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Mask-Free Video Instance Segmentation

Lei Ke'? Martin Danelljan' Henghui Ding! Yu-Wing Tai® Chi-Keung Tang? Fisher Yu!
'ETH Ziirich

HKUST

Figure 1. Video instance segmentation (VIS) results of our MaskFreeVIS, trained without using any video or image mask annotation.
By achieving a remarkable 42.5% mask AP on the YouTube-VIS val dataset, with a ResNet-50 backbone, our approach demonstrates that
high-performing VIS can be learned even without any mask annotations.

Abstract

The recent advancement in Video Instance Segmentation
(VIS) has largely been driven by the use of deeper and in-
creasingly data-hungry transformer-based models. How-
ever, video masks are tedious and expensive to annotate,
limiting the scale and diversity of existing VIS datasets. In
this work, we aim to remove the mask-annotation require-
ment. We propose MaskFreeVIS, achieving highly compet-
itive VIS performance, while only using bounding box an-
notations for the object state. We leverage the rich tempo-
ral mask consistency constraints in videos by introducing
the Temporal KNN-patch Loss (TK-Loss), providing strong
mask supervision without any labels. Our TK-Loss finds
one-to-many matches across frames, through an efficient
patch-matching step followed by a K-nearest neighbor se-
lection. A consistency loss is then enforced on the found
matches. Our mask-free objective is simple to implement,
has no trainable parameters, is computationally efficient,
yet outperforms baselines employing, e.g., state-of-the-art
optical flow to enforce temporal mask consistency. We val-
idate MaskFreeVIS on the YouTube-VIS 2019/2021, OVIS
and BDDI00OK MOTS benchmarks. The results clearly
demonstrate the efficacy of our method by drastically nar-
rowing the gap between fully and weakly-supervised VIS
performance. Our code and trained models are available
at https://github.com/SysCV/MaskFreeVis.

1. Introduction

Video Instance Segmentation (VIS) requires jointly de-
tecting, tracking and segmenting all objects in a video from
a given set of categories. To perform this challenging
task, state-of-the-art VIS models are trained with complete
video annotations from VIS datasets [40, 62, 65]. However,
video annotation is costly, in particular regarding object
mask labels. Even coarse polygon-based mask annotation
is multiple times slower than annotating video bounding
boxes [8]. Expensive mask annotation makes existing VIS
benchmarks difficult to scale, limiting the number of object
categories covered. This is particularly a problem for the re-
cent transformer-based VIS models [6,18,58], which tend to
be exceptionally data-hungry. We therefore revisit the need
for complete mask annotation by studying the problem of
weakly supervised VIS under the mask-free setting.

While there exist box-supervised instance segmenta-
tion models [14,24,28,51], they are designed for images.
These weakly-supervised single-image methods do not uti-
lize temporal cues when learning mask prediction, leading
to lower accuracy when directly applied to videos. As a
source for weakly supervised learning, videos contain much
richer information about the scene. In particular, videos ad-
here to the temporal mask consistency constraint, where the
regions corresponding to the same underlying object across
different frames should have the same mask label. In this
work, we set out to leverage this important constraint for
mask-free learning of VIS.
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Temporal One-to-K Patch Correspondence

VIS Mask Prediction at Frame T
Figure 2. Our Temporal KNN-patch Loss enforces mask con-
sistency between one-to-k patch correspondences found across
frames, which allow us to cover the cases where: (i) A unique
one-to-one match exists (blue); (ii) Multiple matches are found
due to ambiguities in homogenuous regions (orange) or along im-
age edges (white and yellow); (iii) No match is found due to e.g.
occlusions (green). This allows us to robustly leverage mask con-
sistency constraints in challenging videos.

VIS Mask Prediction at Frame T+1

We propose MaskFree VIS method, for high performance
VIS without any mask annotations. To leverage temporal
mask consistency, we introduce the Temporal KNN-patch
Loss (TK-Loss), as in Figure 2. To find regions correspond-
ing to the same underlying video object, our TK-Loss first
builds correspondences across frames by patch-wise match-
ing. For each target patch, only the top K matches in the
neighboring frame with high enough matching score are se-
lected. A temporal consistency loss is then applied to all
found matches to promote the mask consistency. Specif-
ically, our surrogate objective function not only promotes
the one-to-k matched regions to reach the same mask prob-
abilities, but also commits their mask prediction to a confi-
dent foreground or background prediction by entropy mini-
mization. Unlike flow-based models [33,46], which assume
one-to-one matching, our approach builds robust and flex-
ible one-to-k correspondences to cope with e.g. occlusions
and homogeneous regions, without introducing additional
model parameters or inference cost.

The TK-Loss is easily integrated into existing VIS meth-
ods, with no architecture modifications required. Dur-
ing training, our TK-Loss simply replaces the conventional
video mask losses in supervising video mask generation.
To further enforce temporal consistency through the video
clip, TK-Loss is employed in a cyclic manner instead of
using dense frame-wise connections. This greatly reduces
memory cost with negligible performance drop.

We extensively evaluate our MaskFree VIS on four large-
scale VIS benchmarks, i.e., YouTube-VIS 2019/2021 [62],
OVIS [40], and BDD100K MOTS [65]. MaskFreeVIS
achieves competitive VIS performance without using any
video masks or even image mask labels on all datasets. Val-
idated on various methods and backbones, MaskFreeVIS
achieves 91.25% performance of its fully supervised coun-
terparts, even outperforming a few recent fully-supervised
methods [11, 16, 19, 60] on the popular YTVIS bench-
mark. Our simple yet effective design greatly narrows
the performance gap between weakly-supervised and fully-

Table 1. Mask annotation requirement for state-of-the-art VIS
methods. Results are reported using ResNet-50 as backbone on the
YTVIS 2019 [62] benchmark. Video Mask: using YTVIS video
mask labels. Image Mask: using COCO [31] image mask labels
for image-based pretraining. Pseudo Video: using Pseudo Videos
from COCO images for joint training [58]. MaskFreeVIS achieves
91.5% (42.5 vs. 46.4) of its fully-supervised baseline performance
(Mask2Former) without using any masks during training.

Video Image Pseudo

Method Mask  Mask  Video ¥
SeqFormer [58] v v v 47.4
VMT [18] v v v 47.9
Mask2Former [6] v v v 47.8
MaskFreeVIS (ours) X v v 46.6
Mask2Former [6] v v X 46.4
MaskFreeVIS (ours) X X X 42.5

supervised video instance segmentation. It further demon-
strates that expensive video masks, or even image masks, is
not necessary for training high-performing VIS models.

