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Abstract

Adopting contrastive image-text pretrained models like
CLIP towards video classification has gained attention due
to its cost-effectiveness and competitive performance. How-
ever, recent works in this area face a trade-off. Fine-
tuning the pretrained model to achieve strong supervised
performance results in low zero-shot generalization. Sim-
ilarly, freezing the backbone to retain zero-shot capabil-
ity causes significant drop in supervised accuracy. Be-
cause of this, recent works in literature typically train sep-
arate models for supervised and zero-shot action recog-
nition. In this work, we propose a multimodal prompt
learning scheme that works to balance the supervised
and zero-shot performance under a single unified train-
ing. Our prompting approach on the vision side caters
for three aspects: 1) Global video-level prompts to model
the data distribution; 2) Local frame-level prompts to pro-
vide per-frame discriminative conditioning; and 3) a sum-
mary prompt to extract a condensed video representa-
tion. Additionally, we define a prompting scheme on the
text side to augment the textual context. Through this
prompting scheme, we can achieve state-of-the-art zero-
shot performance on Kinetics-600, HMDB51 and UCF101
while remaining competitive in the supervised setting. By
keeping the pretrained backbone frozen, we optimize a
much lower number of parameters and retain the exist-
ing general representation which helps achieve the strong
zero-shot performance. Our codes/models are released at
https://github.com/TalalWasim/Vita-CLIP..

1. Introduction

In the image classification domain, multimodal image-
text pretrained models such as CLIP [58], ALIGN [31] and
Florence [75] have shown the capability of learning gener-
alized representations. These models, trained on large-scale
language-image pairs in a contrastive manner, have remark-
able zero-shot capabilities and transfer well to a variety of

downstream tasks. However, training a similar model for
the task of video recognition is not feasible both in terms
of gathering large-scale video-text pairs, which can suffer
from alignment problems [30], and is also exponentially
more computationally expensive due to multiple frames be-
ing processed per video. Therefore, there has been a recent
push in the research community to effectively adopt the pre-
trained image-text models for the task of video recognition,
while maintaining their zero-shot capabilities. In this re-
gard, existing methods can be divided into two categories.
Some take inspiration from recent prompt learning methods
[25, 32, 77, 81, 82] and propose a prompt learning scheme
either on the text [36] or vision [55, 70] side, along with
additional transformer layers for improved temporal learn-
ing. Others prefer an end-to-end CLIP finetuning scheme
for video tasks [51, 55, 70]. However, the problem with
these methods is that they either fail to effectively leverage
learning on both the text and vision sides [36, 55] or end
up losing the zero-shot generalization of CLIP by finetun-
ing the vision decoder [47] or the backbone [51, 55, 70]. In
summary, the existing approaches can steer the model either
towards good zero-shot generalization or better supervised
learning on video tasks. Since real-world tasks require both
supervised and zero-shot capabilities, our work investigates
the following question: Can we develop a unified model for
videos that performs well for both supervised learning and
zero-shot generalization tasks?

In pursuit of the aforementioned question, we propose a
multimodal prompting-based Video and text adaptive CLIP.
To effectively adapt the pretrained image-text CLIP model
to videos, we consider two important aspects. Firstly, one
needs to preserve the generalization capabilities of the orig-
inal pretrained CLIP backbone and secondly, it must be able
to effectively adapt to the video domain. In this regard, we
propose to keep the entire backbone frozen and learn addi-
tional lightweight modules to adapt the model for videos.
On this point, for the vision side, we aim to explicitly ex-
ploit the temporal information in videos which is lacking in
the frozen image model. Our approach models video infor-
mation at three levels: first via global video-level prompts
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(a) Proposed Prompting Scheme
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(b) Zero-shot accuracy (HMDB51, UCF101)
vs supervised accuracy (Kinetics-400).

