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Abstract

Existing audio-visual event localization (AVE) handles
manually trimmed videos with only a single instance in
each of them. However, this setting is unrealistic as nat-
ural videos often contain numerous audio-visual events
with different categories. To better adapt to real-life ap-
plications, in this paper we focus on the task of dense-
localizing audio-visual events, which aims to jointly lo-
calize and recognize all audio-visual events occurring in
an untrimmed video. The problem is challenging as it re-
quires fine-grained audio-visual scene and context under-
standing. To tackle this problem, we introduce the first
Untrimmed Audio-Visual (UnAV-100) dataset, which con-
tains 10K untrimmed videos with over 30K audio-visual
events. Each video has 2.8 audio-visual events on aver-
age, and the events are usually related to each other and
might co-occur as in real-life scenes. Next, we formulate
the task using a new learning-based framework, which is
capable of fully integrating audio and visual modalities to
localize audio-visual events with various lengths and cap-
ture dependencies between them in a single pass. Extensive
experiments demonstrate the effectiveness of our method as
well as the significance of multi-scale cross-modal percep-
tion and dependency modeling for this task.

1. Introduction

Understanding real-world scenes and events is inher-
ently a multisensory perception process for humans [16,34].
However, for machines, how to integrate multi-modal in-
formation, especially audio and visual ones, to facilitate
comprehensive video understanding is still a challenging
problem. In recent years, with the introduction of many
audio-visual datasets [7,8,11,39], we have seen progress in
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Figure 1. Different from the previous AVE task, dense-localizing
audio-visual events involves localizing and recognizing all audio-
visual events occurring in an untrimmed video. In real-life audio-
visual scenes, there are often multiple audio-visual events that
might be very short or long, and occur concurrently. The top and
bottom examples are from the current AVE dataset [39] and our
UnAV-100 dataset, respectively.

learning joint audio-visual representations [1, 29, 30], spa-
tially localizing visible sound sources [7, 24] and tempo-
rally localizing audio-visual events [42, 43, 50], etc. While
the success of these algorithms is encouraging, they all fo-
cus on manually trimmed videos that often just contain a
single audio-visual instance/object in each of them. In par-
ticular, audio-visual event localization (AVE) [39] aims to
localize a single event that is both audible and visible at
the same time in a short, trimmed video, as shown in the
upper part of Fig. 1. The task setting is impractical as a
real-life video is usually long, untrimmed and associated to
multiple audio-visual events from different categories, and
these events might have various duration and occur simulta-
neously. For example, as illustrated at the bottom of Fig. 1,
a man starts singing and other people accompany him on
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trumpet and violin, and they pause several times along with
the music. Therefore, we argue that it is necessary to re-
examine and re-define the AVE task to better adapt to real-
life audio-visual scenarios.

In this work, we conduct in-depth research starting from
dataset construction to technical solutions. On the one hand,
different from the existing AVE dataset [39] that only con-
tains a single audio-visual event in each 10s trimmed video,
we introduce a large-scale Untrimmed Audio-Visual (UnAV-
100) dataset. It consists of more than 10K untrimmed
videos with over 30K audio-visual events covering 100 dif-
ferent event categories. Our dataset spans a wide range of
domains, including human activities, music performances,
and sounds from animals, vehicles, tools, nature, etc. As the
first audio-visual dataset built on untrimmed videos, UnAV-
100 is quite challenging for many reasons. For instance,
each video contains 2.8 audio-visual events on average (23
events maximum), and around 25% of videos have concur-
rent events. Besides, the length of audio-visual events varies
greatly from 0.2s to 60s. There are also rich temporal de-
pendencies among events occurring in a video, e.g., people
often clap when cheering, and rain is usually with thunder,
etc. We believe that the UnAV-100 dataset, with its realistic
complexity, can promote the exploration on comprehensive
audio-visual video understanding.

On the other hand, facing such a complex real-life scene,
current methods [39, 42, 43, 45, 50] formulate the AVE task
as a single-label segment-level classification problem and
can only identify one audio-visual event for each segment
in a trimmed video. They fail to locate concurrent events
and provide an exact temporal extent for each event in
untrimmed videos. To address the above issues, we re-
define AVE as an instance-level localization problem, called
dense-localizing audio-visual events. We also present a new
framework to flexibly recognize all audio-visual events in
an untrimmed video and meanwhile regress their tempo-
ral boundaries in a single pass. Firstly, the sound and its
visual information are both critical to identify an audio-
visual event, and the events can range across multiple time
scales. Hence, we propose a cross-modal pyramid trans-
former encoder that enables the model to fully integrate in-
formative audio and visual signals and capture both very
short as well as long audio-visual events. Secondly, with
the observation that the events in a video are usually related
to one another, we conduct temporal dependency modeling
to learn such correlations, allowing the model to use con-
text to localize events more correctly. Finally, we design a
class-aware regression head for decoding temporal bound-
aries of overlapping events, together with a classification
head to obtain the final localization results. Extensive ex-
periments demonstrate the effectiveness of our method, and
show that it outperforms related state-of-the-art methods for
untrimmed videos by a large margin.

Our contributions can be summarized as follows:
• We introduce a large-scale UnAV-100 dataset, as

the first audio-visual benchmark based on untrimmed
videos. There exist multiple audio-visual events in
each video, and these events are usually related to one
another and co-occur as in real-life scenes.

• We shift the AVE task to a more realistic setup of
dense-localizing audio-visual events, and propose a
new framework, allowing to flexibly recognize all
audio-visual events in an untrimmed video and regress
their temporal boundaries in a single pass.

• Extensive experiments demonstrate the significance of
multi-scale cross-modal perception and dependency
modeling for the task. Our method can achieve supe-
rior performance over related state-of-the-art methods
for untrimmed videos by a large margin.