Our contributions are summarized as follows: (i) To uti-
lize temporal information, we develop a new parameter-
free Temporal KNN-patch Loss, which leverages temporal
masks consistency using unsupervised one-to-k patch cor-
respondence. We extensively analyze the TK-Loss through
ablative experiments. (ii) Based on the TK-Loss, we de-
velop the MaskFreeVIS method, enabling training existing
state-of-the-art VIS models without any mask annotation.
(iii) To the best of our knowledge, MaskFree VIS is the first
mask-free VIS method attaining high-performing segmen-
tation results. We provide qualitative results in Figure 1.
As in Table 1, when integrated into the Mask2Former [6]
baseline with ResNet-50, our MaskFree VIS achieves 42.5%
mask AP on the challenging YTVIS 2019 benchmark while
using no video or image mask annotations. Our approach
further scales to larger backbones, achieving 55.3% mask
AP on Swin-L backbone with no video mask annotations.

We hope our approach will facilitate achieving label-
efficient video instance segmentation, enabling building
even larger-scale VIS benchmarks with diverse categories
by lifting the mask annotation restriction.

2. Related Work

Video Instance Segmentation (VIS) Existing VIS meth-
ods can be summarized into three categories: two-
stage, one-stage, and transformer-based. Two-stage ap-
proaches [2, 19,29, 30, 62] extend the Mask R-CNN fam-
ily [12,20] by designing an additional tracking branch for
object association. One-stage works [4, 27,32, 63] adopt
anchor-free detectors [50], generally using linear masks ba-
sis combination [3] or conditional mask prediction genera-
tion [49]. For the transformer-based models [0, 13,47, 58,
64], VisTr [55] firstly adapts the transformer [5] for VIS,
and IFC [16] further improves its efficiency via memory
tokens. Seqformer [58] proposes frame query decompo-



sition while Mask2Former [6] includes masked attention.
VMT [18] extends Mask Transfiner [17] to video for high-
quality VIS, and IDOL [59] focuses on online VIS. State-
of-the-art VIS methods with growing capacity put lim-
ited emphasis on weak supervision. In contrast, the pro-
posed MaskFreeVIS is the first method targeting mask-free
VIS while attaining competitive performance.
Multiple Object Tracking and Segmentation (MOTS)
Most MOTS methods [1,35,36,54,57] follow the tracking-
by-detection principle. PCAN [19] improves temporal
segmentation by utilizing space-time memory prototypes,
while the one-stage method Unicorn [61] focuses on unifi-
cation of different tracking frameworks. Compared to the
aforementioned fully-supervised MOTS methods, Mask-
FreeVIS focuses on label efficient training without GT
masks by proposing a new surrogate temporal loss which
can be easily integrated on them.
Mask-Free VIS Most mask-free instance segmentation
works [8, 14, 21,26, 28, 38,41, 45] are designed for sin-
gle images and thus neglect temporal information. Earlier
works BoxSup [9] and Box2Seg [23] rely on region propos-
als produced by MCG [39] or GrabCut [43], leading to slow
training. BoxInst [51] proposes the surrogate projection and
pixel pairwise losses to replace the original mask learning
loss of CondInst [49], while DiscoBox [24] focuses on gen-
erating pseudo mask labels guided by a teacher model.
Earlier works have investigated the use of videos for
weakly-, semi-, or un-supervised segmentation by leverag-
ing motion or temporal consistency [22,52,53]. Most afore-
mentioned approaches do not address the VIS problem, and
use optical flow for frame-to-frame matching [25,33,44]. In
particular, FlowIRN [33] explores VIS using only classifi-
cation labels and incorporates optical flow to leverage mask
consistency. The limited performance makes the class-label
only or fully-unsupervised setting difficult to deploy in the
real world. SOLO-Track [10] aims to train VIS models
without video annotations, and one concurrent work Min-
VIS [15] performs VIS without video-based model archi-
tectures. Unlike the above weakly-supervised training set-
tings, our MaskFreeVIS is designed for eliminating the
mask annotation requirement for VIS, as we note that video
mask labeling is particularly expensive. MaskFreeVIS en-
ables training VIS models without any video masks, or even
image masks. Despite its simplicity, MaskFreeVIS drasti-
cally reduces the gap between fully-supervised and weakly-
supervised VIS models, making weakly-supervised models
more accessible in practice.

3. Method

We propose MaskFreeVIS to tackle video instance seg-
mentation (VIS) without using any video or even image
mask labels. Our approach is generic and can be di-
rectly applied to train state-of-the-art VIS methods, such as
Mask2Former [6] and SeqFormer [58]. In Sec. 3.1, we first

present the core component of MaskFreeVIS: the Temporal
KNN-patch Loss (TK-Loss), which leverages temporal con-
sistency to supervise accurate mask prediction, without any
human mask annotations. In Sec. 3.2, we then describe how
to integrate the TK-Loss with existing spatial weak segmen-
tation losses for transformer-based VIS methods, to achieve
mask-free training of VIS approaches. Finally, we intro-
duce image-based pretraining details of our MaskFreeVIS
in Sec. 3.2.3.

3.1. MaskFreeVIS

In this section, we introduce the Temporal KNN-patch
Loss, illustrated in Figure 3. It serves as an unsupervised
objective for mask prediction that leverages the rich spatio-
temporal consistency constraints in unlabelled videos.

3.1.1 Temporal Mask Consistency

While an image constitutes a single snapshot of a scene,
a video provides multiple snapshots displaced in time.
Thereby, a video depicts continuous change in the scene.
Objects and background move, deform, are occluded, expe-
rience variations in lighting, motion blur, and noise, leading
to a sequence of different images that are closely related
through gradual transformations.

Consider a small region in the scene (Fig. 2), belonging
either to an object or background. The pixels corresponding
to the projection of this region should have the same mask
prediction in every frame, as they belong to the same under-
lying physical object or background region. However, the
aforementioned dynamic changes in the video lead to sub-
stantial appearance variations, serving as a natural form of
data augmentation. The fact that the pixels corresponding
to the same underlying object region should have the same
mask prediction under temporal change therefore provides a
powerful constraint, i.e., temporal mask consistency, which
can be used for mask supervision [22,25,33,52,53].

