
Boost Vision Transformer with GPU-Friendly Sparsity and Quantization

Chong Yu1,2 Tao Chen3,* Zhongxue Gan1,* Jiayuan Fan1

1Academy for Engineering and Technology, Fudan University 2NVIDIA Corporation
3School for Information Science and Technology, Fudan University

21110860050@m.fudan.edu.cn; {eetchen, ganzhongxue, jyfan}@fudan.edu.cn

Abstract

The transformer extends its success from the language to
the vision domain. Because of the stacked self-attention and
cross-attention blocks, the acceleration deployment of vi-
sion transformer on GPU hardware is challenging and also
rarely studied. This paper thoroughly designs a compres-
sion scheme to maximally utilize the GPU-friendly 2:4 fine-
grained structured sparsity and quantization. Specially, an
original large model with dense weight parameters is first
pruned into a sparse one by 2:4 structured pruning, which
considers the GPU’s acceleration of 2:4 structured sparse
pattern with FP16 data type, then the floating-point sparse
model is further quantized into a fixed-point one by sparse-
distillation-aware quantization aware training, which con-
siders GPU can provide an extra speedup of 2:4 sparse cal-
culation with integer tensors. A mixed-strategy knowledge
distillation is used during the pruning and quantization pro-
cess. The proposed compression scheme is flexible to sup-
port supervised and unsupervised learning styles. Exper-
iment results show GPUSQ-ViT scheme achieves state-of-
the-art compression by reducing vision transformer models
6.4-12.7× on model size and 30.3-62× on FLOPs with neg-
ligible accuracy degradation on ImageNet classification,
COCO detection and ADE20K segmentation benchmarking
tasks. Moreover, GPUSQ-ViT can boost actual deployment
performance by 1.39-1.79× and 3.22-3.43× of latency and
throughput on A100 GPU, and 1.57-1.69× and 2.11-2.51×
improvement of latency and throughput on AGX Orin.

1. Introduction

Transformer-based neural models [48] have garnered im-
mense interest recently due to their effectiveness and gen-
eralization across various applications. Equipped with the
attention mechanism [52] as the core of its architecture,
transformer-based models specialize in handling long-range
dependencies, which are also good at extracting non-local

*Tao Chen and Zhongxue Gan are corresponding authors.

features [9] [5] in the computer vision domain. With com-
parable and even superior accuracy than the traditional con-
volution neural networks (CNN) [12] [49], more vision
transformer models are invented and gradually replace the
CNN with state-of-the-art performance on image classifi-
cation [27] [26], object detection [70] [59], and segmenta-
tion [58] [68] tasks. Due to the vision transformer models
having a generally weaker local visual inductive bias [9] in-
herent in CNN counterparts, many transformer blocks are
stacked for compensation. Moreover, the attention module
in the transformer block contains several matrix-to-matrix
calculations between key, query, and value parts [52]. Such
designs give the naive vision transformers more parameters
and higher memory and computational resource require-
ments, causing high latency and energy consuming during
the inference stage. It is challenging for actual acceleration
deployment in GPU hardware.

Model compression techniques to transfer the large-scale
vision transformer models to a lightweight version can
bring benefits to more efficient computation with less on-
device memory and energy consumption. There are some
previous studies to inherit CNN compression methods, in-
cluding pruning [43] [15], quantization [28] [23], distilla-
tion [61], and architecture search [6] on vision transformers.
However, there are some drawbacks in previous studies:

• Most of these common methods aim to reduce the
theoretical model size and Floating Point Operations
(FLOPs). But it has been proved [33] [37] that smaller
model sizes and FLOPs are not directly proportional to
better efficiency on deployed hardware.

• The compression patterns do not match hardware char-
acteristics. For example, pruned [43] or searched [6]
vision transformer models have the unstructured sparse
pattern in weight parameters, i.e., the distribution of
non-zero elements is random. So deployed hardware
can not provide actual speedup due to lacking the char-
acteristics support for unstructured sparsity [35].

• How to keep the accuracy to the best with multiple
compression methods and how to generalize on mul-
tiple vision tasks lack systematical investigation.

ar
X

iv
:2

30
5.

10
72

7v
1

 [
cs

.C
V

]
 1

8
M

ay
 2

02
3

Sparse M✕N✕K GEMMDense M✕N✕K GEMM

K

A
m

at
rix

 (D
en

se
)

☓

Accumulator (result)

N

Dense operation
on Tensor Core

M

B matrix (Dense)

C matrix (Dense)

M

K

K/2

A
m

at
rix

 (S
pa

rs
e)

Non-zero data
values

2-bits
indices

K/2

☓

Accumulator (result)

Sparse operation
on Tensor Core

Select

B matrix (Dense)

C matrix (Dense)

N

Choose matching K/2
elements out of K

elements

M M

K

Figure 1. Comparison of computing a M ×N ×K GEMM onto a
Tensor Core. Dense matrix A of size M ×K in left side becomes
M × K

2
in right side after compressing with 2:4 fine-grained

structured sparse pattern. Sparse Tensor Core automatically picks
only the elements from B according to the nonzero elements in A.
Comparing the dense and sparse GEMMs, B and C are the same
dense K ×N and M ×N matrices, respectively. By skipping the
unnecessary multiplications of redundant zeros, sparse GEMM ac-
celerate the dense GEMM with 2×.

General Matrix Multiplication (GEMM) is the funda-
mental implementation inside the common parts of vision
transformers, such as convolution, linear projection, and
transformer blocks. A specific acceleration unit called
Tensor Core [39] is firstly introduced in NVIDIA Volta
GPU [34] to accelerate these GEMM instructions and
further enhanced to support sparse GEMM in Ampere
GPU [35]. To make the GPU hardware efficient for sparse
GEMM, a constraint named 2:4 fine-grained structured
sparsity [33] is imposed on the allowed sparsity pattern,
i.e., two values from every four contiguous elements on
rows must be zero. Due to the 2:4 sparsity support on GPU
Tensor Core hardware, sparse GEMM can reduce memory
storage and bandwidth by almost 2× and provide 2× math
throughput compared to dense GEMM by skipping the re-
dundant zero-value computation, as shown in Figure 1. Am-
pere GPU supports various numeric precision for 2:4 spar-
sity, including FP32, FP16, INT8, and INT4, etc.

Inspired by GPU’s acceleration characteristic for 2:4
fine-grained structured sparse pattern with various low-
precision operators, we thoroughly design the compres-
sion scheme GPUSQ-ViT by utilizing the GPU-friendly
Sparsity and Quantization to boost deployment efficacy for
Vision Transformer models, especially on GPU platforms.
GPUSQ-ViT contains two main workflows. Firstly, 2:4
sparse pruning with knowledge distillation [14] (KD) is pro-
posed to compress the specific structures in vision trans-
former architecture, e.g., transformer block, patch embed-
ding, to be GPU-friendly. Secondly, we further quantize
the sparse model through sparse-distillation-aware Quanti-
zation Aware Training [30] (QAT). To measure the influence
of quantization errors, we use the feature-based distillation
loss in the sparse pruning workflow as the weight factor.
The feature-based KD utilizes the scale factor in the quan-
tization compression workflow, which can best compensate

for the final compressed model’s accuracy. We demonstrate
that GPUSQ-ViT can generally apply to vision transformer
models and benchmarking tasks, with state-of-the-art the-
oretical metrics on model size and FLOPs. Moreover, as
GPUSQ-ViT compresses with GPU-friendly patterns, the
compressed models can achieve state-of-the-art deployment
efficacy on GPU platforms. Our main contributions include:

• Unlike previous compression methods only aiming at
reducing theoretical metrics, we propose GPUSQ-ViT
from the perspective of GPU-friendly 2:4 sparse pat-
tern with low-precision quantization for the first time,
achieving GPU acceleration of 4 times than prior arts.