2. Related Work
2.1. Uni-Modal Temporal Localization Tasks

Deep learning methods have achieved promising perfor-
mance in temporally localizing target instances using one
modality as input, including temporal action localization
(TAL) and sound event detection (SED) tasks. Temporal
action localization (TAL) aims to detect and classify ac-
tions in untrimmed videos. It can be divided into two-stage
and single-stage approaches. A two-stage TAL approach
first generates action boundaries with confidence scores,
and then classifies their corresponding segments into ac-
tion categories and refines the generated temporal bound-
aries [2, 20, 21, 46]. By contrast, single-stage TAL localizes
actions in a single shot without using pre-generated pro-
posals, including anchor-based [26] and anchor-free meth-
ods [19, 47]. Besides, Transformers [41], with its power-
ful ability of long-range relation modeling, are recently also
considered in some single-stage TAL methods [25, 36, 48].
Sound event detection (SED) focuses on recognizing and
locating audio events in pure acoustic environments [27].
Approaches [5, 28, 31] cast it as a classification problem to
classify the sound category for each temporal unit. Over-
all, both of them belong to uni-modal temporal localization
tasks, i.e., TAL detects visual actions, ignoring the auditory
information, while SED only considers sound tracks with-
out utilizing visual content. Thus, they are both not benefi-
cial for joint audio-visual scene understanding.

2.2. Audio-Visual Event Localization

Tian et al. [39] first proposed the audio-visual event lo-
calization task and introduced the AVE dataset. Afterward,
Wu et al. [42] presented a dual attention matching module
for better high-level event information modeling and also
attaining local temporal cues. Xu et al. [45] designed a
relation-aware module to build connections between visual
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Dataset Videos Classes Avg. Length Annotations TB ME

AudioSet [11] 2.1M 527 10s A % %

Kinetics-Sound [1] 19K 34 10s V % %

VGGSound [8] 200K 300 10s AV % %

ACAV100M [18] 100M - 10s weak AV % %

AVE [39] 4,143 28 10s AV ! %

LLP [38] 11,849 25 10s weak A, V ! !

UnAV-100 (Ours) 10,790 100 42.1s AV ! !

Table 1. Comparison with related audio-visual datasets. A: audio
events; V: visual events; AV: audio-visual events; TB: temporal
boundaries; ME: multiple events.

and audio modalities. Besides, a positive sample propaga-
tion module was proposed by Zhou et al. [50] to adaptively
aggregate positive audio-visual pairs and avoid interference
of irrelevant pairs. Yan et al. [43] devised a background sup-
pression scheme to suppress cross-modal asynchronous in-
formation and uni-modal noise. However, all these methods
treat the task as a single-label segment classification prob-
lem, which fails to localize multiple, concurrent events in an
untrimmed video. In addition, AVE [39] dataset is based on
manually trimmed, short videos that only contain a single
audio-visual event in each of them, which is inconsistent
with real-life audio-visual scenes. On the other hand, the
recent audio-visual video parsing task [38] aims to identify
multiple audio, visual and audio-visual events occurring in
videos. However, the methods [23, 38, 50] are also based
on simple, trimmed videos in LLP dataset [38], and can be
only deployed in a weekly-supervised manner.

3. The UnAV-100 Dataset

3.1. Overview

To explore audio-visual event localization in more prac-
tical scenes, we build a large-scale UnAV-100 dataset, as
the first audio-visual dataset for untrimmed videos. Each
video usually contains multiple audio-visual events anno-
tated with categories and accurate temporal boundaries.
The events can be very short as well as long and even over-
lap in time. Besides, the dataset covers a wide range of
domains, including human activities, music performances,
animals/vehicles/tools/natural sounds, etc.

The comparison with other related audio-visual datasets
is shown in Tab. 1. The datasets in the top rows are mainly
designed for audio-visual representation learning. They
all consist of 10s short clips, and there is only a single
video-level label provided for each clip. Among them, Au-
dioSet [11] annotates videos only based on their sound with-
out considering visual information. Kinetics-Sound [1], as
a subset of Kinetics [15] for action recognition, is anno-
tated based on visual actions, resulting that many videos
contain sound tracks unrelated to the visual content (e.g.,
background music, offscreen voice). Besides, the videos in

VGGSound [8] and ACAV100M [18] have relatively good
audio-visual correspondence, while they are curated using
automatic algorithms leading to numerous noisy data. And
ACAV100M [18] just provides weak labels obtained from
pre-trained uni-modal classifiers. AVE [39], the existing
dataset for audio-visual event localization, just contains 4K
samples with limited 28 event classes. Each video is a
trimmed 10s clip containing only one audio-visual event,
and most events span over the entire video, which is se-
riously inconsistent with real-world scenarios. LLP [38]
is designed for weakly-supervised audio-visual video pars-
ing, only providing video-level weak labels for all train-
ing data. By contrast, our UnAV-100 dataset is based on
untrimmed videos, containing over 10K samples with 100
audio-visual event categories. Moreover, there are usually
multiple audio-visual events annotated in a video with their
categories and precise temporal boundaries. In the follow-
ing, we provide detailed descriptions about the dataset con-
struction and statistical analysis of our UnAV-100 dataset.

