portraits
from the web, and then train and test our model on each sub-
set respectively. Fig. 10 illustrates the results of painting
generation and photo-to-painting translation. Obviously, all
the generated images show remarkably high quality. Be-
sides, our model successfully captures subtle differences
between different exemplars, demonstrating its remarkable
capacity in style control.

5. Conclusions

This paper presents a novel exemplar-guided image
translation method, dubbed MATEBIT. Both quantitative
and qualitative experiments show that MATEBIT is capa-
ble of generating high-fidelity images in a number of tasks.
Besides, ablation studies demonstrate the effectiveness of
MAT and contrastive style learning. Despite such achieve-
ments, the artistic portraits transferred from facial photos
(Fig. 9) are inferior to those shown in Fig. 6. This may be
due to the subtle differences in edge maps between photos
and artistic paintings. In the near future, we will explore
to solve this issue via semi-supervised learning or domain
transfer technologies.
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