• GPUSQ-ViT combines feature-based KD with sparse
pruning and QAT, which can best compensate for
sparse and quantized models’ accuracy.

• GPUSQ-ViT can apply to various vision transformer
models and benchmarking tasks, with proven state-of-
the-art efficacy on model size, FLOPs, and actual de-
ployment performance on multiple GPUs. Moreover,
GPUSQ-ViT can work without ground truth label an-
notations in an unsupervised learning style.

2. Related work
2.1. Sparsity in model compression

Sparsity is a typical pattern [10] in the deep learning
paradigm, which can help to save the computational power
as well as reduce the memory bandwidth and storage bur-
den [33]. Sparsity has different granularities [29], e.g., we
can generate the filter-level, kernel-level, vector-level, and
element-level sparsity [29] in a weight tensor from coarse
to fine granularity. The coarse-grained sparsity has a reg-
ular sparse pattern which can facilitate acceleration with
algebra libraries [33]. The fine-grained sparsity leads to
a more irregular sparse pattern which is not friendly for
acceleration, but it can achieve a higher sparse ratio with-
out harming model accuracy [60] [63]. Many previous ef-
forts [4] [63] [20] have explored the sparse granularity to
balance accuracy influence with real performance benefits.

Several efforts explored to compress the vision trans-
formers with sparsity. Inspired by the phenomenon that the
vision transformers take effect only according to a subset
of most informative tokens [43], we can generate the sparse
tokens by pruning the less informative ones. The redun-
dant tokens are pruned based on the inputs, spatial attention
mechanism [44], or multi-head interpreter [40] in a dynam-
ical [43] or patch-slimming manner [50].

Other efforts are explored on how to prune the compo-
nents inside the basic structure in vision transformers, i.e.,
the multi-head attention block (MHA) [52]. For example, a
successful trial [69] is first to learn the importance of each
component in MHA by training with sparse regularization,
then pruning the less important ones to obtain the sparse

MHA. Other strategies aim to sparsify the attention heads
and reduce the sequence length in an MHA structure based
on specific numerical metrics [54] or searched optimal pol-
icy [15]. A more aggressive approach is pruning the entire
MHA blocks to generate a sparse Mixture-of-Experts [16]
vision transformer or an extremely compact version [66].
Most of the prior arts use model sizes and FLOPs as com-
pression targets without considering the characteristics of
deployed hardware. We find low efficiency when deploying
these compressed models on GPUs, which inspires us to de-
sign the compression scheme with a GPU-friendly sparse
pattern. Based on prior arts, weight multiplexing [66] or
knowledge distillation [64] [61] are effective to compensate
for the accuracy loss.

2.2. Quantization in model compression

Quantization is another orthogonal technique in the
model compression area. It refers to the technique [56] of
applying alternative formats other than the standard 32-bit
single-precision floating-point (FP32) data type for weight
parameters, inputs, and activations when executing a neural
model. Quantization can significantly speed up the model
inference performance because the low-precision formats
have higher computational throughput support in many pro-
cessors [35] [17] [2]. Meanwhile, low-precision repre-
sentation helps to reduce the memory bandwidth pressure
and can save much memory-system operation time with the
cache utilization improvement.

Post Training Quantization (PTQ) [18] and Quantiza-
tion Aware Training (QAT) [30] are two main strategies
in quantization. PTQ directly calibrates on limited sam-
ple inputs [31] to find the optimal clipping threshold and
the scale factor to minimize the quantization noise [3].
PTQ is preferred [47] when without access to the whole
training dataset [21]. However, it is a non-trivial ef-
fort [28] [65] [25] [23] to ensure the PTQ quantized vision
transformer model without an apparent accuracy decrease.
And the accuracy degradation is more serious when going
below 8 bits formats [47]. QAT inserts the quantization and
de-quantization nodes [37] into the float-point model struc-
ture, then undergo the fine-tuning process to learn the scale
factor adjustment with minimal influence on accuracy [30].
Considering some activation structures like GeLU [13] and
Swish [42] are more sensitive [23] than ReLU [1], some
efforts are made to design the specific QAT [23] [22] for
the vision transformers. Moreover, QAT can provide more
quantization robustness for lower-bit formats [23].

Previous efforts to design the PTQ and QAT approaches
for vision transformer mainly focused on the accuracy im-
provement. Due to the lack of hardware characters and
acceleration library support, some quantized models us-
ing 6 bits [28] or float-point learnable bit-width like 3.7
bits [23] to represent weights and activations cannot get the

expected speedup on general acceleration hardware, like
GPU [34] [35] and TPU [45]. Moreover, supporting the
specific bit-width quantization, like 6 bits, is a non-trivial
effort. End-users need to program the FPGA hardware [22]
and develop specific bit-width libraries like Basic Linear
Algebra Subprograms (BLAS) [19], which is a heavy bur-
den for actual deployment.

3. Boost vision transformer on GPU
GPUSQ-ViT mainly contains 2:4 structured sparse

pruning and sparse-distillation-aware QAT workflows.
We further explain the 2:4 sparse pattern in section 3.1, and
how to compress each part of a vision transformer model
according to the 2:4 sparse pattern in sections 3.2 and 3.3.
Section 3.4 describes the GPUSQ-ViT design as a whole.

3.1. Fine-grained structured sparsity on GPU

As shown in Figure 1, the sparse GEMM performs the
sparse matrix × dense matrix = dense matrix operation by
skipping the redundant zero-value computation with sparse
Tensor Core acceleration. For example, matrix A of size
M ×K follows the 2:4 fine-grained structured sparse pat-
tern, and the dense matrix B is of size K×N . If we use the
dense GEMM to calculate between matrices A and B, the
zero values in A would not be skipped during computation.
The entire M ×N ×K dense GEMM will calculate the re-
sult matrix C with M ×N size in T GPU cycles. If we use
the sparse GEMM, only the non-zero elements in each row
of matrix A and the corresponding elements from matrix B,
which sparse Tensor Core automatically picks out without
run-time overhead, are calculated. So the entire M×N×K
sparse GEMM will also calculate the same result matrix C
with M × N size but only needs T/2 GPU cycles, leading
to 2× math throughput speedup.

Figure 2. Storage formats for 2:4 fine-grained structured sparse
pattern and metadata with FP16, INT8 and INT4 operators.
(w,x,y,z denote the non-zero elements.)

The 2:4 sparsity uses 2-bit metadata per non-zero ele-
ment to indicate the position of two non-zero elements in

every four adjacent elements in a row of matrix Awith FP16
and INT8 data formats. The 2:4 sparsity instruction for the
INT4 data format differs from FP16 and INT8. Matrix A
is defined as a pair-wise structured sparse at a granularity
of 4:8. In other words, each chunk of eight adjacent ele-
ments in a row of matrix A has four zero and four non-zero
values. Further, the zero and non-zero values are clustered
in sub-chunks of two elements each within the eight-wide
chunk, i.e., each two-wide sub-chunk within the eight-wide
chunk must be all zeroes or all non-zeroes. Only the four
non-zero values are stored in the compressed matrix, and
two 2-bit indices in the metadata indicate the position of the
two two-wide sub-chunks with non-zero values in the eight-
wide chunk of a row of matrix A. In conclusion, the sparse
format for FP16, INT8, and INT4 lead to 43.75%, 37.5%,
and 37.5% savings in storage. GPUSQ-ViT will firstly
compress model as 2:4 FP16 sparse, then further quantize
to 2:4 INT8 or INT4 sparse for best deployment efficiency.