3.2. Dataset Construction

Collection. We select VGGSound [8] as our data collec-
tion source for its relatively high audio-visual correspon-
dence in videos. Specifically, we first chose the categories
that are common in our daily life from 300 classes in VG-
GSound covering diverse domains. Then, we downloaded
raw videos rather than 10s trimmed clips using the pro-
vided YouTube URLs. Since the lengths of raw videos
usually span several hours, we randomly cut them within
one minute to ensure reasonable duration, meanwhile keep-
ing the videos containing the original 10s clips. After-
ward, we manually verified the presence of audio-visual
events in each obtained video. We found that, since VG-
GSound was collected in an automated manner, there ex-
ist numerous videos that do not contain any audio-visual
events. For instance, some videos have correct visual con-
tent with unrelated sounds like background music and nar-
rations. Additionally, it also contains low-quality and ani-
mated videos with unrecognizable events. Finally, by filter-
ing the above cases, we selected around 10K from down-
loaded 15K videos for annotation.
Annotation. We annotated videos via an open-source an-
notation tool VIA [10] by crowdsourcing. Specifically, we
provided expert annotators with a category list for refer-
ence, and all audio-visual events occurring in videos are
required to be annotated with their categories and indepen-
dent start and end timestamps. Different from the tempo-
ral boundaries of visual contents that are usually ambigu-
ous [4], the start and end time points of an audio-visual
event are usually clearer and can be easily identified by
judging if the event occurs in both audio and visual chan-
nels. Thus, there is usually high agreement among anno-
tators in labeling temporal boundaries. In order to ensure
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(a) Distribution of audio-visual events

(c) Distribution of event and video duration   (b) Event number in videos   

Figure 2. Illustrations of statistics on our UnAV-100 dataset. (a) Distribution of audio-visual events. Bars are grouped by domains, and
different colors mean that event categories belong to different domains. (b) The number of audio-visual events in videos. (c) Distribution
of event (left) and video duration (right).

annotation quality high, the labeling team is required to
check all annotated data carefully. We also employed an-
other group of crowdworkers to manually check it again,
resulting in a very time-consuming process.

3.3. Statistical Analysis

Overall, our UnAV-100 dataset contains 30,059 audio-
visual events of 100 categories, distributed in 10,790
untrimmed videos for over 126 video hours. The dataset
is split into training, validation, and testing sets with a ratio
of 3:1:1, where a multi-label split strategy [35] is applied
to ensure a well-balanced data distribution in subsets. Be-
sides, in order to alleviate the effect of long tails, we make
sure that there are more than 116 audio-visual events for
each category. Fig. 2 provides the statistics of our dataset,
and the challenges of UnAV-100 include the following:
1) Multiple events in videos. As shown in Fig. 2(b), around
60% of videos contain more than one audio-visual event.
Each video has 2.8 audio-visual events on average (1.6 for
distinct ones), and the maximum number is 23. Besides,
about 25% of videos have concurrent events (the details are
in the Supp. Materials), which means that there is more
than one visible sound source at the same time.
2) Various lengths of events and videos. Fig. 2(c) shows
that a large number of events have very short duration, with
the shortest being only 0.2s. Short events are often difficult
to detect, but it aligns with real-life scenes. For example,

raining / thunder
train horning / train wheels squealing

people crowd / basketball bounce
sailing / wind noise

playing volleyball / people crowd
sailing / sea waves

playing cello / playing violin
car passing by / driving buses

people clapping / people cheering
wind noise / sea waves

0.0 0.2 0.4 0.6 0.8 1.0

NPMI

Top pairs of co-occur events

Top pairs of consecutive events
train horning / train wheels squealing

train wheels squealing / train horning 
people eating / people slurping

people sneezing / people nose blowing
woman speaking / people laughing
people laughing / woman speaking

car passing by / skidding
people slurping / people eating

people nose blowing / people sneezing
people burping / people laughing

0.0 0.2 0.4 0.6 0.8 1.0
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raining / thunder

train horning / train wheels squealing
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sailing / wind noise
playing volleyball / people crowd

sailing / sea waves
playing cello / playing violin
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Figure 3. Top pairs of simultaneous and consecutive audio-visual
events computed by NPMI falling in the range (-1, 1].

dog barking, basketball bounce, and fireworks banging are
normally very short audio-visual events. Besides, the aver-
age lengths of audio-visual events and videos are 13.9s and
42.1s, respectively.

3) Rich temporal dependencies between events. The re-
lated audio-visual events usually occur simultaneously or
consecutively in a video. In Fig. 3, we show the pairs of
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Figure 4. The overview of our proposed framework for dense-localizing audio-visual events. The model takes pre-trained CNNs to extract
audio and visual features, and uses a cross-modal pyramid transformer encoder to encode and fuse cross-modal features at various temporal
scales, which consists of Ls uni-modal and Lc cross-modal transformer blocks. Then, the temporal dependency modeling is conducted
to capture correlations between events. Finally, a classification and a regression head are used to predict the categories and temporal
boundaries of events in an end-to-end manner.

simultaneous and consecutive events with the top 10 Nor-
malized Pointwise Mutual Information (NPMI) [9], respec-
tively. We can see, frequently, rain is accompanied by
thunder, violin and cello are played together, people clap
when cheering, etc. Such event dependencies are very sim-
ilar to real-world intuition and reflect human behavior. We
note that UnAV-100 is the first audio-visual dataset with
such context information, which provides excellent data for
building many complex models for audio-visual event de-
pendency modeling.

4. Method
To solve the problem of dense-localizing audio-visual

events, we design an architecture to jointly recognize and
localize multiple, concurrent audio-visual events with vari-
ous lengths, and meanwhile capture event dependencies in
an untrimmed video. An overview of the proposed frame-
work is illustrated in Fig. 4.