The difficulty in leveraging the temporal mask consis-
tency constraint stems from the problem of establishing reli-
able correspondences between video frames. Objects often
undergo fast motion, deformations, etc., resulting in sub-
stantial appearance change. Furthermore, regions in the
scene may be occluded or move out of the image from one
frame to the other. In such cases, no correspondence exist.
Lastly, videos are often dominated by homogenous regions,
such as sky and ground, where the establishment of one-to-
one correspondences are error-prone or even ill-defined.

The problem of establishing dense one-to-one corre-
spondences between subsequent video frames, known as
optical flow, is a long-standing and popular research topic.
However, when attempting to enforce temporal mask con-
sistency through optical flow estimation [25,33,44], one en-
counters two key problems. 1) The one-to-one assumption
of optical flow is not suitable in cases of occlusions, ho-
mogenous regions, and along single edges, where the corre-
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Figure 3. Temporal KNN-patch Loss has four steps: 1) Patch Candidate Extraction: Patch candidates searching across frames with radius
R. 2) Temporal KNN-Matching: Match k high-confidence candidates by patch affinities. 3) Consistency loss: Enforce mask consistency
objective (Eq. 2) among the matches. 4) Cyclic Tube Connection: Temporal loss aggregation in the 5-frame tube, detailed in Figure 4.

spondence is either nonexistent, undefined, ambiguous, un-
certain, or very difficult to determine. 2) State-of-the-art
optical flow estimation rely on large and complex deep net-
works, with large computational and memory requirements.
Instead of using optical flow, we aim to design a sim-
ple, efficient, and parameter-free approach that effectively
enforces the temporal mask consistency constraint.

3.1.2 Temporal KNN-patch Loss

Our Temporal KNN-patch Loss (TK-Loss) is based on
a simple and flexible correspondence estimation across
frames. In contrast to optical flow, we do not restrict our
formulation to one-to-one correspondences. Instead, we es-
tablish one-to-K correspondences. This include the con-
ventional one-to-one (K = 1), where a unique well-defined
match exists. However, this allows us to also handle the
cases of nonexistent correspondences () = 0) in case
of occlusions, and one-to-many (KX > 2) in case of ho-
mogenous regions. In cases where multiple matches are
found, these most often belong to the same underlying ob-
ject or background due to their similar appearance, as in
Figure 2. This further benefits our mask consistency ob-
jective through denser supervision. Lastly, our approach is
simple to implement, with negligible computational over-
head and no learnable parameters. Our approach is in Fig-
ure 3, and contains four main steps, which are detailed next.
1) Patch Candidate Extraction: Let X ; denote an N x N
target image patch centered at spatial location p = (z,y) in
frame ¢. Our aim is to find a set of corresponding positions
8!=t = {p;}; in frame number ¢ that represent the same
object region. To this end, we first select candidate locations
p within a radius R such that |[p — p|| < R. Such windowed
patch search exploits spatial proximity across neighboring
frames in order to avoid an exhaustive global search. For a
fast implementation, the windowed search is performed for
all target image patches X f, in parallel.

2) Temporal KNN-Matching: We match patch candidate
patches through a simple distance computation,
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In our ablative experiments (Sec. 4.3), we found the Lo

norm to be the most effective patch matching metric. We se-
lect the top K matches with smallest patch distance d; 7',
Lastly low-confidence matches are removed by enforcing a
maximal patch distance D as d! 2% < D. The remaining
matches form the set S} 7" = {p; }; for each location p.

3) Consistency loss: Let M; € [0, 1] denote the predicted
binary instance mask of an object, evaluated at position p in
frame ¢. To ensure temporal mask consistency constraints,
we penalize inconsistent mask predictions between a spatio-
temporal point (p, t) and its estimated corresponding points

in S;_”?. In particular we use the following objective,
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where mask consistency is measured as
Loons (M, M) = —log (MM +(1=M})(1-Mj)) . (3)

Note that Eq. (3) only attains its minimum value of zero if
both predictions indicate exactly background (M, = M} =

0) or foreground (M;, = Mg = 1). The objective does thus
not only promote the two mask predictions to achieve the
same probability value M, = M, but also to commit to a
certain foreground or background prediction.

4) Cyclic Tube Connection: Suppose the temporal tube
consists of T frames. We compute the temporal loss for
the whole tube in a cyclic manner, as in Figure 4. The start
frame is connected to the end frame, which introduces direct
long-term mask consistency across the two temporally most
distant frames. The temporal TK-Loss for the whole tube is
given by

T t—(t+1) .
L ift<T -1
Liemp = 4
emP tz_;{ £§*° ift="T-1. @

Compared to inter-frame dense connections in Figure 4,
we find the cyclic loss to achieve similar performance but
greatly reduce the memory usage as validated in the exper-
iment section.
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Figure 4. Illustration of different frame-wise tube connection set-
tings (connection number) in the temporal loss design.

3.2. Training MaskFreeVIS

In this section, we describe how to train state-of-the-art
VIS methods using our TK-Loss, without any mask anno-
tations. Our MaskFreeVIS approach is jointly supervised
with spatial-temporal surrogate losses, and is easily inte-
grated with existing transformer-based methods. We also
detail mask-free image-based pre-training for MaskFree-
VIS to fully eliminate mask usage during training.

3.2.1 Joint Spatio-temporal Regularization

To train MaskFreeVIS, in addition to our proposed Tem-
poral KNN-patch Loss for temporal mask consistency, we
leverage existing spatial weak segmentation losses to jointly
enforce intra-frame consistency.

Spatial Consistency To explore spatial weak supervi-
sion signals from image bounding boxes and pixel color,
we utilize the representative Box Projection Loss Ly, and
Pairwise Loss Ly in [51], to replace the supervised mask
learning loss. The Projection Loss Ly enforces the pro-
jection P’ of the object mask onto the Z-axis and §-axis of
image to be consistent with its ground-truth box mask. For
the temporal tube with T" frames, we concurrently optimize
all predicted frame masks of the tube as,

T
Looi =Y Y D(PM), Py(M)), (5

t=1 de{Z,7}

where D denotes dice loss, P’ is the projection function
along '/7-axis direction, M and M} denote predicted in-
stance mask and its GT box mask at frame ¢ respectively.
The object instance index is omitted here for clarity.