Because the 2:4 fine-grained structured sparse pattern
is well supported on NVIDIA GPU and corresponding li-
braries for math acceleration and memory saving, so we
are motivated to design the compression strategy for vision
transformer models to meet such sparse pattern. More-
over, the 2:4 sparse GEMM supports low-precision formats
like INT8 and INT4. So it is natural to combine the spar-
sity and quantization in the proposed strategy jointly and
further boost the actual deployment performance on GPUs.

3.2. Apply structured sparsity in transformer block

Figure 3. Illustration about applying the 2:4 fine-grained struc-
tured sparsity in vision transformer. The target layers include the
patch embedding, final linear projection, as well as the feed for-
ward and linear projection inside each transformer block.

The transformer block [52] is the fundamental building
structure in various vision transformers. The majority of
the weight parameters and the execution time are taken in
stacked transformer blocks. For example, about 96% of the
weight parameters and 95% of the inference time are from
the transformer blocks in Swin Transformer [27]. So we fo-
cus on how to apply the 2:4 fine-grained structured spar-
sity in the transformer block.

Transformer blocks used in vision transformer mod-
els are directly borrowed from [9] [51] or made tiny
changes [27] [55] on the standard transformer block intro-
duced in the naive attention mechanism [52]. For exam-
ple, the transformer block in the Swin Transformer model is
built by replacing the standard multi-head attention module
with a shifted windows attention module [27], with other
layers kept the same as the standard transformer block.
Without losing the generalization of the proposed method,
we explore the utilization of 2:4 sparsity on a standard trans-
former block. 2:4 fine-grained structured sparsity accel-
erates GEMM operations, so the Q, K, and V projection
layers, the linear projection layer in the multi-head atten-
tion module, and the linear projection layers in the feed-
forward module are the proper targets to apply, as shown in
the zoomed-in parts in Figure 3.

3.3. Apply structured sparsity in patch embedding

The vision transformer paradigm splits each input im-
age into small square patches [9], and each image patch
is treated as a token in the same way in the NLP do-
main. In vision transformer models, the following train-
able linear embedding process is handled by a patch em-
bedding layer and is usually implemented as a strided-
convolution [9] [27]. Considering the input images are or-
ganized as an N × C × H × W batched data format, and
each image will be divided into small patches with P × P
square shape, where N refers to batch size, C refers to the
number of the input channel, H and W refers to the height
and width of an input image, P refers to the size of each
patch. So there will be C × (H ×W)/(P ×P) patches for
each image, and each patch will be flattened as a token with
shape 1 × P 2. Suppose the given embedding dimension
is denoted as Dembed. In that case, the patch embedding
layer can be implemented with a convolution layer with C
as the input channel, Dembed as the output channel, and
kernel size and stride step equal to P . The total Floating
Point Operations (FLOPs) of the patch embedding layer is
2×N × C ×H ×W ×Dembed.

The strided-convolution layer is executed as an implicit
GEMM [7] [36] on GPUs, which the 2:4 fine-grained
structured sparsity can also accelerate, as shown in left-
most of Figure 3. The implicit GEMM transfers the weight
matrix of strided-convolution with C × P × P as the width
of matrix A, which is the target dimension to apply the 2:4
sparsity. It helps to save half of the total FLOPs.

3.4. Overall GPUSQ-ViT compression method

GPUSQ-ViT mainly contains 2:4 structured sparse
pruning and sparse-distillation-aware QAT workflows,
as shown in Figure 5. KD is applied in each workflow as
auxiliary accuracy compensation.

2:4 Structured Sparse Pruning aims to compress the

dense floating-point model MDF as the sparse floating-
point model MSF . Based on Sections 3.2 and 3.3, we can
compress each part of a vision transformer model accord-
ing to the GPU-friendly 2:4 fine-grained structured sparse
pattern. To best compensate for the accuracy of MSF , we
apply KD [14] which can effectively transfer the predicted
hard label or soft logits from a teacher model with appeal-
ing performance to a student model. If the student model
wants to learn more, feature-based KD is applied to mimic
the teacher model’s feature maps. In 2:4 structured sparse
pruning workflow, three KD strategies are jointly used.

No. Input Stage 1 Stage 2 Stage 3 Stage 4

(a-1)

(a-2)

(b-1)

(b-2)

Figure 4. Attention map visualization for Swin Transformer
ImageNet-1K pretrained models. (a-1) and (b-1) Swin-V1-Tiny
[2, 2, 6, 2]. (a-2) and (b-2) Swin-V1-Base [2, 2, 18, 2]. Numbers
in square brackets indicate how many Swin Transformer blocks in
each stage. We choose the output of last Swin Transformer block
in each stage, to generate the CAM visualization results.

To improve the efficiency of feature-based KD, we will
not mimic each feature map in the teacher model. Instead,
we find the critical feature maps from the teacher model
as learning targets. We use the tiny- and base-sized Swin
Transformer [27] pretrained models as an example to ap-
ply the Class Activation Map [46] (CAM) for feature map
visualization [53], as shown in Figure 4. The Swin Trans-
former blocks are organized into four stages with different
feature map resolutions. We use the outputs of the last Swin
Transformer block in each stage as the representatives. By
comparing the CAM results in (a-1) and (a-2), we find the
attention is focused on local features in the early stages,
while focused on global features of the target object in the
later stages. Moreover, even though the tiny- and base-sized
models provide the same classification result for the horse
input image, the CAM from early stages (i.e., stages 1 to 3)
are quite different. This phenomenon inspires us that it is
more effective to mimic the feature maps from later stages
of the vision transformer models. By comparing the CAM
results in (b-1) and (b-2), the tiny-sized model classifies the

input as an Egyptian cat, and the base-sized model classi-
fies it as a Border collie. Different classified labels influ-
ence the CAM to pay attention to totally different features
of a cat and a collie, respectively. It inspires us to enable
mimic feature learning only when the teacher and student
models have the same classification labels; otherwise, skip
the mimic behavior.

Denoting distillation losses for the hard label, soft log-
its and feature maps are Lprune

hard label, Lprune
soft logits, Lprune

feature,
respectively, and their weight factors are: α, β, γ, then the
overall sparse pruning loss Lprune is calculated as follows:

Lprune = α ∗ Lprune
hard label + β ∗ Lprune

soft logits + γ ∗ Lprune
feature (1)

The 2:4 structured sparse pruning workflow minimizes the
Lprune loss w.r.t weight parameters of MSF model.

Sparse-distillation-aware QAT aims to further compress
the sparse floating-point model MSF as the sparse quan-
tized model MSQ on data format, i.e., quantize from the
floating-point formats to INT8 or INT4. We mainly discuss
the QAT strategy for the following reasons. From the per-
formance perspective, QAT can achieve the same deploy-
ment efficiency with the toolkit [37]. From the accuracy
perspective, QAT learns the scale factor adjustment during
training, so the learned scale factor leads to less quantiza-
tion noise and a better accuracy compensation effect. More-
over, compression by 2:4 fine-grained structured sparsity
needs the premise [33] to access the training set and un-
dergo a fine-tuning process. So we can fully utilize the train-
ing set and fine-tuning process to calibrate the quantization
scale factor and boost the accuracy of quantized model.

We borrow the KD idea and jointly learn to calibrate
the quantization scale factor from the teacher model’s hard
label prediction, soft logits, and feature maps from criti-
cal layers. Unlike the sparse pruning workflow in which
MDF model serves as the teacher and MSF model serves as
the student, in the QAT process, MSF model serves as the
teacher, and MSQ model serves as the student.1 Another
difference between the KD strategies in two workflows is
a weight factor to multiply the feature-based calibration re-
sult from each critical layer. The value of each weight factor
is determined by the feature-based distillation loss between
the corresponding layers from MDF and MSF models.