4.1. Preliminaries

Problem Statement. Different from previous AVE meth-
ods, we formulate the task of dense-localizing audio-visual
events as a joint classification and regression problem. For-
mally, given an input video sequence containing both vi-
sual and audio tracks, we first divide it into T visual and
audio segment pairs {Vt, At}Tt=1, where T varies across
videos. The groundtruth event set for each video is denoted
as Y = {yn = (ts,n, te,n, cn)}Nn=1, where ts,n, te,n are the
start and end timestamp of n-th event, cn ∈ {1, · · · , C}
is the event category, and N is the total number of audio-
visual events in the video. Then, the model is required to
predict Ŷ = {ŷt = (ds,t, de,t, p(ct))}Tt=1 during inference,
where p(ct) ∈ R1×C is the probabilities of C event cate-
gories at moment t, ds,t and de,t are the distances between
the moment t to the event’s start and end timestamp. Note

that ds,t and de,t are only defined when an event presents
at moment t. Thus, the final localization results can be ob-
tained by:

ct = argmax p(ct), ts,t = t−ds,t, te,t = t+de,t. (1)

Audio and Visual Representations. We extract audio fea-
ture vectors using the VGGish model [13] pre-trained on
AudioSet [11]. And visual feature vectors are extracted by
the two-stream I3D [6] pre-trained on Kinetics-400 [15].
Then, we apply two convolutional layers with ReLU to
project features from two modalities into a shared embed-
ding space, resulting FV = {fv

t }Tt=1, FA = {fa
t }Tt=1 ∈

RT×D, where D is the dimension of the embedding space.

4.2. Architecture

Cross-Modal Pyramid Transformer Encoder. We con-
sider that the sound and its corresponding visual informa-
tion are both crucial to identify an audio-visual event. How-
ever, the audio and visual tracks of an untrimmed video of-
ten contain a lot of irrelevant information (e.g., background
music and off-screen voice), and their content might be mis-
aligned with each other (e.g., a dog appears without bark-
ing). Besides, the events occurring in untrimmed videos
usually range across multiple time scales. Thus, how to
appropriately integrate the two modalities and capture very
short as well as long events are both significant for this task.
Here, a cross-modal pyramid transformer encoder is pro-
posed to address the above challenges.

Specifically, in order to capture long-term temporal rela-
tions among uni-modal segments and filter out noise in each
modality, the feature sequences from two modalities are
first fed into Ls stacked uni-modal transformer blocks sep-
arately. Each block regularly contains a multiheaded self-
attention (MSA) and a feed-forward network (FFN) with
LayerNorm (LN) and residual connections. And position
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embeddings Epos ∈ RT×D as in [41] are also added in in-
put sequences. By doing this, the model can focus more on
event-related information in each modality. Afterward, the
obtained feature sequences are further encoded into a cross-
modal pyramid transformer to integrate informative signals
from two modalities at different temporal resolutions. The
module consists of Lc stacked blocks. In each block, as
shown in Fig. 4, we first temporally downsample the fea-
ture sequence of each modality with the stride 2lc−1, where
lc is the index of the current block, and the longer strides are
able to capture longer events. Then, we assign downsam-
pled features in the current modality as the key and value
vectors, and the features of another modality as the query
vector in multiheaded cross-attention (MCA), followed by
FFN and LN layers. Thus, the audio-guided visual feature
FV a and visual-guided audio feature FAv from lc-th block
can be denoted as:

F lc
V a = MCA(F̂ lc−1

Av Wq, F̂
lc−1
V a Wk, F̂

lc−1
V a Wv),

F lc
Av = MCA(F̂ lc−1

V a Wq, F̂
lc−1
Av Wk, F̂

lc−1
Av Wv),

(2)

where lc = {1, · · · , Lc}, F lc
V a, F

lc
Av ∈ RTlc×D (Tlc =

T/2lc−1), F̂ lc−1
V a and F̂ lc−1

Av are the features after down-
sampling, Wq,Wk,Wv ∈ RD×Dm are learnable param-
eters and Dm = D is the dimension of learned query,
key and value vectors. After cross-modal interactions at
various temporal scales, we concatenate the enhanced au-
dio and visual features at the same pyramid level, get-
ting a cross-modal feature pyramid Z = {Zlc}Lc

lc=1, where
Zlc = Concat(F lc

V a, F
lc
Av) ∈ RTlc×2D.

Temporal Dependency Modeling. The key characteristic
of real-life audio-visual scenes is that the related events usu-
ally occur simultaneously or consecutively. For example,
people are used to clapping when cheering, and cars often
honk when passing by. Here, inspired by the method [40]
for action dependency modeling in the TAL task, we implic-
itly capture such simultaneous and consecutive dependen-
cies among audio-visual events at the obtained cross-modal
feature pyramid. Concretely, for each cross-modal feature
sequence Zlc , we first transform and expand the feature di-
mension to Ẑlc ∈ RTlc×C′×H , splitting it into C ′ groups,
where C ′ represents the number of hidden classes and H is
the transformed feature dimension. We suppose each hid-
den class is learned to carry a group of distinctive features
for event classification. For simultaneous dependency mod-
eling, the self-attention is performed along the C ′ dimen-
sion of Ẑlc , which means a C ′ × C ′ attention matrix that
denotes the relevance among hidden classes at each time
step can be obtained. For consecutive dependency mod-
eling, the self-attention is performed along Tlc dimension,
getting a Tlc × Tlc attention matrix to indicate the correla-
tions among all time steps for the classification of the given
class. Then the output of the two branches followed by FFN

and LN layers with residual connections are simply merged
by element-wise summation to enable the model to capture
both types of dependencies. Note that we share the param-
eters of dependency modeling across all pyramid levels.
Decoder. Next, a decoder, consisting of a classification
head and a regression head, is applied to decode the en-
hanced feature pyramid into prediction results in a single
pass. Specifically, the classification head predicts the prob-
ability p(ct) of events at every moment t of all pyramid lev-
els. It consists of three layers of 1D convolutions follow-
ing a sigmoid function as in [48]. Besides, the regression
head outputs the distances to the start and end timestamp of
an event (ds,t, de,t) at time step t if the event exists. We
highlight that the regression head is designed to be class-
aware, which allows the model to regress temporal bound-
aries for the overlapping events with different categories. It
is realized by using three 1D convolutions attached with a
ReLU, getting the output with the shape of [2, C, Tlc ] for
each pyramid level. Here, the pyramid architecture enables
the regression head to predict temporal boundaries at dif-
ferent temporal scales, allowing the model to capture the
events with various lengths. Note that the parameters of
both two heads are shared across all pyramid levels.