Figure 1. An overview of the proposed
prompting scheme (left) alongside the trade-
off which we attempt to balance between su-
pervised and zero-shot performance (right).
(a) Our prompting approach adds learnable pa-
rameters to learn visual and temporal infor-
mation in videos at three levels: a summary
prompt to learn a condensed representation of
the video, video-level prompts to model global
distribution shifts needed to adapt to video do-
main and frame-level prompts to enrich local
discriminative information in each frame. On
the text side, we learn prompts to adapt the
language representations for videos. (b) The
trade-off plots showing zero-shot vs. super-
vised performance comparison for ours and re-
cent CLIP-based video approaches. Note that
existing SoTA [55] trains two separate models
for zero-shot and supervised settings while our
method offers a unified model with the same
training for both settings.

that learn the overall distribution characteristics of video
data e.g., motion and dynamics; secondly, inspired by [53],
local frame-level prompts which model per frame discrimi-
native information by directly conditioning on classification
tokens of all frames; and thirdly by a summary prompt that
distills the entire video sequence response in a single con-
cise summary vector.

Additionally, to better model the textual context we pro-
pose to use a learnable context on the text encoder. The rea-
son why this is particularly important is that the textual in-
formation is quite limited in the available video datasets. In-
stead of having per-sample text descriptions, we are limited
to using class labels as text descriptions. Inspired by [82],
we propose a prompt learning method on the text side to
better model the textual context and to augment the video
class label descriptions. An overview of our method with
the trade-off it seeks to balance is presented in Fig. 1. The
main contributions of this work are as follows:

• We propose a multimodal prompting approach Vita-CLIP
for videos that learns video and text-specific context vec-
tors to efficiently adapt the image-text pretrained CLIP
model to video recognition tasks.

• On the vision side, we explicitly model the temporal in-
formation and the video data distribution. Our prompt
learning method aggregates the discriminative informa-
tion from each frame in a clip with every other frame,
while also providing per-layer learning capacity to better
capture the data distribution. On the language side, our
approach learns complimentary semantic context to bet-
ter adapt the language representations.

• We evaluate our approach on supervised as well as gener-

alization tasks and demonstrate a sound balance between
both aspects using a single unified model. Specifically,
on zero-shot tasks, we obtain 4.0%, 3.0% and 2.2% gains
over the recent SoTA X-CLIP [55] on HMDB-51, UCF-
101, and Kinetics-600 datasets respectively.

2. Related work

Vision-Language (VL) Models: VL models [31,58,75]
consists of an image and a text encoder and are trained on
large-scale image-text pairs in a contrastive manner to learn
a common feature space between images and textual labels.
The semantic supervision driven by text allows models like
CLIP [58] to learn fine-grained visual concepts which are
transferable to many downstream tasks; semantic segmen-
tation [27, 60, 80], object detection [18], point cloud clas-
sification [78], and video classification [74]. Importantly,
these models allow ‘zero-shot’ knowledge transfer. In the
video domain, there exist some models trained with video-
text pairs for applications such as video retrieval [3,41,52].
However, these models are not trained on large amounts of
video-text data. In this work, we propose a novel approach
to induce temporal cues within the pretrained VL model,
CLIP, to enhance its ‘zero-shot’ generalization on videos.

Video Recognition: The conventional techniques for
spatiotemporal learning for video recognition progressed
from hand-crafted features [16, 38, 68] to end-to-end deep
learning methods [40]. Among neural network-based ap-
proaches, 3D convolutional networks (CNNs) [11, 15, 22,
65] learn spatiotemporal representation directly from RGB
video data, while other methods deploy dedicated 2D CNNs
[23, 34, 69, 72] and learn spatial and dynamic information



within separate networks before fusing them together. The
trade-off between 2D/3D networks for videos has been ex-
plored in [67, 73, 83]. Recently, Transformer [17] based ar-
chitectures have emerged for video recognition [4,7,19,54,
59]. In this work, we propose to adopt a pretrained multi-
modal Transformer [58] for spatiotemporal learning.

Prompt Learning: Prompting was proposed in NLP do-
main [35, 48] and it refers to generating task-specific in-
structions to get the desired behavior from language mod-
els. These instructions can be created manually [9] or
learned by training discrete [26, 35, 61, 63] or continuous
vectors [42,44]. Prompt learning has recently been explored
in vision problems to transfer knowledge from large-scale
models to downstream tasks. The current prompting tech-
niques are applied to both uni-models e.g., ViTs trained on
images [17] as well as multimodal models such as CLIP.
For the case of ViTs, [5,33] train learnable prompts to steer
pretrained vision transformers [17, 49]. On the other hand,
methods like [66,81,82] introduce learnable vectors into the
text encoder of CLIP for transfer learning to image recog-
nition tasks. In contrast, we propose to learn multimodal
video prompts to steer both vision and text encoders of
CLIP simultaneously for spatiotemporal learning on videos.