Usually, after the 2:4 structured sparse pruning work-
flow, MDF and MSF models have similar accuracy. So
intuitively, if the distillation loss for the feature map of a
specific layer between MDF and MSF models is still sig-
nificant, it indicates this layer has little influence on the
model’s final accuracy and vice versa. So if the distillation

1Using the dense floating-point model serves as the teacher in the QAT
process is not recommended, even though it usually has better accuracy
than the 2:4 sparse floating-point model. Because based on the previous
study [32] [62], the distillation effectiveness will drop if the teacher and
student models have a noticeable gap in scale or data format.

Figure 5. GPUSQ-ViT scheme with two sub-workflows. For the 2:4 structured sparse pruning workflow, the dense floating-point model
MDF is compressed as the sparse floating-point model MSF . Hard label, soft logits and feature-based distillation losses are accumulated
as the overall sparse pruning loss. The sparse floating-point model MSF is quantized as the sparse quantized model MSQ for the sparse-
distillation-aware QAT workflow. Hard label and soft logits calibration losses are obtained in a similar manner. Each feature maps
calibration result is multiplied with a weight factor to indicate this layer’s probability of having a real influence on MSQ model’s final
accuracy. Three calibration losses are accumulated as the overall quantization calibration loss.

loss value is larger, then we give a smaller weight factor for
the corresponding feature-based calibration loss, to indicate
even the quantization compression leads to the difference
between MSF and MSQ models; however, this difference
has a low probability of having the real influence on the
quantized model’s final accuracy. That’s the reason why
we named GPUSQ-ViT quantization workflow as sparse-
distillation-aware QAT. Denoting calibration losses for
the hard label, soft logits and feature maps are Lcalibrate

hard label,
Lcalibrate
soft logits, Lcalibrate

feature , respectively, and their weight factors
are still: α, β, γ, then the overall quantization calibration
loss Lcalibrate is calculated as follows:

Lcalibrate = α∗Lcalibrate
hard label+β∗Lcalibrate

soft logits+γ∗Lcalibrate
feature (2)

The sparse-distillation-aware QAT workflow minimizes the
Lcalibrate loss w.r.t weight parameters of MSQ model. The
details about each loss items in GPUSQ-ViT are provided
in Algorithm 1 in Appendix.

4. Experiments
For the experiments in this paper, we choose Py-

Torch [41] with version 1.12.0 as the framework to imple-

ment all algorithms. The results of the dense model train-
ing, sparse compression, and QAT experiments are obtained
with A100 [35] GPU clusters. The acceleration perfor-
mance results for deployment are obtained with A100 GPU
and AGX Orin chip [38] to represent the server and edge
device scenarios, respectively. Both A100 and Orin have
the Tensor Core [39] support for 2:4 structured sparsity and
mixed-precision calculation among FP16, INT8, and INT4.
All the reference algorithms use the default data type pro-
vided in public repositories.

4.1. Compression efficacy for classification task

To evaluate the compression efficacy of GPUSQ-ViT
and make the comparison with prior arts on the image clas-
sification task, DeiT [51]2 and Swin Transformer [27]3 are
chosen as the experiment target models. For the state-of-
the-art vision transformer compression methods, we choose
the Dyn-ViT [43], MiniViT [66], UVC [64], PS-ViT [50],
IA-RED2 [40], MultiViT [15], SViTE [8] and S2ViTE [8]
as the reference methods from sparse pruning category, and

2
https://github.com/facebookresearch/deit

3
https://github.com/microsoft/Swin-Transformer

https://github.com/facebookresearch/deit
https://github.com/microsoft/Swin-Transformer

Model Method Input Format Params (M) FLOPs (G) Top-1 Acc(%) Top-5 Acc(%)

DeiT-Tiny

Baseline

2242

FP32 5.72 1.30 72.2 91.1
S2ViTE FP32 4.21 0.99 70.1 90.1
SViTE FP32 3.46 0.86 71.8 90.6
MiniViT FP32 3.09 1.30 72.8 91.6
PS-ViT FP32 3.08 0.70 72.0 91.0
UVC FP32 3.08 0.69 71.8 90.6
FQ-ViT INT8 1.43 1.27 71.6 90.6
GPUSQ-ViT INT8 0.90 (6.4×) 0.04 (31×) 72.4 (+0.2) 90.9 (-0.2)
Q-ViT INT4 0.72 0.34 71.6 90.5
GPUSQ-ViT INT4 0.45 (12.7×) 0.02 (62×) 71.7 (-0.5) 90.6 (-0.5)

DeiT-Small

Baseline

2242

FP32 22.05 4.60 79.9 95.0
DyViT FP32 26.90 3.70 82.0 95.5
MultiViT FP32 16.76 2.90 79.9 94.9
IA-RED2 FP32 14.99 3.10 79.1 94.5
S2ViTE FP32 14.60 2.12 79.2 94.6
MiniViT FP32 11.45 4.70 80.7 95.6
PS-ViT FP32 12.46 2.59 79.4 94.7
UVC FP32 12.70 2.65 79.4 94.7
SViTE FP32 8.90 1.38 79.4 94.7
PTQ-ViT INT8 5.51 5.67 78.1 94.2
PTQ4ViT INT8 5.51 3.45 79.5 94.7
FQ-ViT INT8 5.51 4.61 79.2 94.6
GPUSQ-ViT INT8 3.46 (6.4×) 0.14 (31×) 80.3 (+0.4) 95.1 +0.1)
Q-ViT INT4 2.76 1.22 80.1 94.9
GPUSQ-ViT INT4 1.73 (12.7×) 0.07 (62×) 79.3 (-0.6) 94.8 (-0.2)

DeiT-Base

Baseline

2242

FP32 86.57 17.60 81.8 95.6
MultiViT FP32 64.93 11.20 82.3 96.0
IA-RED2 FP32 58.01 11.80 80.9 95.0
S2ViTE FP32 56.80 11.77 82.2 95.8
MiniViT FP32 44.10 17.70 83.2 96.5
PS-ViT FP32 48.22 9.80 81.5 95.4
UVC FP32 39.40 8.01 80.6 94.5
SViTE FP32 34.80 7.48 81.3 95.3
PTQ-ViT INT8 21.64 20.10 81.3 95.2
FQ-ViT INT8 21.64 17.48 81.2 95.2
PTQ4ViT INT8 21.64 13.10 81.5 95.3
GPUSQ-ViT INT8 13.55 (6.4×) 0.55 (31×) 82.9 (+1.1) 96.4 (+0.8)
PTQ4ViT INT4 10.82 6.94 75.9 95.3
GPUSQ-ViT INT4 6.78 (12.7×) 0.28 (62×) 81.6 (-0.2) 95.5 (-0.1)

DeiT-Base

Baseline

3842

FP32 86.86 55.60 82.9 96.2
IA-RED FP32 54.31 34.70 81.9 95.7
MiniViT FP32 44.39 56.90 84.7 97.2
PTQ4ViT INT8 21.71 41.70 82.9 96.3
GPUSQ-ViT INT8 13.62 (6.4×) 1.74 (31×) 82.9 (+0.0) 96.3 (+0.1)
GPUSQ-ViT INT4 6.81 (12.7×) 0.87 (62×) 82.4 (-0.5) 96.1 (-0.1)

Swin-Tiny

Baseline

2242

FP32 28.29 4.49 81.2 95.5
Dyn-ViT FP32 19.80 4.00 80.9 95.4
MiniViT FP32 12.00 4.60 81.4 95.7
FQ-ViT INT8 7.07 4.39 80.5 95.2
PTQ4ViT INT8 7.07 3.37 81.2 95.4
GPUSQ-ViT INT8 4.43 (6.4×) 0.14 (31×) 81.2 (+0.0) 95.5 (+0.0)
Q-ViT INT4 3.54 1.10 80.6 95.2
GPUSQ-ViT INT4 2.21 (12.7×) 0.07 (62×) 80.7 (-0.5) 95.3 (-0.2)