4.3. Training and Inference

Loss Function. We use two losses to train our model in
an end-to-end manner, i.e., a focal loss [22] Lcls for clas-
sification and a generalized IoU loss [32] Lreg for distance
regression, as in the TAL method [48]. For each video, the
loss function is denoted as:

L =
1

T
∑
t

Lcls +
λ

N
∑
t

ItLreg, (3)

where T is the total segment number of all levels, It is an
indicator function denoting if a timestamp contains events,
N is the number of positive segments that contain events
across all levels. Here, we weight the contribution of Lreg

with λ = 1 by default.
Inference. During inference, the outputs of the model are
as in Eq. (1) for every timestamp t across all levels. Then
the obtained event candidates are post-processed by a multi-
class version of Soft-NMS [3] to suppress redundant tempo-
ral boundaries with high overlaps within the same class.

5. Experiments
5.1. Experimental Settings

Implementation Details. For each video, we sample
frames at 25 fps, and feed 24 consecutive RGB and optical
flow frames into two-stream I3D [6], using a sliding win-
dow with stride 8. Then, the two-stream features are con-
catenated (2048-d) as a visual segment. Here, the optical
flow is extracted by RAFT [37]. Besides, we extract 128-d
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Modality Method 0.5 0.6 0.7 0.8 0.9 Avg.

A

VSGN [49] 18.0 14.2 10.8 8.2 5.3 17.8
TadTR [25] 23.0 20.5 17.6 14.4 10.4 22.8

ActionFormer [48] 37.7 32.8 27.3 22.5 15.6 36.0
Ours 39.0 34.5 29.1 23.3 12.5 37.1

V

VSGN [49] 14.8 11.5 8.5 6.0 4.1 15.5
TadTR [25] 23.1 20.5 17.8 15.3 12.0 23.0

ActionFormer [48] 36.3 31.9 27.4 21.8 14.8 35.4
Ours 37.3 32.6 28.3 22.9 14.7 35.9

A&V

VSGN [49] 24.5 20.2 15.9 11.4 6.8 24.1
TadTR [25] 30.4 27.1 23.3 19.4 14.3 29.4

ActionFormer [48] 43.5 39.4 33.4 27.3 17.9 42.2
Ours 50.6 45.8 39.8 32.4 21.1 47.8

Table 2. Comparison of the results on the test set of UnAV-100
dataset. A: only audio modality; V: only visual modality; A&V:
both audio and visual modalities.

audio features by VGGish [13] for each 0.96s segment with
a sliding window (stride=0.32s) to temporally align with the
visual ones. Since the input sequences vary in length, we
pad or crop them to the maximum length T = 224, and add
masks for all operations in the model. The dimensions of
the embedding space in the encoder and temporal depen-
dency modeling are D = 512 and H = 128, respectively.
The number of hidden classes C ′ = 100. Our model is
trained with the Adam optimizer, and the number of epochs
is 40 with a linear warmup of 5 epochs. The initial learning
rate is 1e-4 and a cosine learning rate decay is used. The
mini-batch size is 16 and the weight decay is 1e-4.
Evaluation Metrics. As a temporal localization task for
untrimmed videos, we use mean Average Precision (mAP)
to evaluate results. Specifically, we report mAPs at the tIoU
thresholds [0.5:0.1:0.9] and the average mAP at the thresh-
olds [0.1:0.1:0.9].
Baseline Models. Since previous AVE and SED meth-
ods are limited to localizing a single event on trimmed
videos with the same duration and cannot be applied on
untrimmed videos, we only compare our model with recent
state-of-the-art TAL models, as shown in Tab. 2. It includes
the two-stage model VSGN [49] and single-stage models
(TadTR [25] and ActionFormer [48]). Here, Ls = 2 and
Lc = 6 in the pyramid transformer encoder of our model.
Note that all compared approaches use the same input fea-
tures as ours to keep a fair comparison.

5.2. Results and Analysis

To validate the effectiveness of the proposed model, we
compare it with recent TAL methods using different modal-
ities as input, and also conduct extensive ablation studies.
Comparison Results. As shown in Tab. 2, when using
one modality as input, our model variants that only apply
self-attention in the encoder outperform all compared TAL
methods, where TadTR [25] and ActionFormer [48] also
use an end-to-end transformer-based architecture. When
using both audio and visual modalities, the performance of

Ls Lc TD 0.5 0.6 0.7 0.8 0.9 Avg.

2 0 36.8 29.3 21.8 13.8 4.9 35.5
2 1 37.6 29.6 22.2 14.0 5.1 35.4
2 2 37.0 29.3 20.9 12.5 3.8 35.3

2 2 ✓ 41.0 33.1 25.7 18.0 8.1 39.4
2 4 ✓ 49.8 43.0 35.4 25.5 11.2 45.0
2 6 ✓ 50.6 45.8 39.8 32.4 21.1 47.8
2 7 ✓ 49.1 44.8 39.5 32.4 21.8 46.8

0 6 ✓ 49.4 45.2 39.2 32.5 21.6 46.7
1 6 ✓ 49.6 45.3 39.5 32.5 21.3 47.0
3 6 ✓ 48.8 44.4 39.2 32.2 21.8 46.4

Table 3. Ablation study on cross-modal fusion strategies and the
design of feature pyramid. TD: temporal downsampling.