Adapting VL Models for Videos: CLIP model has
been fully fine-tuned on video-based retrieval and recog-
nition tasks [51, 70]. Ju et al. [36] transfer the zero-shot
generalization capability of CLIP to videos by learning
prompts on the text encoder inputs and two transformer
layers on the frame-level visual representations from the
image encoder to model temporal context. However, di-
rectly using the CLIP image encoder for videos leads to a
lack of temporal information within earlier blocks of the
CLIP vision encoder and as a consequence, such an ap-
proach shows less generalization than full-fine tuning [70].
Similarly, [55] proposes a cross-frame attention module to
model long-range inter-frame dependencies in videos and
uses text prompt generation conditioned on video and text
representations for better generalization. In contrast to these
methods, we introduce a learnable video prompting module
within the image and text encoder of CLIP to model tem-
poral cues without full fine-tuning and demonstrate a good
trade-off between generalization and fully supervised per-
formance.

3. Vita-CLIP: Methodology
Our approach, Vita-CLIP, works to adapt pretrained

image-based vision-language models for videos using a
multimodal prompting scheme that aims to retain both the
strong generalization capability (zero-shot performance) as
well as good supervised performance. Vita-CLIP allows uti-
lizing the existing image-language pretrained model rather
than training one from scratch for videos.

This section presents our approach. We start with an

overview of the vision/text encoders in Sec. 3.1, followed
by a detailed explanation of our multimodal prompt learn-
ing scheme in Sec. 3.2. This is further divided into vision
(Sec. 3.2.1) and text-side prompt learning (Sec. 3.2.2). Fi-
nally, we outline our learning objective in Sec.3.3.

3.1. Video and Text Encoding

As stated earlier, we wish to adopt the pretrained image-
text models to videos in a manner that we retain both the
pretrained generalized representation, while also achiev-
ing competitive fully-supervised performance with methods
that employ finetuning on the text and/or vision encoders. In
that regard, we propose a multimodal vision and text prompt
learning scheme that keeps both the vanilla CLIP image and
text encoders frozen and introduces extra learnable param-
eters to adopt them for videos. From a broader perspec-
tive, we obtain video (v) and text (c) representations from
the video (fθv ) and text (fθc ) encoders respectively. This
section formally defines how these representations are ob-
tained, while specific details on the proposed prompt learn-
ing scheme are presented in Sec.3.2.

Video Encoder: Consider a video V ∈ RT×H×W×3 of
spatial size H×W with T sampled frames. Each frame t ∈
{1 . . . T} is divided into N non-overlapping square patches
of size P ×P as required by the ViT architecture [17], with
the total number of patches being N = H ×W/P 2. For
each frame, all patches of shape P × P × 3 are flattened
into a set of vectors and represented as {xt,i ∈ R3P 2}Ni=1,
where t is the frame number and i the patch number. The
vectors are then projected to form token embeddings using
a linear projection layer Pemb ∈ R3P 2×D, with an output
dimension D for each token. An additional classification to-
ken, xcls ∈ RD, is prepended to the sequence of embedded
tokens for each frame. The final per-frame token sequence
fed into the video encoder is given by:

z
(0)
t = [xcls,P

T
emb xt,1, · · · ,PTemb xt,N ] + e, (1)

where e = esp+ etm. Here, esp and etm denote the spatial
and temporal positional encodings, respectively.