Swin-Small

Baseline

2242

FP32 49.61 8.75 83.2 96.2
Dyn-ViT FP32 34.73 6.90 83.2 96.3
MiniViT FP32 26.46 8.93 83.6 97.0
FQ-ViT INT8 12.40 8.77 82.7 96.1
PTQ4ViT INT8 12.40 6.56 83.1 96.2
GPUSQ-ViT INT8 7.77 (6.4×) 0.27 (31×) 83.1 (-0.1) 96.3 (+0.1)
GPUSQ-ViT INT4 3.88 (12.7×) 0.14 (62×) 82.8 (-0.4) 96.2 (+0.0)

Swin-Base

Baseline

2242

FP32 87.77 15.44 83.5 96.5
Dyn-ViT FP32 61.44 12.10 83.4 96.4
MiniViT FP32 46.44 15.71 84.3 97.3
FQ-ViT INT8 21.94 15.33 83.0 96.3
PTQ4ViT INT8 21.94 11.58 83.2 96.3
GPUSQ-ViT INT8 13.73 (6.4×) 0.48 (31×) 83.4 (-0.1) 96.4 (-0.1)
GPUSQ-ViT INT4 6.87 (12.7×) 0.24 (62×) 83.2 (-0.3) 96.3 (-0.2)

Swin-Base

Baseline

3842

FP32 87.90 47.11 84.5 97.0
MiniViT FP32 47.00 49.40 85.5 97.6
PTQ4ViT INT8 21.98 35.33 84.3 96.8
GPUSQ-ViT INT8 13.77 (6.4×) 1.47 (31×) 84.4 (-0.1) 97.0 (0.0)
GPUSQ-ViT INT4 6.88 (12.7×) 0.74 (62×) 84.4 (-0.1) 96.9 (-0.1)

Table 1. Compare the model size and FLOPs of GPUSQ-ViT with
state-of-the-art compression methods on classification task.

we choose the FQ-ViT [25], Q-ViT [23], PTQ-ViT [28] and
PTQ4ViT [65] as the reference methods from quantization
category. For GPUSQ-ViT, the loss adjustment factors for
hard label, soft logits and feature-based losses apply α = 1,
β = 10, and γ = 5), respectively. The model size and
FLOPs comparison results are shown in Table 1.

We can apply GPUSQ-ViT to compress each vision
model as INT8 and INT4 versions. For INT8 compressed
models, GPUSQ-ViT can bring 6.4× reduction for model
size and 31× reduction for FLOPs with negligible accuracy
drop. For INT4 compressed models, GPUSQ-ViT can get
12.7× and 62× reduction for model size and FLOPs with
a small accuracy drop. Compared with both sparse prun-
ing and quantization prior arts, GPUSQ-ViT can steadily
provide more reduction for model size and FLOPs.

Model Method Input Format NVIDIA A100 GPU NVIDIA AGX Orin
FPS
(BS=1)

FPS
(BS=256)

FPS
(BS=1)

FPS
(BS=64)

DeiT-Tiny
Baseline

2242
FP32 3067 14934 2671 4005

GPUSQ-ViT INT8 3864 (1.26×) 38978 (2.60×) 3232 (1.21×) 7329 (1.83×)
GPUSQ-ViT INT4 4263 (1.39×) 51224 (3.43×) 4193 (1.57×) 8531 (2.13×)

DeiT-Small
Baseline

2242
FP32 1256 5277 877 1280

GPUSQ-ViT INT8 1629 (1.30×) 13359 (2.53×) 1096 (1.25×) 2291 (1.79×)
GPUSQ-ViT INT4 1809 (1.44×) 17775 (3.37×) 1447 (1.65×) 2701 (2.11×)

DeiT-Base
Baseline

2242
FP32 485 1682 351 513

GPUSQ-ViT INT8 645 (1.33×) 4136 (2.46×) 453 (1.29×) 939 (1.83×)
GPUSQ-ViT INT4 714 (1.47×) 5643 (3.35×) 569 (1.62×) 1206 (2.35×)

DeiT-Base
Baseline

3842
FP32 256 689 233 303

GPUSQ-ViT INT8 350 (1.37×) 1730 (2.51×) 308 (1.32×) 561 (1.85×)
GPUSQ-ViT INT4 394 (1.54×) 2315 (3.36×) 371 (1.59×) 761 (2.51×)

Swin-Tiny
Baseline

2242
FP32 621 2907 544 968

GPUSQ-ViT INT8 807 (1.30×) 6975 (2.40×) 675 (1.24×) 1946 (2.01×)
GPUSQ-ViT INT4 910 (1.46×) 9911 (3.41×) 892 (1.64×) 2275 (2.35×)

Swin-Small
Baseline

2242
FP32 330 1802 309 631

GPUSQ-ViT INT8 426 (1.29×) 4411 (2.45×) 392 (1.27×) 1306 (2.07×)
GPUSQ-ViT INT4 510 (1.55×) 5942 (3.30×) 516 (1.67×) 1521 (2.41×)

Swin-Base
Baseline

2242
FP32 282 1261 247 433

GPUSQ-ViT INT8 388 (1.37×) 3226 (2.56×) 309 (1.25×) 842 (1.94×)
GPUSQ-ViT INT4 485 (1.72×) 4071 (3.22×) 410 (1.66×) 1063 (2.45×)

Swin-Base
Baseline

3842
FP32 154 531 140 226

GPUSQ-ViT INT8 226 (1.47×) 1310 (2.47×) 180 (1.28×) 414 (1.83×)
GPUSQ-ViT INT4 369 (1.79×) 1747 (3.29×) 238 (1.69×) 562 (2.48×)

Table 2. Deployment efficiency of GPUSQ-ViT compressed DeiT
and Swin Transformer models on NVIDIA GPUs. The latency is
measured with batch size 1 on a single A100 GPU and AGX Orin.
The throughput is measured with batch size fixed to 256 on a single
A100 GPU and with batch size fixed to 64 on a single AGX Orin.

| Swin Transformer Tiny | | Swin Transformer Base |
Input Baseline INT8 INT4 Baseline INT8 INT4

Figure 6. CAM visualization for Swin Transformer baseline dense
models and GPUSQ-ViT compressed INT8 and INT4 models.

Moreover, GPUSQ-ViT can greatly boost the com-
pressed models’ deployment efficiency on GPUs with Ten-
sorRT toolkit [37] support of 2:4 sparsity. For INT8 com-
pressed models, GPUSQ-ViT can bring 1.26-1.47× and
2.4-2.6× improvement for various DeiT and Swin Trans-
former models of latency and throughput on A100 GPU,
and 1.21-1.32× and 1.79-2.07× improvement of latency
and throughput on AGX Orin. For INT4 compressed mod-
els, GPUSQ-ViT can bring 1.39-1.79× and 3.22-3.43× im-
provement of latency and throughput on A100 GPU, and
1.57-1.69× and 2.11-2.51× improvement of latency and
throughput on AGX Orin, as shown in Table 2.

To compare between dense and GPUSQ-ViT com-
pressed models in visualization, we apply CAM for tiny-
and base-sized Swin Transformer models’ attention on final
norm layer. The results are shown in Figure 6.