The Pairwise Loss Ly, on the other hand, constrains
spatially neighboring pixels of single frame. For pixel of
locations p} and p; of with color similarity > opiyel, We en-
force their predicted mask labels to be consistent, following
Eq. (3) as,

T
1
ACpair = T Z Z Lcons(Mgé ’ M;;) (6)
t=1ple HxW
The spatial losses are combined with a weight factor Apqir:

Lspatial = Eproj + Apairﬁpair- (7N

Temporal Consistency We adopt the Temporal KNN-
patch Loss in Sec. 3.1.2 as Lemp to leverage temporal mask
consistency. The overall spatio-temporal objective Ly, for
optimizing video segmentation is summarized as,

Eseg = £spatial + /\tempﬁtemp~ (8)

3.2.2 Integration with Transformer-based Methods

Existing works [14, 49] on box-supervised segmentation
losses are coupled with either one-stage or two-stage de-
tectors, such as Faster R-CNN [42] and CondlInst [49], and
only address the single image case. However, state-of-the-
art VIS methods [0, 58] are based on transformers. These
works perform object detection via set prediction, where
predicted instance masks need to be matched with mask an-
notations when evaluating the loss. To integrate mask-free
VIS training with transformers, one key modification is in
this instance-sequence matching step.

Since only ground-truth bounding boxes are available for
box sequence matching, as an initial attempt, we first pro-
duce bounding box predictions from the estimated instance
masks. Then, we employ the sequential box matching cost
function used in VIS methods [56, 58]. To compute match-
ing cost for whole sequence, £ loss and generalized IoU
loss for each individual bounding box is averaged across
the frames. However, we observe the matching results of
frame-wise averaging can easily be affected by a single out-
lier frame, especially under weak segmentation setup, lead-
ing to instability during training and performance decrease.
Spatio-temporal Box Mask Matching Instead of using
the aforementioned frame-wise matching, we empirically
find spatio-temporal box-to-mask matching to produce sub-
stantial improvement under the weak segmentation setting.
We first convert each predicted instance mask to a bounding
box mask, and convert the ground-truth box to box mask.
We then randomly sample a equal number of points from the
ground-truth box mask sequence and predicted box mask
sequence, respectively. Different from Mask2Former [6],
we only adopt the dice IoU loss to compute sequence
matching cost. We find that cross-entropy accumulates er-
rors per pixel, leading to imbalanced values between large
and small objects. In contrast, the IoU loss in normalized
per object, leading to a balanced metric. We study different
instance sequence matching strategies under the mask-free
VIS setting in the ablation experiments.

3.2.3 Image-based MaskFreeVIS Pre-training

Most VIS models [6, 58, 62] are initialized from a model
pretrained on the COCO instance segmentation dataset. To
completely eliminate mask supervision, we pretrain our
MaskFreeVIS on COCO using only box supervision. We
adopt the spatial consistency loss described in Sec. 3.2.1
on single frame to replace the original GT mask losses in
Mask2Former [6], while following the same image-based



training setup on COCO. Thus, we provide two training
settings in our experiments, one eliminates both image and
video mask during training, while the other adopts weights
pretrained with COCO mask annotations. In both cases, no
video mask annotations are used.

4. Experiments
4.1. Datasets

YTVIS 2019/2021 We perform experiments on the large-
scale YouTube-VIS [62] 2019 and 2021. YTVIS 2019 in-
cludes 2,883 videos of 131k annotated object instances be-
longing to 40 categories. To handle more complex cases,
YTVIS 2021 updates YTVIS 2019 with additional 794
videos for training and 129 videos for validation, including
more tracklets with confusing motion trajectories.

OVIS We also train and evaluate on OVIS [40], a VIS
benchmark on occlusion learning. OVIS consists of in-
stance masks covering 25 categories with 607, 140 and 154
videos for train, valid and test respectively.

BDD100K MOTS We further report results of Mask-
FreeVIS on the large-scale self-driving benchmark
BDDI100K [65] MOTS. The dataset annotates 154 videos
(30,817 images) for training, 32 videos (6,475 images) for
validation, and 37 videos (7,484 images) for testing.

4.2. Implementation Details

Our proposed approach only requires replacing the orig-
inal video mask loss in state-of-the-art VIS methods. In
particular, we adopt Mask2Former [0] and SeqFormer [58]
due to their excellent VIS results. Unless specified, we kept
all other training schedules and settings the same as in the
original methods. For the Temporal KNN-patch Loss, we
set the patch size to 3x 3, search radius to 5 and K = 5. We
adopt the L, distance as the patch matching metric and set
the matching threshold to 0.05. On YTVIS 2019/2021, the
Mask2Former based models are trained with AdamW [34]
with learning rate 10~ and weight decay 0.05. The learn-
ing rate decays by 10 times at with a factor of 2/3. We
set batch size to 16, and train 6k/8k iterations on YTVIS
2019/2021. For experiments on OVIS and BDD100K, we
adopted the COCO mask pretrained models by VITA and
Unicorn. For the sampled temporal tube at training, we use
5 frames with shuffling instead of 2 frames for better tem-
poral regularization. The compared baselines are adjusted
accordingly. During testing, since there is no architecture
modification, the inference of MaskFreeVIS is the same to
the baselines. More details are in the Supp. file.

4.3. Ablation Experiments

We perform detailed ablation studies for MaskFreeVIS
using ResNet-50 as backbone on the YTVIS 2019 val set.
We adopt the COCO box-pretrained model as initialization
to eliminate all mask annotations from the training. Tak-
ing Mask2Former [6] as the base VIS method, we analyze

Table 2. Different temporal matching schemes under the mask-
free training setting on YTVIS2019 val. ‘Param’ indicates whether
the matching scheme brings extra model parameters.

Temporal Matching Scheme | Param | AP | AP5y APr5 AR; ARy

Baseline (No Matching) | X [386]659 388 384 477

Flow-based Matching v 4021|663 419 405 49.1
Temporal Deformable Matching v 39.6| 659 40.1 399 48.6
Learnable Pixel Matching v 1395|657 402 39.7 484

v

X

X

Learnable Patch Matching 40.6| 66.5 426 403 492
[39.4] 650 417 402 48.0
|425| 66.8 457 412 51.2

3D Pairwise Matching ‘
Temporal KNN-Matching (Ours) |

the impact of individual proposed components. Moreover,
we study several alternative solutions for temporal matching
and influence of different hyper-parameters to TK-Loss.
Comparison on Temporal Matching Schemes Table 2
compares our Temporal KNN-Matching to four alternative
frame-wise matching approaches for enforcing temporal
mask consistency. Flow-based Matching employs the pre-
trained optical flow model RAFT [46] to build pixel corre-
spondence [33]. Temporal Deformable Matching adopts
the temporal deformable kernels [48] to predict the pixel
offsets between the target and alignment frame. Instead
of using raw patches, Learnable Pixel/Patch Matching
employs jointly learned deep pixel/patch embeddings via
three learnable FC layers, which are then used to compute
the affinities in a soft attention-like manner. 3D Pairwise
Matching directly extends L, designed for spatial images
to the temporal dimension, where pairwise affinity loss is
computed among pixels not only in within the frame but
also across multiple frames.