From the Lv layered video encoder, we obtain the frame
level representation at each layer l as follows:

z
(l)
t = f

(l)
θv

(z
(l−1)
t ), l ∈ {1, · · · , Lv}, (2)

where f
(l)
θv

is the l-th layer of the video encoder.
Finally, to obtain the per-frame representation, the clas-

sification token xcls is extracted from the output token se-
quence of the last layer z(Lv)

t , and projected to a dimension
D′ using a linear projection layer Pout ∈ RD×D′

.

vt = PTout z
(Lv)
t,0 ∈ RD

′
, (3)

where vt is the output representation of frame t and z
(Lv)
t,0 is

the classification token from the output sequence of the last



Figure 2. Vita-CLIP Prompting
Architecture: We append multiple
prompt tokens both on the vision and
text encoders. On the vision encoder,
we infer a Summary Token (S) which
condenses the whole video token se-
quence which is appended with the in-
put. Additionally, we add Mv num-
ber of Global (G) video-level prompts
to learn the data distribution and (T )
number of frame-level prompts condi-
tioned on the respective frame’s CLS

token to reinforce discriminative in-
formation. On the text side, we add
Mc number of learnable prompts to
model the input context of the text en-
coder. Modules with ( ) are trainable
and those with ( ) are frozen.

layer of the video encoder. To obtain the video representa-
tion, the per-frame representations vt are simply average-
pooled to obtain the aggregate representation:

v = AvgPool([v1, · · · ,vT ]). (4)

Text Encoder: For the input text representation, a pre-
trained text encoder is used with an additional text prompt
learning scheme. The pretrained text encoder is a 12 layer
BERT [14] model (for CLIP B/16 variant) with an embed-
ding size of 512 and context length of 77. Each layer of
the model consists of a Multi-Head Self Attention (MHSA)
followed by a Feed-Forward Network (FFN). Given the text
description C for a video, we use the text encoder to obtain
a representation c = fθc(C). Rather than using a hand-
crafted prompt for the text description like “A video of

the action of {label}”, as used in recent works [70], we
use a prompt learning scheme inspired by recent works on
text prompting for language-image models [81, 82].

3.2. Video and text Prompt Learning

While there have been previous attempts at prompt learn-
ing to adapt language-image models to videos, they either
focus on just the vision or text sides [36, 55] coupled with
completely finetuning the entire vision encoder in some
cases [55, 70]. To adapt our pretrained language-image
model for videos, we propose a novel multimodal prompt
learning scheme that keeps the pretrained model frozen, to
better retain its general representation. By preserving this
representation we are able to train a single model that can
perform well both in supervised and zero-shot settings, un-
like recent works [55] that require different hyper-parameter
choices to produce separate models for each setting.

In that regard, our multimodal prompting aims to align
the pretrained representation towards the video tasks, ensur-
ing that both text and vision information is utilized. More

specifically, on the text side, we introduce a learnable con-
text rather than a hand-crafted prompt to allow for the text
encoder to better adapt to the new video categories. On
the vision side, we propose a video prompting scheme that
focuses on modeling the frame-level information and inter-
frame relationships as well as providing adaptability to new
video data distributions. We explain our video and text
prompting in Sec.3.2.1 and Sec.3.2.2 respectively.

3.2.1 Video Encoder Prompt Learning

For prompting on the vision encoder we have two major
objectives: 1) Exploiting the temporal information by intro-
ducing information exchange between frames, and 2) pro-
viding additional parameters to adapt the CLIP image rep-
resentations towards the video dataset distribution.

In that regard, we introduce three kinds of additional to-
kens which are appended to the token sequence z

(l)
t from

frame t at layer l. Specifically, at each layer, we introduce a
single summary token which summarises the discriminative
information across all frames, T frame level local prompt
tokens to communicate per-frame discriminative informa-
tion to the rest of the frames in the clip and Mv video-level
global prompt tokens to provide learning capacity to adapt
the model to the video dataset distribution. Detailed de-
scriptions of these types of prompt tokens are given below.
Summary Token: The summary token is inspired by the
concept of message attention proposed in [55]. It is used to
summarize the discriminative information from each frame
in the clip and provide it back to every frame, before ap-
plying the pretrained self-attention for that layer. More
specifically the summary token s

(l)
t at the l-th layer for the

t-th frame is obtained by first applying a linear projection
Psum on the classification tokens z(l−1)t,0 and then applying



a MHSA operation between these frame-level tokens:

Z
(l−1)
0,proj = PTsumZ

(l−1)
0 ,

S(l) = MHSA(LN(Z
(l−1)
0,proj)) + Z

(l−1)
0,proj , (5)

where Z
(l−1)
0 = [z

(l−1)
1,0 , · · · , z(l−1)T,0 ], S(l) = [s

(l)
1 , · · · , s(l)T ]

and LN indicates layer normalization. Afterward, the re-
spective summary token is appended to the token sequence
z
(l−1)
t before applying the frozen pretrained self-attention

for that layer as indicated by Eq.7.
Global Prompt Tokens: The video-level global prompt
tokens (G(l) = [g

(l)
1 , · · · ,g(l)

Mv
]) are randomly initialized

learnable vectors. They are used to provide the model with
additional learning capacity to learn the data distribution.
Local Prompt Tokens: The frame-level local prompt to-
kens (L(l) = [l

(l)
1 , · · · , l(l)T ]) are also randomly initialized

learnable vectors, equal to the number of frames, T , in the
clip during training, but they are conditioned on the re-
spective classification tokens for each frame. This condi-
tioning of L(l) on [CLS] token z

(l−1)
t,0 enables a top-down

discriminative information flow in frame-wise learnable to-
kens. Each frame-level local prompt token is defined as:

l̂
(l)
t = l

(l)
t + z

(l−1)
t,0 . (6)

Finally, the tokens L̂(l) = [̂l
(l)
1 , · · · , l̂(l)T ] and G(l) =

[g
(l)
1 , · · · ,g(l)

Mv
] are appended to each frame sequence z(l−1)t

before applying the frozen pretrained self-attention (FSA)
for that layer as indicated below,

[ẑ
(l)
t ,S(l),G(l),L(l)] =FSA(LN([z

(l−1)
t ,S(l),G(l),L(l)]))

+ [z
(l−1)
t ,S(l),G(l),L(l)], (7)

Finally, we remove the extra appended tokens and apply the
feed-forward network (FFN) only on ẑ

(l)
t as shown below:

z
(l)
t = FFN(LN(ẑ

(l)
t )) + ẑ

(l)
t . (8)

3.2.2 Text Encoder Prompt Learning

Inspired from [36, 81, 82], we also use a prompt learning
scheme on the text encoder. Rather than hand-crafting a
textual input based on the class labels, we model the context
words using trainable vectors. More specifically the input to
the text encoder, fθc , is a sequence of tokens of the form:

C = [u1,u2, · · · ,uMc
, {label}] (9)

where ui, i ∈ {1, · · · ,Mc} is a trainable vector of the same
size as the input embeddings of the text encoder, and Mc

is the number of trainable unified prompts. This token se-
quence is then passed to the text encoder which produces
the text embedding c = fθt(C).

While two different variations are possible, Unified Con-
text (UC) (where all classes share a single set of context vec-
tors) and Class-Specific Context (CSC) (where an indepen-
dent set of context vectors is defined for each class), we use
CSC in our methodology. The prompt vectors are defined
as [unc

i ], i ∈ {1, · · · ,Mc} and nc ∈ {1, · · · , Nc} where Nc

is the total number of classes. The effectiveness of using
CSC over UC is shown through ablations in Sec.4.5.

The class-specific prompts are used in all our experi-
ments except the zero-shot ones, where novel classes can
appear. For the case of zero-shot evaluation, we simply use
manual prompts with any given class name.

3.3. Learning Objective

As explained above, our architecture consists of a Vi-
sion Transformer (ViT) [17] based image encoder and a
BERT [14] text encoder similar to CLIP [58]. The vision
and text encoders encode the video and text descriptions re-
spectively, which are then compared using a cosine similar-
ity objective. More formally, given a set of videos V and a
set of text class descriptions C, we sample video V ∈ V and
an associated text description C ∈ C which are then passed
to the video (fθv ) and text (fθc ) encoders respectively. This
results in the video and text representations are given as:

v = fθv (V | S(l),G(l),L(l)), c = fθt(C). (10)

We then define the cosine similarity loss function Lcos
between the video and text representations as below:

Lcos(v, c) =
〈v, c〉
‖v‖ ‖c‖

. (11)

We aim to maximize Lcos for the true v and c pairs and
minimize otherwise.