4.2. Compression efficacy for detection task

To evaluate the compression efficacy of GPUSQ-ViT on
the object detection task, Mask R-CNN [11]4, DETR [5]5

and Deformable-DETR [70] 6 are chosen as the target mod-
4
https://github.com/SwinTransformer/Swin-Transformer-Object-Detection

5
https://github.com/facebookresearch/detr

6
https://github.com/fundamentalvision/Deformable-DETR

https://github.com/SwinTransformer/Swin-Transformer-Object-Detection
https://github.com/facebookresearch/detr
https://github.com/fundamentalvision/Deformable-DETR

els. GPUSQ-ViT compression results on COCO dataset
[24] are shown in Table 3.

Model Backbone Method Format Params (M) FLOPs (G) bbox mAP segm mAP

Mask R-CNN

Swin-Tiny
Baseline FP32 48 267 46.0 41.6
GPUSQ-ViT INT8 7.5 (6.4×) 8.8 (30.5×) 46.0 (+0.0) 41.6 (+0.0)
GPUSQ-ViT INT4 3.8 (12.7×) 4.4 (61.0×) 45.7 (-0.3) 41.4 (-0.2)

Swin-Small
Baseline FP32 69 359 48.5 43.3
GPUSQ-ViT INT8 10.8 (6.4×) 11.8 (30.5×) 48.6 (+0.1) 43.4 (+0.1)
GPUSQ-ViT INT4 5.4 (12.7×) 5.9 (61.0×) 48.3 (-0.2) 43.2 (-0.1)

Cascade
Mask R-CNN

Swin-Tiny
Baseline FP32 86 745 48.1 41.7
GPUSQ-ViT INT8 13.4 (6.4×) 24.4 (30.5×) 48.1 (+0.0) 41.8 (+0.1)
GPUSQ-ViT INT4 6.8 (12.7×) 12.2 (61.0×) 47.8 (-0.3) 41.5 (-0.2)

Swin-Small
Baseline FP32 107 838 51.9 45.0
GPUSQ-ViT INT8 16.7 (6.4×) 27.5 (30.5×) 52.0 (+0.1) 45.2 (+0.2)
GPUSQ-ViT INT4 8.4 (12.7×) 13.7 (61.0×) 51.7 (-0.2) 44.9 (-0.1)

Swin-Base
Baseline FP32 145 982 51.9 45.0
GPUSQ-ViT INT8 22.7 (6.4×) 32.2 (30.5×) 52.1 (+0.2) 45.3 (+0.3)
GPUSQ-ViT INT4 11.4 (12.7×) 16.1 (61.0×) 51.8 (-0.1) 44.9 (-0.1)

DETR ResNet50
Baseline FP32 41 86 42.0 N/A
GPUSQ-ViT INT8 6.4 (6.4×) 2.8 (30.5×) 42.0 (+0.0) N/A
GPUSQ-ViT INT4 3.2 (12.7×) 1.4 (61.0×) 41.7 (-0.3) N/A

Deformable
DETR ResNet50

Baseline FP32 40 173 44.5 N/A
GPUSQ-ViT INT8 6.3 (6.4×) 5.7 (30.5×) 44.5 (+0.0) N/A
GPUSQ-ViT INT4 3.1 (12.7×) 2.8 (61.0×) 44.1 (-0.4) N/A

Table 3. Effectiveness of GPUSQ-ViT on object detection task.

4.3. Compression efficacy for segmentation task

To evaluate the compression efficacy of GPUSQ-ViT on
the semantic segmentation task, UPerNet [57]7 is chosen
as the target model. GPUSQ-ViT compression results on
ADE20K dataset [67] are shown in Table 4.

Model Backbone Method Format Params (M) FLOPs (G) Mean IoU (%) Pixel Acc. (%)

UPerNet

Swin-Tiny
Baseline FP32 60 945 44.51 81.09
GPUSQ-ViT INT8 9.4 (6.4×) 31.2 (30.3×) 44.47 (-0.04) 81.01 (-0.08)
GPUSQ-ViT INT4 4.7 (12.7×) 15.6 (60.6×) 43.93 (-0.58) 80.89 (-0.20)

Swin-Small
Baseline FP32 81 1038 47.64 82.45
GPUSQ-ViT INT8 12.7 (6.4×) 34.3 (30.3×) 47.66 (+0.02) 82.41 (-0.04)
GPUSQ-ViT INT4 6.4 (12.7×) 17.1 (60.6×) 47.15 (-0.49) 82.30 (-0.15)

Swin-Base
Baseline FP32 121 1188 48.13 82.37
GPUSQ-ViT INT8 18.9 (6.4×) 39.2 (30.3×) 48.18 (+0.05) 82.43 (+0.06)
GPUSQ-ViT INT4 9.5 (12.7×) 19.6 (60.6×) 47.86 (-0.27) 82.19 (-0.18)

Table 4. Effectiveness of GPUSQ-ViT on semantic segmentation.

GPUSQ-ViT provides good compression effects on de-
tection and segmentation tasks in Table 3 and 4 with small
accuracy gap to the dense baseline models.

4.4. GPUSQ-ViT with unsupervised learning

Because the compressed model can learn the represen-
tation of target from dense model’s prediction when lack-
ing ground-truth label annotations, so GPUSQ-ViT can still
work well in unsupervised training, as shown in Table 5.

Model Input GPUSQ-ViT (INT8) GPUSQ-ViT (INT4)
Top-1
Acc(%)

Top-5
Acc(%)

Top-1
Acc(%)

Top-5
Acc(%)

DeiT-Tiny 2242 72.0 (-0.2) 90.8 (-0.3) 71.4 (-0.8) 90.2 (-0.9)
DeiT-Small 2242 79.8 (-0.1) 94.9 (-0.1) 79.2 (-0.7) 94.2 (-0.8)
DeiT-Base 2242 82.0 (+0.2) 95.7 (+0.1) 81.1 (-0.7) 95.0 (-0.6)
DeiT-Base 3842 82.5 (-0.4) 95.9 (-0.3) 82.0 (-0.9) 95.7 (-0.5)
Swin-Tiny 2242 80.8 (-0.4) 95.2 (-0.3) 80.3 (-0.9) 94.9 (-0.6)
Swin-Small 2242 82.7 (-0.5) 95.9 (-0.3) 82.3 (-0.9) 95.7 (-0.5)
Swin-Base 2242 82.9 (-0.6) 96.1 (-0.4) 82.5 (-1.0) 95.7 (-0.8)
Swin-Base 3842 83.9 (-0.6) 96.6 (-0.4) 83.7 (-0.8) 96.4 (-0.6)

Table 5. Effectiveness of GPUSQ-ViT in unsupervised learning.

4.5. Ablation study of GPUSQ-ViT

The ablation study to measure the influence of the dif-
ferent adjustment factors for the hard label, soft logits,

7
https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation

Model Factor α Factor β Factor γ
Enable QAT
Weight Factor

GPUSQ-ViT (INT8) GPUSQ-ViT (INT4)
Top-1
Acc(%)

Top-5
Acc(%)

Top-1
Acc(%)

Top-5
Acc(%)

DeiT-Base
(2242)

1 10 5 ! 82.9 (+1.1) 96.4 (+0.8) 81.6 (-0.2) 95.5 (-0.1)
1 10 5 % 82.4 (+0.6) 96.1 (+0.5) 80.1 (-1.7) 94.3 (-1.3)
1 0 5 ! 82.7 (+0.9) 96.2 (+0.6) 81.3 (-0.5) 95.2 (-0.4)
1 10 0 ! 82.2 (+0.4) 95.8 (+0.2) 80.8 (-1.0) 94.8 (-0.8)
1 20 5 ! 82.9 (+1.1) 96.4 (+0.8) 81.6 (-0.2) 95.6 (+0.0)
1 30 5 ! 82.9 (+1.1) 96.5 (+0.9) 81.6 (-0.2) 95.6 (+0.0)
1 10 10 ! 82.8 (+1.0) 96.5 (+0.9) 81.5 (-0.3) 95.5 (-0.1)
1 10 2.5 ! 82.8 (+1.0) 96.5 (+0.9) 81.5 (-0.3) 95.6 (+0.0)