DM CA 0.5 0.6 0.7 0.8 0.9 Avg.

48.2 42.3 35.5 28.0 18.1 45.2
✓ 48.5 44.2 38.7 32.6 21.0 46.1

✓ 48.5 43.4 36.9 29.9 20.2 45.8

✓ ✓ 50.6 45.8 39.8 32.4 21.1 47.8

Table 4. Ablation study on dependency modeling (DM) and class-
aware regression (CA).

Model 0.5 0.6 0.7 0.8 0.9 Avg.

ResNet50 [12] (RGB) 46.6 42.2 37.2 30.8 20.1 44.3
I3D [6] (RGB) 49.1 44.8 39.0 32.0 21.3 46.7
I3D [6] (RGB + Flow) 50.6 45.8 39.8 32.4 21.1 47.8

Table 5. Ablation study on different visual features.

our model boosts significantly, e.g., +11.9% and +10.7% at
the average mAP compared with our visual-only and audio-
only variants, respectively. These results clearly indicate
that both modalities are equally crucial for this task. Be-
sides, our model surpasses the compared TAL methods by
a large margin, even though they also benefit greatly from
multi-modal input. Here, we simply concatenate audio and
visual features as input of these methods.
Cross-Modal Fusion and Pyramid Levels. We explore the
cross-modal fusion strategies and the design of the cross-
modal feature pyramid. In Tab. 3, we can see that using only
two uni-modal transformer blocks (Ls = 2 and Lc = 0)
for each modality separately decreases the performance dra-
matically. Later, adding one or two cross-modal blocks at
the original temporal resolution can just slightly increase
mAP scores. Instead, applying temporal downsampling in
cross-modal blocks boosts the performance, indicating that
the cross-modal fusion at multiple temporal resolutions is
essential for our model. Then, the performance gradually
increases by further adding cross-modal pyramid levels, and
yet is saturated when Lc = 6. In addition, we found that
the appropriate number of uni-modal blocks is also impor-
tant, which reveals that applying self-attention before cross-
modal interaction can help the model to focus on informa-
tive signals and eliminate noise from each modality.
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Figure 5. Qualitative results on the UnAV-100 test set. GT: ground truth, A: the prediction of our audio-only variant, V: the prediction of
our visual-only variant, AV: the prediction of our audio-visual model. We show boundaries with the highest overlap with ground truth.
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Figure 6. Performance comparison of our models and the TAL
method (ActionFormer [48]) on the videos from the UnAV-100
test set, containing concurrent events with different overlap rates.

Dependency Modeling and Class-Aware Regression. As
shown in Tab. 4, applying temporal dependency model-
ing and class-aware regression separately can both achieve
higher performances than the base model that just contains
our transformer encoder with a class-agnostic regression
head in the decoder. Besides, we found that when using
both of them, they can promote each other and achieve a fur-
ther significant performance boost, which clearly demon-
strates their effectiveness.
The Impact of Motion Features. In Tab. 5, we observe that
utilizing both RGB and optical flow features extracted by
I3D [6] achieves the best performance. It outperforms the
model that uses visual features extracted by ResNet50 [12]
pre-trained on ImageNet by a large margin (+3.5% at the
average mAP). Even though it is proved in [39] that motion
features are useless for audio-visual event localization, we
argue that our experiment clearly demonstrates their signif-
icance for dense-localizing audio-visual events.
The Capability of Localizing Concurrent Events. We
further evaluate our models and the state-of-the-art TAL
method [48] on the videos that contain concurrent events
with different overlap rates in Fig. 6. We observe that our
model equipped with dependency modeling and class-aware
regression obviously gains more performance improvement
on the videos with higher overlap rates, compared with

our baseline and ActionFormer [48]. It suggests that our
model has a better ability to localize overlapping audio-
visual events in untrimmed videos.
Qualitative Results. In Fig. 5, we present the qualitative
results of our model variants that utilize different modali-
ties as input. We observe that the model using both modal-
ities can localize audio-visual events more correctly, even
though some events occur simultaneously or have short du-
ration. By contrast, since the sound of auto racing almost
spans the whole video, the audio-only model gets the wrong
boundaries of the event without the help of visual informa-
tion. And similar errors also occur when using the visual-
only model. Overall, it demonstrates again that audio and
visual modalities complement each other and are equally
significant for dense-localizing audio-visual events. More
ablation studies and qualitative results can be found in the
Supp. Materials.

6. Conclusion

In this work, we investigate the dense-localizing audio-
visual events problem, which aims to recognize and local-
ize all audio-visual events occurring in an untrimmed video.
To facilitate this research, we build a large-scale UnAV-100
dataset consisting of more than 10K untrimmed videos with
over 30K audio-visual events covering 100 categories. We
also propose a new framework, formulating the task as a
joint classification and regression problem, which is capable
of localizing audio-visual events that have various lengths
and overlap in time, and capturing the dependencies be-
tween them in a video. Our results demonstrate the supe-
riority of our model, indicating the significance of cross-
modal perception and dependency modeling for this task.
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Appendix

A. More Statistical Analysis
Concurrent Events. There are usually multiple audio-
visual events occurring simultaneously in UnAV-100
dataset as in real-life scenes. Here, we define the overlap
rate O of each video as:

O =
Uo

Ue
, (4)

where Uo is the temporal union of overlapping intervals,
and Ue is the temporal union of the intervals of all audio-
visual events in the video. Totally, there are around 25%
of videos (2,651) containing concurrent audio-visual events
(O > 0.01, considering annotation errors) in our UnAV-
100 dataset. The overlap rate distribution of these videos is
illustrated in Fig. 7. We can see that the videos with low
and high overlap rates both have high proportions. Higher
overlap rates might indicate that the events have higher cor-
relations and usually occur at the same time, which requires
the model to have a strong ability of dependency modeling.
Temporal Dependencies between Events. We show
NPMI (Normalized Pointwise Mutual Information) [9] of
the pairs of simultaneous and consecutive audio-visual
events for all 100 event categories in Fig. 8(a) and Fig 8(b),
respectively. NPMI is commonly used in linguistics to rep-
resent the co-occurrence between two words. Firstly, in
Fig. 8(a), we can observe that the event categories from the
same domains are more likely to occur concurrently, e.g.,
the events of human activities, music performances, and the
sounds of vehicles/natural. Besides, the events from vari-
ous domains are usually accompanied by human activities,
e.g., playing acoustic guitar with male singing, basketball
bounce with people crowd, etc. Secondly, in Fig 8(b), in
addition to the NPMI for consecutive occurrences of dif-
ferent audio-visual events, we also compute the values for
the events from the same categories, which might be larger
than 1. It can be observed that the same events tend to occur
repetitively in a video, especially for some events that usu-
ally happen in a short period of time, such as people nose
blowing, people sneezing and basketball bounce, etc. More-
over, diverse consecutive dependencies also exist between
different audio-visual events.
Comparison with Existing TAL Datasets. In Tab. 6, we
compare our UnAV-100 dataset with four popular bench-
marks for temporal action localization. All these datasets
are based on untrimmed videos and have relatively small
scales, since annotating temporal boundaries for all in-
stances in videos is labor-intensive and time-consuming.
Our UnAV-100 is the only dataset that combines both au-
dio and visual signals to annotate instances, while others
just utilize visual content in videos. Their audio tracks are
usually very noisy and unrelated to the visual information,

Figure 7. Overlap rate distribution of the videos that contain con-
current events in our UnAV-100 dataset.

Dataset Videos Classes
Avg.

Length
Avg.

Instances Domains

Breakfast [17] 1,712 48 162s 6 Cooking
THUMOS14 [14] 413 20 212s 15.5 Sports
ActivityNet [4] 19,994 200 115s 1.5 Human Activities
Charades [33] 9,848 157 30s 6.8 Daily Activities

UnAV-100 (ours) 10,790 100 42s 2.8 Unconstrained

Table 6. Comparison with temporal action localization datasets
based on untrimmed videos.

e.g., background music and narrations, thus these datasets
are not suitable for joint audio-visual video understanding.
Besides, these benchmarks all focus on specific domains,
such as human activities, sports, cooking, etc. By contrast,
our UnAV-100 covers many different domains including hu-
man/music/sport/animal/nature, etc., which helps machines
to understand more diverse audio-visual scenes in the wild.

B. Implementation Details

Feature Extraction. The visual features are extracted us-
ing two-stream I3D [6], which inputs a set of 24 RGB and
optical flow frames extracted at 25 fps. Each frame is first
resized such that the shortest side is 256 pixels, and then
the center region is cropped to 224 × 224. A 1024-d RGB
or flow feature vector is obtained from the final convolu-
tional layer of the corresponding branch of I3D. Then, the
two vectors are concatenated producing 2048-d features for
each stack of 24 frames. The audio features are extracted
using VGGish [13]. The input is a 96 × 64 log mel-scaled
spectrogram extracted for each 0.96s segment, which is ob-
tained by applying Short-Time Fourier Transform on a 16
kHz mono audio track. Then, a 128-d feature vector can be
obtained after an activation function and before a classifica-
tion layer. Here, we use 24 frames for each visual segment
to temporally match with the input of the audio modality as
24
25 = 0.96.
Network Architecture. In the cross-modal pyramid trans-
former encoder, the number of attention heads is 4 in both
uni-modal and cross-modal blocks. The temporal down-
sampling operation is realized by using a single depth-wise
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PE 0.5 0.6 0.7 0.8 0.9 Avg.

✓ 50.6 44.8 39.8 32.4 21.1 47.8
49.5 45.1 39.7 32.8 21.9 47.0

Table 7. Ablation study on position encoding (PE).

λ 0.5 0.6 0.7 0.8 0.9 Avg.

0.2 49.9 45.0 39.6 32.2 20.7 46.9
0.5 50.1 45.4 39.8 32.3 21.2 47.3
1 50.6 45.8 39.8 32.4 21.1 47.8
2 49.8 45.3 40.2 33.0 22.4 47.2
5 49.0 44.7 39.2 32.3 22.2 46.4

Table 8. Ablation study on loss weight λ.

Stride 0.5 0.6 0.7 0.8 0.9 Avg.

8 50.6 44.8 39.8 32.4 21.1 47.8
16 48.9 44.6 39.0 32.9 21.8 46.7
24 49.7 44.7 38.5 31.0 20.9 47.0

Table 9. Ablation study on temporal feature stride.

Tmax 0.5 0.6 0.7 0.8 0.9 Avg.

192 49.9 45.2 39.7 32.6 21.7 47.0
224 50.6 45.8 39.8 32.4 21.1 47.8
256 49.6 45.3 39.9 33.1 22.3 47.2

Table 10. Ablation study on maximum input sequence length.

SD CD 0.5 0.6 0.7 0.8 0.9 Avg.

48.5 43.4 36.9 29.9 20.2 45.8
✓ 49.5 45.3 39.7 32.6 21.2 46.9

✓ 49.5 44.8 39.7 32.7 21.7 46.8
✓ ✓ 50.6 44.8 39.8 32.4 21.1 47.8

Table 11. Ablation study on dependency modeling. SD: simulta-
neous dependency branch; CD: consecutive dependency branch.