In Table 2, compared to Flow-based Matching with one-
to-one pixel correspondence, our paramter-free Temporal
KNN-Matching with one-to-/K improves by about 2.3 AP.
The prediction of flow-based models are not reliable in case
of occlusions and homogeneous regions, and are also in-
fluenced by the gap between the training dataset and real-
world video data. For the above mentioned deformable
and learnable matching schemes, since there are only weak
bounding box labels during training, the temporal match-
ing relation is learnt implicitly. We empirically observe the
instability during training with limited improvement under
the mask-free training setting. For direct generalization of
Lpair, it only leads to 0.8 mask AP performance improve-
ment. Despite the simplicity and efficiency of the TK-loss,
it significantly improves VIS performance by 3.9 mask AP.
Effect of Temporal KNN-patch Loss MaskFreeVIS is
trained with joint spatio-temporal losses. In Table 3, to eval-
uate the effectiveness of each loss component, we compare
the performance of MaskFreeVIS solely under the spatial
pairwise loss [51] or our proposed TK-Loss. Compared to
the 2.0 mask AP improvement by the spatial pairwise loss,
the TK-Loss substantially promotes the mask AP from 36.6
to 41.6, showing the advantage of our flexible one-to- K
patch correspondence design in leveraging temporal con-
sistency. We show the VIS results in Figure 5 to visualize



Table 3. Effect of the Spatial Pairwise loss and our Temporal
KNN-patch Loss on YTVIS2019 val.

Box Proj | Pairwise | TK-Loss | AP | APsp AP75 ARy ARpg
v/ 36.6 66.5 362 37.1 450
v v 386100 | 659 388 384 477

4 v
v v v

416159 | 684 435 401 505

425459 | 66.8 457 412 512

Table 4. Effect of using max K Table 5. Patch Matching met-

matches on YTVIS2019 val. rics comparison. NCC is Norm.
K| AP APsy AP ARy Cross-Correlation.

1 [ 408 658 441 403 Metric | AP APsp AP75 AR,
3 1419 669 451 419 NCC | 417 667 434 414
5 | 425 668 457 412 L, |412 662 436 403
7 |423 671 446 406 Ly |425 668 457 412

Table 6. Impact of search radius Table 7. Influence of patch size
R on YTVIS2019 val. N on YTVIS2019 val.

R| AP APsy APr5 AR; N | AP AP5; APr5 ARy

1 |396 657 402 397 1 40.1 652 422 400
3 | 413 666 430 403 3 | 425 668 457 412
5 | 425 668 457 412 5 | 421 687 444 421
7 | 423 671 446 406 7 | 415 663 448 413

the effectiveness of each loss component.

Analysis of Temporal KNN-patch Loss In Table 4, we
study the influence of K, the maximum number of matches
selected in Temporal KNN-patch Loss. The best result is
obtained for K = 5, while K = 1 only allows for the one-
to-one and no-match cases. The improvement from 40.8
mask AP to 42.5 mask AP reveals the benefit brought by
the flexible one-to-many correspondence design. We also
analyze the matching metric in Table 5, search radius in Ta-
ble 6, and patch size in Table 7 (see Sec. 3.1.2 for details).
When patch size N is increased from 1 to 3 in Table 7, the
performance of MaskFreeVIS is improved by 2.4 AP, vali-
dating the importance of patch structure in robust matching.
Effect of the Cyclic Tube Connection We compare three
frame-wise tube connection schemes (Figure 4) for the TK-
Loss in Table 8. While dense connection brings forth the
best performance, it doubles the training memory with mi-
nor improvement compared to Cyclic connection. Compar-
ing to Sequential connection, our Cyclic connection benefits
from long-range consistency, improving the performance of
0.6 mask AP with an affordable memory cost growth.

Table 8. Comparison of the tube connection schemes, illustrated in
Fig. 4. The tube consist of 5 frames. ‘Mem’ denotes the memory
consumption per sampled video by the TK-Loss during training.

Tube Connect ‘ Connect Num. ‘ Mem (MB) ‘ AP APsg9 AP75 AR

Dense 10 1526 4277 68.0 443 415
Sequential 4 631 419 66.5 447 412
Cyclic (Ours) 5 773 42,5 66.8 457 412

Comparison on Sequence Matching Functions Besides
TK-Loss, we analyze the influence of sequence matching
cost functions for transformer-based VIS methods under the
mask-free setting. In Table 9, we identify the substantial ad-
vantage of Spatio-temporal box-mask matching over frame-
wise cost averaging [56,58]. As discussed in Sec. 3.2.2, we

Mask2Fomer + BoxInst (Baseline) Mask2Fomer + TK-Loss (Ours)

Mask2Former (Oracle)

Figure 5. Qualitative results comparison between using Spa-
tial Pairwise loss [51], our TK-Loss, and Mask2Former (oracle)
trained with GT video and image masks.

—— GT Video Masks (Oracle) —@— GT Video Boxes (Ours) GT Video Boxes (Baseline)
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(a) COCO mask pretraining (b) COCO box pretraining

Figure 6. Results on YTVIS 2019 val with various percentages
of the YTVIS training data. Baseline denotes Mask2Former [6]
trained with GT video boxes using BoxInst [51], while Oracle de-
notes Mask2Former trained with GT video masks.

Table 9. Comparison of Set Matching Cost Functions on
YTVIS2019 val. ST-BoxMask denotes our Spatio-temporal Box
Mask matching. w/o CE denotes removing cross-entropy cost.

Matching Cost Function | AP APso AP7s AR ARjp
Frame-wise Averaging [56,58] | 37.6 64.2 39.5 37.5 45.7
ST-BoxMask 40.8 67.8 422 40.0 49.2
ST-BoxMask w/o CE 425 668 45.7 41.2 51.2

achieve further gain by removing the object size imbalanced
cross-entropy cost computation.