Swin-Base
(2242)

1 10 5 ! 83.4 (-0.1) 96.4 (-0.1) 83.2 (-0.3) 96.3 (-0.2)
1 10 5 % 82.9 (-0.6) 96.0 (-0.5) 81.5 (-2.0) 94.9 (-1.6)
1 0 5 ! 83.2 (-0.3) 96.2 (-0.3) 82.9 (-0.6) 96.0 (-0.5)
1 10 0 ! 82.7 (-0.8) 95.7 (-0.8) 82.4 (-1.1) 95.5 (-1.0)
1 20 5 ! 83.4 (-0.1) 96.4 (-0.1) 83.2 (-0.3) 96.3 (-0.2)
1 30 5 ! 83.4 (-0.1) 96.4 (-0.1) 83.2 (-0.3) 96.4 (-0.1)
1 10 10 ! 83.3 (-0.2) 96.4 (-0.1) 83.1 (-0.4) 96.3 (-0.2)
1 10 2.5 ! 83.3 (-0.2) 96.4 (-0.1) 83.1 (-0.4) 96.4 (-0.1)

Table 6. Ablation study of the loss adjustment factors and sparse-
distillation-aware weight factors of GPUSQ-ViT method.

and feature-based losses (α, β, γ) and enabling sparse-
distillation-aware weight factor on GPUSQ-ViT com-
pressed model accuracy is shown in Table 6. From the
ablation results, we can find enabling sparse-distillation-
aware weight factor has an apparent boost for the com-
pressed models’ accuracy. Such a boost effect is more in-
fluential on INT4 than INT8 model, because disabling this
weight factor will see a more significant drop in INT4 com-
pressed model. The potential reason is sparse-distillation-
aware weight factor indicates how much influence the quan-
tization error from each critical layer has on the final accu-
racy. So the distillation process can focus on mimicking the
layers with more accuracy influence, which is more effec-
tive for limited quantized bits. Then we can find disabling
the feature-based distillation will lead to a more severe in-
fluence than disabling the soft logits distillation. It indi-
cates that mimicking feature maps is very helpful for accu-
racy compensation in GPUSQ-ViT compression. Finally,
we can find GPUSQ-ViT is relatively robust to the soft log-
its and feature-based loss adjustment factors, i.e., within the
close range of β = 10 and γ = 5 the accuracy of com-
pressed models are stable.

5. Conclusion and limitation
This paper is inspired by GPU’s acceleration characteris-

tic for 2:4 sparse pattern with various low-precision opera-
tors to design the GPUSQ-ViT compression method, which
can boost deployment efficiency for various vision trans-
former models of benchmarking tasks on NVIDIA GPUs.

We should notice a potential limitation. If the structured
sparse support is changed or extended to support other pat-
terns like 1:4 or 2:16, GPUSQ-ViT needs to make the ac-
cording adjustments to fit the new or more sparse patterns.

Acknowledgements This work is supported by Na-
tional Natural Science Foundation of China (No. 62071127,
U1909207 and 62101137), Shanghai Municipal Science
and Technology Major Project (No.2021SHZDZX0103),
Shanghai Natural Science Foundation (No. 23ZR1402900),
Zhejiang Lab Project (No. 2021KH0AB05).

https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation

References
[1] Abien Fred Agarap. Deep learning using rectified linear units

(relu). arXiv preprint arXiv:1803.08375, 2018. 3
[2] Mohamed Arafa, Bahaa Fahim, Sailesh Kottapalli, Akhilesh

Kumar, Lily P Looi, Sreenivas Mandava, Andy Rudoff,
Ian M Steiner, Bob Valentine, Geetha Vedaraman, et al. Cas-
cade lake: Next generation intel xeon scalable processor.
IEEE Micro, 39(2):29–36, 2019. 3

[3] Ron Banner, Yury Nahshan, and Daniel Soudry. Post train-
ing 4-bit quantization of convolutional networks for rapid-
deployment. Advances in Neural Information Processing
Systems, 32, 2019. 3

[4] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. 2020. 2

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European Confer-
ence on Computer Vision, pages 213–229. Springer, 2020. 1,
7

[6] Arnav Chavan, Zhiqiang Shen, Zhuang Liu, Zechun Liu,
Kwang-Ting Cheng, and Eric P Xing. Vision transformer
slimming: Multi-dimension searching in continuous opti-
mization space. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4931–
4941, 2022. 1

[7] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High per-
formance convolutional neural networks for document pro-
cessing. In Tenth international workshop on frontiers in
handwriting recognition. Suvisoft, 2006. 4

[8] Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang,
and Zhangyang Wang. Chasing sparsity in vision transform-
ers: An end-to-end exploration. Advances in Neural Infor-
mation Processing Systems, 34:19974–19988, 2021. 6

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. 2020. 1, 4

[10] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network. In
Advances in Neural Information Processing Systems, pages
1135–1143, 2015. 2

[11] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2961–2969, 2017. 7

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 1

[13] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 3

[14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 2, 5

[15] Zejiang Hou and Sun-Yuan Kung. Multi-dimensional vi-
sion transformer compression via dependency guided gaus-

sian process search. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3669–3678, 2022. 1, 3, 6

[16] Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze
Liu, Han Hu, Zilong Wang, Rafael Salas, Jithin Jose, Prab-
hat Ram, et al. Tutel: Adaptive mixture-of-experts at scale.
arXiv preprint arXiv:2206.03382, 2022. 3

[17] Norman P Jouppi, Cliff Young, Nishant Patil, David Patter-
son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-
mance analysis of a tensor processing unit. In Proceedings
of the 44th annual international symposium on computer ar-
chitecture, pages 1–12, 2017. 3

[18] Raghuraman Krishnamoorthi. Quantizing deep convolu-
tional networks for efficient inference: A whitepaper. arXiv
preprint arXiv:1806.08342, 2018. 3

[19] Feng Li, Yunming Ye, Zhaoyang Tian, and Xiaofeng Zhang.
Cpu versus gpu: which can perform matrix computa-
tion faster—performance comparison for basic linear al-
gebra subprograms. Neural Computing and Applications,
31(8):4353–4365, 2019. 3

[20] Muyang Li, Ji Lin, Yaoyao Ding, Zhijian Liu, Jun-Yan
Zhu, and Song Han. Gan compression: Efficient architec-
tures for interactive conditional gans. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 5284–5294, 2020. 2

[21] Zhikai Li, Liping Ma, Mengjuan Chen, Junrui Xiao, and
Qingyi Gu. Patch similarity aware data-free quantization for
vision transformers. pages 154–170, 2022. 3

[22] Zhengang Li, Mengshu Sun, Alec Lu, Haoyu Ma, Geng
Yuan, Yanyue Xie, Hao Tang, Yanyu Li, Miriam Leeser,
Zhangyang Wang, et al. Auto-vit-acc: An fpga-aware au-
tomatic acceleration framework for vision transformer with
mixed-scheme quantization. pages 109–116, 2022. 3

[23] Zhexin Li, Tong Yang, Peisong Wang, and Jian Cheng. Q-
vit: Fully differentiable quantization for vision transformer.
arXiv preprint arXiv:2201.07703, 2022. 1, 3, 7

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European Conference on Computer Vision, pages 740–755.
Springer, 2014. 8

[25] Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and
Shuchang Zhou. Fq-vit: Post-training quantization for fully
quantized vision transformer. In Proceedings of the Thirty-
First International Joint Conference on Artificial Intelli-
gence, IJCAI-22, pages 1173–1179, 2022. 3, 7