1D convolution as in [48]. For temporal dependency model-
ing, the output dimension is converted as the shape of input
to formulate it as a plug-and-play operation, and we just
apply this operation once in our model.
Reproducibility. All our models are trained on a single
32GB NVIDIA Tesla V100 GPU and implemented in Py-
Torch deep-learning framework. During inference, we eval-
uate the performances of our method on the test set of our
UnAV-100 and use the best models on the validation set.

C. Ablation Study
Position Encoding. We explore the impact of position en-
coding in our transformer encoder. As shown in Tab. 7,
adding position embeddings can improve the performance

Method 0.3 0.4 0.5 0.6 0.7 Avg.

ActionFormer [48] 73.4 67.5 57.6 47.6 33.7 56.0
Ours 74.8 70.1 60.7 48.1 34.0 57.5

Table 12. Experiments on THUMOS14 dataset with only visual
modality as input (mAP@[0.3:0.1:0.7] is reported).

by 0.8% in average mAP, even though the temporal convo-
lutions (i.e., the projection layer and downsampling opera-
tions) already leak the location information as pointed out
in [44, 48].
Loss Weight. We also provide the ablation study on the
loss weight λ in our loss function. We train the model using
different loss weights λ ∈ [0.2, 0.5, 1, 2, 5], and report the
results in Tab. 8. It can be seen that the default value λ = 1
can yield the best performance.
Feature Stride. In our experiments, we use stride=8 with
a sliding window of 24 frames by default when extracting
visual and audio features. Here, we study the performance
variation using different feature strides in Tab. 9. Reducing
the temporal feature resolution (i.e., larger strides, 16/24)
leads to obvious performance degradation, which is intu-
itively reasonable since the model might fail to detect many
short audio-visual events at a low temporal resolution.
Maximum Input Sequence Length. Furthermore, we vary
the length of the maximum input sequences of our model,
and the results are provided in Tab. 10. We can observe
that our model has quite stable results when using different
Tmax, and Tmax = 224 gets the best results.
Dependency Modeling. Since the two branches of tem-
poral dependency modeling aim to capture different cor-
relations between events within a video, we run an abla-
tion by removing each of the branches and show the results
in Tab. 11. It indicates that applying each branch sepa-
rately also leads to improvement, and the best result can be
achieved by combing both branches to model simultaneous
and consecutive dependencies at the same time.

D. Experiments on Existing TAL Dataset
We also conduct experiments on THUMOS14

dataset [14], a widely-used dataset for temporal ac-
tion localization. The evaluation results on THUMOS14
test set using only visual input are provided in Tab. 12. We
use the same strategy to extract features on THUMOS14
as used on UnAV-100 for both methods to keep a fair
comparison. We can see that our model outperforms
ActionFormer [48] by a large margin (+3.1% mAP at
tIoU=0.5), even without the cross-modal fusion strategy.
Besides, we tried to only use the audio modality in THU-
MOS14 to locate actions, but got very bad results (just
4.3% average mAP) on both models, which indicates that
the audio tracks in THUMOS14 are quite noisy and cannot
provide useful information.
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E. More Qualitative Results
More qualitative results are presented in Fig 9, which

includes the prediction results of our model variants using
different modalities as input. Generally speaking, cross-
modal perception encourages the model to obtain more cor-
rect localization results. For example, Fig. 9(a) refers to the
relatively constant visual information versus dramatically
changing audio signals. By integrating both modalities, the
model can better judge the event boundaries. Besides, our
audio-visual model can also get promising performance in
some complex audio-visual scenarios, as in Fig. 9(c) and
Fig. 9(d), where many audio-visual events occur concur-
rently or over very short periods of time.

F. Discussion
Limitations. There is still a wide scope for exploration and
improvement on the basis of our work. For instance, our
dataset is limited to a temporal localization task. We will
explore other audio-visual problems, such as representation
learning and sound source localization in real-life and com-
plex scenarios in our subsequent study. Besides, although
our model can obtain a promising performance, as a base-
line, its capability is still limited in some complex situa-
tions. For example, in Fig. 9(c), the model gets an incorrect
boundary of the dog barking event when the barking brown
dog is out of the screen and a non-barking black one can be
seen. This indicates that our model might fail to effectively
filter out interference information for such a difficult case.
And the model might also fail to predict precise boundaries
when one modality persists while another disappears for
a short period of time (e.g., the event of vacuum cleaner
cleaning floors in Fig. 9(c)). In addition, for some instant
events with very short duration (e.g., basketball bounce in
Fig. 9(d)), our model might get unsatisfactory results. Over-
all, dense-localizing audio-visual events is inherently a very
challenging task, and it requires the model to have a strong
fine-grained cross-modal understanding ability. Therefore,
more advanced models that could better solve the above
difficulties are expected to boost performance further. We
hope our work as the first attempt at untrimmed audio-visual
video understanding can inspire more people to explore the
field.
Ethic concerns and biases. Our UnAV-100 is sourced from
VGGSound dataset [8] that has already tried to mitigate eth-
ical issues. During data collection, we made further efforts
to manually check all videos to avoid mature, sensitive, or
offensive content. Besides, our UnAV-100 follows the nat-
ural distribution of instances present on the website, which
may reflect some biases in topics. For example, there are
more man/woman speaking events than other categories.
Efforts have been made to mitigate such imbalance.

13



(a)

(b)

Figure 8. NPMI of the pairs of simultaneous (a) and consecutive (b) audio-visual events in our UnAV-100 dataset. In (b), the horizontal
axis shows the first event, and the vertical axis shows the second subsequent event. The event categories are grouped by domains.
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Figure 9. More qualitative results on the UnAV-100 test set. GT: ground truth, A: the prediction of the audio-only variant, V: the prediction
of the visual-only variant, AV: the prediction of our audio-visual model. We show boundaries with the highest overlap with ground truth.
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