Training on Various Amounts of Data To further study
label-efficient VIS, we validate the effect of MaskFreeVIS
under various percentages of the YTVIS 2019 training data.
We uniformly sample frames and their labels for each video,
and set the minimum sampled number of frames to 1. Fig-
ure 6 presents the experimental results, which shows the
consistent large improvement (over 3.0 AP) brought by our
TK-Loss under various amount of data. In particular, we
note that our approach with 50% data even outperforms the
fully-supervised model with 10% training data.

4.4. Comparison with State-of-the-art Methods

We compare MaskFreeVIS with the state-of-the-art
fully/weakly supervised methods on benchmarks YTVIS
2019/2021, OVIS and BDDI0OOK MOTS. We integrate
MaskFreeVIS on four representative methods [0, 13,58,61],
attaining consistent large gains over the strong baselines.
YTVIS 2019/2021 Table 10 compares the performance
on YTVIS 2019. Using R50/R101 as backbone and with
the same training setting, MaskFreeVIS achieves 42.5/45.8
AP, improving 3.9/5.0 AP over the strong baseline adopt-



Table 10. Comparison on YTVIS 2019. I: using COCO mask pre-
trained model as initialization. V: using YTVIS video masks dur-
ing training. *: using pseudo mask from COCO images for joint

Table 11. Comparison on YTVIS 2021. Refer to Table 10 for the
symbol abbreviations.

Method Mask Back- AP  APsg AP75 AR; ARjg

training [58]. M2F: Mask2Former [6], SeqF: SeqFormer [58]. ann. bone
Method Mask Back- AP  AP;y AP75 AR; ARy Fully-supervised:

ann. bone MaskTrack [62] I+V RS0  28.6 489 29.6 265 33.8
Fully-supervised: IFC [*] I+V RS0 366 579 393 - -
PCAN [19] +V R50 361 549 394 363 416 SeqF™ [56] +V RS0 405 624 437 361 481
EfficientVIS [60] 4V R50 379 597 43.0 403 46.6 M2F +V RS0 406 609 418 - -
InsPro [11] I+V R50 402 629 43.1 37.6 445 Mask-free:
IFC [16] I+V R50 428 658 46.8 43.8 512 M2F + BoxlInst [51] - R50 321 528 344 310 381
VMT™ [18] I+V R50 479 - 520 458 - M2F + MaskFreeVIS - RS0 362441 608 392 34.6 456
SeqF* [58] I+V R50 474 698 51.8 455 54.8 M2F + MaskFreeVIS I R50 372455 61.9 403 353 46.1
M2F I+V R50 464 680 500 - - M2F + MaskFreeVIS* 1 R50 40935 658 433 37.1 50.5
M2F* I+V R50  47.8 692 52.7 462 56.6 Fully-supervised:
Prev. Weakly-supervised: M2F +V RI01 424 659 458 - -
FlowIRN [33] - R50 105 272 62 123 136 Mask-free:
SOLO-Track [10] I R30 306 507 33.5 31.6 37.1 M2F + BoxInst [51] - RIOI 333 552 325 321 419
Mask-free: M2F + MaskFreeVIS - RI0l 373349 61.6 394 341 456
M2F + Flow Consist [46] - R50 402 66.3 419 40.5 49.1 M2F + MaskFreeVIS I RIOI 382149 624 400 349 462
M2F + BoxInst [51] . R50 386 642 385 38.0 46.8 M2F + MaskFreeVIS* I R101 41.6433 66.2 44.8 36.3 49.2
M2F + MaskFreeVIS - R50 425,39 668 457 412 512

M2F + MaskFreeVIS I RS0
M2F + MaskFreeVIS* I R50

43.8452 70.7 469 415 523
46.6139 72.5 49.7 449 55.7

Fully-supervised:

M2F V RI101 456 72.6 489 443 545
M2F I+V R101 492 728 542 - -
M2F* I+V RI01  49.8 73.6 554 48.0 58.0
SeqF* I+V RI0I  49.0 71.1 557 46.8 569
Mask-free:

M2F + BoxInst [51] - RI101 408 67.8 422 40.0 49.2
M2F + MaskFreeVIS R101 45.84s59 70.8 48.6 453 55.2

M2F + MaskFreeVIS I RI01 47345 754 499 446 552
M2F + MaskFreeVIS* I  RI101 48.9.5; 749 54.7 449 57.0
SeqF + MaskFreeVIS* I RI01 486 740 522 459 572
Fully-supervised:

M2F I+V SwinL 604 844 670 - -
Mask-free:

M2F + BoxInst [51] - SwinL 498 732 555 482 58.1
M2F + MaskFreeVIS - SwinL 543445 82.6 61.1 502 61.3

M2F + MaskFreeVIS* I  SwinL 553455 82.5 60.8 50.7 62.2

ing BoxInst [51] losses. MaskFreeVIS, without any mask
labels, even significantly outperforms some recent fully-
supervised methods such as EfficientVIS [60] and In-
sPro [11]. On R50/R101/Swin-L, our MaskFreeVIS con-
sistently attains over 91% of its fully-supervised counterpart
trained with both GT image and video masks. We also ob-
serve similar larger performance growth over the baseline
on YTVIS 2021 in Table 11. The excellent performance
substantially narrows the performance gap between fully-
supervised and weakly-supervised VIS.

OVIS We also conduct experiments on OVIS in Table 12
using R50 as backbone. We integrate MaskFreeVIS with
VITA [13], promoting the baseline performance from 12.1
to 15.7 under the mask-free training setting.

BDD100K MOTS Table 13 further validates our approach
on BDD100K MOTS. Integrated with Unicorn [61], Mask-
FreeVIS achieves 23.8 mMOTSA by improving over 4.9
points over the strong baseline and thus surpassing the fully-
supervised QDTrack-mots [37]. The consistent large gains

Table 12. State-of-the-art comparison on the OVIS using R50.

Method AP APso AP75 AR; ARy
Fully-supervised:

CrossVIS [63] 14.9 327 121 103 198
Mask2Former [0] 17.3 373 151 105 235
VMT [18] 16.9 364 137 104 227
VITA [13] 19.6 412 174 11.7 26.0
Video Mask-free:

VITA [13] + BoxInst [51] 12.1 283 102 88 179

VITA [13] + MaskFreeVIS 15.7;3¢ 35.1 131 101 204

Table 13. State-of-the-art comparison on the BDD100K segmen-
tation tracking validation set.