[26] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,
Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, et al.
Swin transformer v2: Scaling up capacity and resolution. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12009–12019, 2022. 1

[27] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 1, 4, 5, 6

[28] Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma,
and Wen Gao. Post-training quantization for vision trans-
former. Advances in Neural Information Processing Systems,
34:28092–28103, 2021. 1, 3, 7

[29] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu,
Yu Wang, and William J Dally. Exploring the granularity
of sparsity in convolutional neural networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 13–20, 2017. 2

[30] Jeffrey L McKinstry, Steven K Esser, Rathinakumar Ap-
puswamy, Deepika Bablani, John V Arthur, Izzet B Yildiz,
and Dharmendra S Modha. Discovering low-precision net-
works close to full-precision networks for efficient embed-
ded inference. arXiv preprint arXiv:1809.04191, 2018. 2,
3

[31] Szymon Migacz. NVIDIA 8-bit Inference with TensorRT.
GPU Technology Conference, 2017. 3

[32] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir
Levine, Akihiro Matsukawa, and Hassan Ghasemzadeh. Im-
proved knowledge distillation via teacher assistant. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pages 5191–5198, 2020. 5

[33] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko
Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu, and
Paulius Micikevicius. Accelerating sparse deep neural net-
works. arXiv preprint arXiv:2104.08378, 2021. 1, 2, 5

[34] NVIDIA. NVIDIA Tesla V100 GPU Architecture, 2017. 2,
3

[35] NVIDIA. NVIDIA A100 Tensor Core GPU Architecture,
2020. 1, 2, 3, 6

[36] NVIDIA. NVIDIA CUTLASS, 2022. 4
[37] NVIDIA. NVIDIA TensorRT, 2022. 1, 3, 5, 7
[38] NVIDIA-Orin. NVIDIA Jetson Agx Orin series technical

brief, 2021. 6
[39] NVIDIA-TC. NVIDIA Tensor Core, 2020. 2, 6
[40] Bowen Pan, Rameswar Panda, Yifan Jiang, Zhangyang

Wang, Rogerio Feris, and Aude Oliva. IA-RED2:
Interpretability-aware redundancy reduction for vision trans-
formers. Advances in Neural Information Processing Sys-
tems, 34:24898–24911, 2021. 2, 6

[41] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in pytorch. In Advances in Neural Information
Processing Systems-Autodiff Workshop, 2017. 6

[42] Prajit Ramachandran, Barret Zoph, and Quoc V Le.
Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017. 3

[43] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient vision
transformers with dynamic token sparsification. Advances
in Neural Information Processing Systems, 34:13937–13949,
2021. 1, 2, 6

[44] Michael Ryoo, AJ Piergiovanni, Anurag Arnab, Mostafa
Dehghani, and Anelia Angelova. Tokenlearner: Adaptive
space-time tokenization for videos. Advances in Neural In-
formation Processing Systems, 34:12786–12797, 2021. 2

[45] K Sato. An in-depth look at google’s first tensor processing
unit (tpu). Google Cloud Platform, 2017. 3

[46] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 618–626,
2017. 5

[47] Gil Shomron, Freddy Gabbay, Samer Kurzum, and Uri
Weiser. Post-training sparsity-aware quantization. Advances
in Neural Information Processing Systems, 34:17737–17748,
2021. 3

[48] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to
sequence learning with neural networks. Advances in Neural
Information Processing Systems, 27, 2014. 1

[49] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114. PMLR,
2019. 1

[50] Yehui Tang, Kai Han, Yunhe Wang, Chang Xu, Jianyuan
Guo, Chao Xu, and Dacheng Tao. Patch slimming for ef-
ficient vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 12165–12174, 2022. 2, 6

[51] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347–10357. PMLR, 2021. 4, 6

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in Neural
Information Processing Systems, 30, 2017. 1, 2, 4

[53] Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian
Zhang, Sirui Ding, Piotr Mardziel, and Xia Hu. Score-cam:
Score-weighted visual explanations for convolutional neural
networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pages
24–25, 2020. 5

[54] Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Ef-
ficient sparse attention architecture with cascade token and
head pruning. In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages
97–110. IEEE, 2021. 3

[55] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 568–578, 2021. 4

[56] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and
Paulius Micikevicius. Integer quantization for deep learn-
ing inference: Principles and empirical evaluation. arXiv
preprint arXiv:2004.09602, 2020. 3

[57] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In European Conference on Computer Vision, pages
418–434. Springer, 2018. 8

[58] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transform-
ers. Advances in Neural Information Processing Systems,
34:12077–12090, 2021. 1

[59] Mengde Xu, Zheng Zhang, Han Hu, Jianfeng Wang, Lijuan
Wang, Fangyun Wei, Xiang Bai, and Zicheng Liu. End-to-
end semi-supervised object detection with soft teacher. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3060–3069, 2021. 1

[60] Tao Yang, Yunkun Liao, Jianping Shi, Yun Liang, Naifeng
Jing, and Li Jiang. A winograd-based cnn accelerator with a
fine-grained regular sparsity pattern. In 2020 30th Interna-
tional Conference on Field-Programmable Logic and Appli-
cations (FPL), pages 254–261. IEEE, 2020. 2

[61] Zhendong Yang, Zhe Li, Ailing Zeng, Zexian Li, Chun Yuan,
and Yu Li. Vitkd: Practical guidelines for vit feature knowl-
edge distillation. arXiv preprint arXiv:2209.02432, 2022. 1,
3

[62] Chong Yu. Minimally invasive surgery for sparse neu-
ral networks in contrastive manner. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3589–3598, 2021. 5

[63] Chong Yu and Jeff Pool. Self-supervised generative adver-
sarial compression. Advances in Neural Information Pro-
cessing Systems, 33:8235–8246, 2020. 2

[64] Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jianchao
Tan, Sen Yang, Ji Liu, and Zhangyang Wang. Unified visual
transformer compression. 2022. 3, 6

[65] Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu,
and Guangyu Sun. Ptq4vit: Post-training quantiza-
tion framework for vision transformers. arXiv preprint
arXiv:2111.12293, 2021. 3, 7

[66] Jinnian Zhang, Houwen Peng, Kan Wu, Mengchen Liu, Bin
Xiao, Jianlong Fu, and Lu Yuan. Minivit: Compressing vi-
sion transformers with weight multiplexing. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 12145–12154, 2022. 3, 6

[67] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-
dler, Adela Barriuso, and Antonio Torralba. Semantic under-
standing of scenes through the ade20k dataset. International
Journal of Computer Vision, 127(3):302–321, 2019. 8

[68] Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, An-
imashree Anandkumar, Jiashi Feng, and Jose M Alvarez.
Understanding the robustness in vision transformers. In In-
ternational Conference on Machine Learning, pages 27378–
27394. PMLR, 2022. 1

[69] Mingjian Zhu, Yehui Tang, and Kai Han. Vision transformer
pruning. arXiv preprint arXiv:2104.08500, 2021. 2

[70] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. 2021. 1, 7

	1 . Introduction
	2 . Related work
	2.1 . Sparsity in model compression
	2.2 . Quantization in model compression

	3 . Boost vision transformer on GPU
	3.1 . Fine-grained structured sparsity on GPU
	3.2 . Apply structured sparsity in transformer block
	3.3 . Apply structured sparsity in patch embedding
	3.4 . Overall GPUSQ-ViT compression method

	4 . Experiments
	4.1 . Compression efficacy for classification task
	4.2 . Compression efficacy for detection task
	4.3 . Compression efficacy for segmentation task
	4.4 . GPUSQ-ViT with unsupervised learning
	4.5 . Ablation study of GPUSQ-ViT

	5 . Conclusion and limitation