Method mMOTSAT mMOTSP1T mIDF{ ID sw.] mAP?T
Fully-supervised:

STEm-Seg [!] 12.2 58.2 25.4 8732 21.8
QDTrack-mots-fix [37] 23.5 66.3 44.5 973 255
PCAN [19] 27.4 66.7 45.1 876 26.6
Unicorn [61] 29.6 67.7 442 1731 32.1
Video Mask-free:

Unicorn [61] + BoxInst [51] 18.9 58.7 36.3 3298 2211
Unicorn [61] + MaskFreeVIS ~ 23.8149 66.7 44.9 2086 24.8

on four benchmarks and four base VIS methods validates
the generalizability of our MaskFreeVIS.

5. Conclusion

MaskFreeVIS is the first competitive VIS method that
does not need any mask annotations during training. The
strong results lead to a remarkable conclusion: mask la-
bels are not a necessity for high-performing VIS. Our key
component is the unsupervised Temporal KNN-patch Loss,
which replaces the conventional video masks losses by
leveraging temporal mask consistency constraints. Our ap-
proach greatly reduces the long-standing gap between fully-
supervised and weakly-supervised VIS on four large-scale
benchmarks. MaskFreeVIS thus opens up many opportuni-
ties for researchers and practitioners for label-efficient VIS.



6. Appendix

In this supplementary material, we first conduct ad-
ditional experiment analysis of our Temporal KNN-patch
Loss (TK-Loss) in Section 6.1. Then, we present visu-
alization of temporal matching correspondence and com-
pute its approximate accuracy in Section 6.2. We further
show more qualitative VIS results analysis (including fail-
ure cases) in Section 6.3. Finally, we provide MaskFree-
VIS algorithm pseudocode and more implementation de-
tails in Section 6.4. Please refer to our project page for
extensive MaskFreeVIS video results.

6.1. Supplementary Experiments

Patch vs. Pixel in TK-Loss Extending Table 4 in the paper,
in Table 14, we further compare the results of image patch
vs. single pixels under different max K values during tem-
poral matching. The one-to-K correspondence produces
gains in both pixel and patch matching manners, while the
improvement on patch matching is much more obvious.

Table 14. Patch vs. Pixel in one-to-K patch correspondence on
YouTube-VIS 2019.

K | Pixel | Patch | AP AP5y AP ARy ARy

1 v 39.1 64.8 41.7 39.8 47.8
1 v 40.8 65.8 44.1 40.3 48.9
3 v 39.8 65.9 40.6 39.6 48.2
3 4 41.9 66.9 45.1 41.9 50.3
5 v 40.1 65.2 422 40.0 48.2
5 v 42.5 66.8 45.7 41.2 51.2
7 v 39.6 64.9 41.0 39.8 48.5
7 v 423 67.1 44.6 40.6 50.7

Influence of Tube Length During model training, we sam-
ple a temporal tube from the video. We study the influence
of the sampled tube lengths in Table 15, and observe that
the performing of MaskFreeVIS saturates at temporal tube
length 5. For even longer temporal tube, different from [19],
the temporal correlation between the beginning frame and
ending frame (two temporally most distant frame) is weak
to find sufficient patch correspondence.

Table 15. Results of varying Tube Length during training for TK-
Loss on YouTube-VIS 2019. Tube length 1 denotes model training
with only spatial losses in BoxInst [51].

Tube L€I‘lgth ‘ AP AP50 AP75 AR1 AR10

383 65.4 38.5 38.0 474
42.1 66.4 44.9 41.0 50.8
42.5 66.8 45.7 41.2 51.2
42.5 67.5 45.2 41.3 51.1

~N DN W =

Additional Results on Various Amount of YTVIS Data
For experiments in Figure 6 of the paper, we sample differ-
ent portions (in percents) of YTVIS data by uniformly sam-
pling frames per video. In Figure 7, we experiment with
another video sampling strategy by directly sampling dif-
ferent numbers of videos from the YTVIS training set. Our

—— GT Video Masks (Oracle) —— GT Video Boxes (Ours)
46.4

GT Video Boxes (Baseline)

42.5

100% 50% 10% 5% 100% 50% 10% 5%

(a) COCO mask pretraining (b) COCO box pretraining
Figure 7. Results on YTVIS 2019 val with various percentages
of the YTVIS training data, by directly sampling different num-
bers of videos from the YTVIS training set. Baseline denotes
Mask2Former [6] trained with GT video boxes using BoxInst [51],
while Oracle denotes the fully supervised Mask2Former trained
with GT video masks.

MaskFreeVIS consistently attains large improvements (over
3.5 mask AP) over the baseline in both the COCO mask and
box pretraining settings, with performance on par with the
oracle Mask2Former in data-efficient settings.
Image-based Pretraining Results on COCO In Table 16,
we report the performance on COCO of image-pretrained
Mask2Former networks used as initial weights for our ap-
proach. The mask-free version employs the spatial losses
of BoxlInst [51]. We also show the corresponding VIS
results on YTVIS 2019 by taking these image-pretrained
models as initialization for our approach. Compared to the
fully-supervised Mask2Former on COCO, the box-training
process eliminates the image masks usage and obtaining a
lower performance (over 10.0 AP) in image mask AP on
COCO. However, even initialized from this low-performing
image-pretrained models, our MaskFreeVIS using the pro-
posed TK-Loss still greatly reduces the gap between fully-
supervised and weakly-supervised VIS models as shown in
the rightmost column of the Table 16.

Table 16. Results of image-based pretrained Mask2Former
(M2F) [7] on COCO val and the corresponding video results on
YTVIS 2019 by taking the image-pretrained one as initialization.
M2F + BoxInst is mask-free, which is used to initialize MaskFree-
VIS, while image-based M2F (Oracle) is to initialize video-based
M2F (Oracle). Oracle denotes training with GT image or video
masks.

Backbone ‘ Image Method Video AP

R50 M2F + BoxInst 32.6

Image AP ‘ VIS Method
MaskFreeVIS 42.5

R50 M2F (Oracle) 43.7 ‘ M2F (Oracle) 46.4
R101 M2F + BoxInst 34.5 MaskFreeVIS 45.8
R101 M2F (Oracle) 44.2 M2F (Oracle) 49.2
SwinL M2F + BoxInst 40.3 MaskFreeVIS 54.3
SwinL M2F (Oracle) 50.1 M2F (Oracle) 60.4

Fully Mask-free Results on OVIS Extending from Ta-
ble 12 of the paper, we further present the results of Mask-
FreeVIS on OVIS using COCO box pretraining as initializa-
tion in Table 17. Our MaskFreeVIS consistently improves
the baseline from 10.3 to 13.5 mask AP without using any
masks.



Framet + 1

Figure 8. Visualization of the temporal correspondence in TK-Loss. We randomly sample 100 patch center points from Frame ¢, and draw
its temporally matched patch center points in Frame ¢+1. Matches are shown in the same color, and should have consistent instance mask
label. Taking patch center points near the left leg of the man (inside the red box, 1st row in Frame ¢) as an example, the matches in Frame
t+1 consistently belong to the same foreground (leg) / background (grass) region. Best viewed in color.

Table 17. Full results of our MaskFreeVIS on OVIS [40] using
R50. I: using COCO mask pretrained model as initialization. V:
using YTVIS video masks during training.

Method Mask AP AP50 AP75 AR; ARjo
ann.

Fully-supervised:

VMT [18] +V 169 36.4 13.7 104 227

VITA [13] I+V 19.6 412 174 11.7 26.0

Video Mask-free:
VITA [13] + BoxInst [51] I 121 283 102 88 179
VITA [13] + MaskFreeVIS 1 157436 351 13.1 10.1 204

Mask-free:
VITA [13] + BoxInst [51] - 10.3 272 84 73 162
VITA [13] + MaskFreeVIS - 13.5;3, 32.7 10.6 88 185

6.2. More analysis on Temporal Correspondence

Visualization on Temporal Correspondence We visual-
ize the dense temporal correspondence matching for TK-
Loss computation in Figure 8. For better visualization, we
randomly sample 100 patch center points from Frame ¢, and
plots their respective patch correspondences in Frame ¢+1
using the same color. We observe robust one-to-K patch
matching results, especially for the regions near the left leg
of the man (inside the red box) and the white frisbee.

Correspondence Accuracy To further analyze the accu-

racy rate for the temporal correspondence, since there is no
matching ground truth, we adopt the instance masks labels
as an approximate measure. We randomly take 10% of the
videos from the YTVIS 2019 train set, and split them to
5-frame tube. Following the cyclic connection manner, we
compute whether two matched patch center points belong-
ing to the same instance mask label. The average matching
accuracy per image pair is 95.7%, where we observe the
wrong matches are mainly due to the overlapping objects
with similar local patch patterns.

6.3. More Qualitative Comparisons

In Figure 9, we provide more qualitative results com-
parison among Baseline (using spatial losses of Box-
Inst [51]), Ours (using the proposed TK-Loss), and Oracle
Mask2Former (trained with GT video and image masks).
Compared to the Baseline, the predicted masks by our ap-
proach is more temporally coherent and accurate, even out-
performing the oracle results in some cases (such as the first
row of Figure 9). We also identify one typical failure case
of our MaskFreeVIS in Figure 10, where the neighboring
hand watch and shelf are in almost the same black color,
and continuously closing to each other with no sufficient
motion information for distinction. We observe even the
oracle model trained with GT video masks sometimes fail



Mask2Fomer + BoxlInst
(Baseline)

Input Video Frames

Mask2Former
(Oracle)
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Figure 9. Qualitative video instance segmentation results comparison between Mask2Former using Spatial Pairwise loss of BoxInst [51]
(Baseline), our proposed TK-Loss (Ours), and Mask2Former (Oracle) trained with GT video and image masks.

in correctly delineating these two objects (last row of Fig-
ure 10). Please refer to the attached video file on our project
page for more qualitative results of our MaskFreeVIS.

6.4. More Implementation Details

Algorithm Pseudocode We outline the pseudocode for
computing Temporal KNN-patch Loss in Algorithm 1,
where the execution code does not exceed 15 lines. This
further demonstrates the simplicity, beauty and lightness of
our TK-Loss without any learnable model parameters.

More implementation details Before computing temporal
image patch affinities, we first convert the input image from

RGB color space to CIE Lab color space for better differ-
entiating color differences. We set dilation rate to 3 when
performing temporal patch searching. For the loss balance
weights in Equation 7 and Equation 8 of the paper, we set
Apair t0 1.0 and Aepp to 0.1. We follow the same training
setting and schedule of the baseline methods when integrat-
ing our TK-Loss with Mask2Former [6], SeqFormer [58],
VITA [13] and Unicorn [61] for video instance segmenta-
tion training. When performing mask-free pre-training on
COCO with spatial losses of BoxInst, we keep the training
details of the integrated method unchanged. When integrat-
ing with Mask2Former using ResNet-50 and batch size 16,



Mask2Fomer + BoxInst
(Baseline)

Input Video Frames

Mask2Fomer + TK-Loss

Mask2Former
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Figure 10. One typical failure case of our MaskFreeVIS. The neighboring hand watch and shelf belong to the same black color, and
continuously closing to each other with no sufficient motion information for delineating these two objects.

Algorithm 1 Temporal KNN-patch Loss.

Input: Tube length 7', mask predictions M, frame width
W, height H, radius R, patch distance threshold D.
Output: TK-Loss Liemp

1: #topK denotes selecting top K patch candidates with the maximum

patch similarities computed using Lo distance Dis(-, -)

2: # Lcons denotes mask consistency loss (Equation 3 of the paper)
3: ﬁtemp +— 0.

4 fort=1,...,T do

50t (t+1)%T

6: ,Csc_”? 0.

7: forj=1,....H x W do

8: # 1) Patch Candidate Extraction:

9: S;j—)t — {ﬁl}z, where ||pj —ﬁzH <R

10: # 2) Temporal KNN-Matching:

11: S;7t + topK (S} "), where Dis(p;, pi) < D
12: # 3) Consistency Loss

13:

L L4 5 o Deons (M, M)
J
14: end for

15: #4) Cyclic Connection .
16: Ltemp $— Etemp + Ltf—)t/(H X W)
17: end for

the MaskFreeVIS training on YTVIS 2019 can be finished
in around 4.0 hours with 8 Titan RTX. When jointly training
with COCO labels, it needs around 2 days.
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