4. Results and Analysis
4.1. Experimental Setup and Protocols

Datasets: In the supervised setting, we train on the train
set of Kinetics-400 (K400) [37] and Something-Something-
V2 (SSv2) [29]). We report supervised performance against
existing methods in the literature on the validation sets of
K400 and SSv2. For zero-shot experiments, we train on
K400 training set and evaluate on three datasets: Kinetics-
600 (K600) [10], HMDB51 [39] and UCF101 [64]. For
zero-shot evaluation on K600, we follow [12], using the 220
new categories outside of (K400) for evaluation. Follow-
ing [55], we conduct evaluation three times, each time ran-
domly sampling 160 categories for evaluation from the 220
categories in (K600). For zero-shot evaluation on HMDB51
and UCF101, we follow [85] and report average top-1 ac-
curacy and standard deviation on three splits of the test set.
Hyperparameters: For all experiments we train the model
for 30 epochs with a cosine decay scheduler and an initial



Table 1. Comparison with state-of-the-art on Kinetics-400 [37] Supervised Training. We compare with various initializations (Random,
ImageNet 1k/21k, and CLIP-400M), specifying the number of frames, views, and FLOPs. We also mention whether the models use a
frozen/fine-tuned backbone and whether the method is suitable for zero-shot evaluation.

Method Pre-training Finetuning Frames Views Top-1 Top-5 GFLOPs Zero-shot

Initialization: Random weights
MViTv1-B, 64×3 (ICCV’21) [20] 7 3 64 3 × 3 81.2 95.1 455 7

Initialization: ImageNet weights
Uniformer-B (ICLR’22) [43] IN-1k 3 32 4 × 3 83.0 95.4 259 7

TimeSformer (ICML’21) [6] IN-21k 3 96 1 × 3 78.0 93.7 590 7

Mformer (NeurIPS’21) [56] IN-21k 3 16 10 × 3 79.7 94.2 370 7

Swin-B (CVPR’22) [50] IN-1k 3 32 4 × 3 80.6 94.6 282 7

Swin-B (CVPR’22) [50] IN-21k 3 32 4 × 3 82.7 95.5 282 7

MViTv2-B (CVPR’22) [45] 7 3 32 5 × 1 82.9 95.7 225 7

Initialization: Large-scale image-language weights (finetuned backbone)
ActionCLIP-B/16 (arXiv’21) [70] CLIP-400M 3 32 10 × 3 83.8 96.2 563 3

X-CLIP-B/16 (ECCV’22) [55] CLIP-400M 3 8 1 × 1 82.3 95.4 145 3

X-CLIP-B/16 (ECCV’22) [55] CLIP-400M 3 8 4 × 3 83.8 96.7 145 3

X-CLIP-B/16 (ECCV’22) [55] CLIP-400M 3 16 4 × 3 84.7 96.8 287 3

Initialization: Large-scale image-language weights (frozen backbone)
EVL B/16 (ECCV’22) [47] CLIP-400M 7 8 1 x 3 82.9 - 444 7

A6 (ECCV’22) [36] CLIP-400M 7 16 - 76.9 93.5 - 3

Vita-CLIP B/16 (Mc = 8,Mv = 8) CLIP-400M 7 8 1 x 1 80.5 95.9 97 3

Vita-CLIP B/16 (Mc = 8,Mv = 8) CLIP-400M 7 8 4 x 3 81.8 96.0 97 3

Vita-CLIP B/16 (Mc = 8,Mv = 8) CLIP-400M 7 16 4 x 3 82.9 96.3 190 3

Table 2. Comparison with supervised methods on Something-
Something-V2 [29], with a mention of their zero-shot capability.

Method Zero-shot Top-1

Methods with Finetuned Backbone
TRN (ECCV’18) [79] 7 48.8
SlowFast (CVPR’20) [21] 7 61.7
TSM (ICCV’19) [46] 7 63.4
ViViT (ICCV’21) [4] 7 65.9
Swin-B (CVPR’22) [50] 7 69.6

Methods with Frozen Backbone
B2 (ECCV’22) [36] 3 38.1
Vita-CLIP B/16 (Mc = 8,Mv = 8) 3 48.7

learning rate of 8×10−4. Unless stated otherwise, the num-
ber of frames during training is set to 8. For evaluation, we
use a single view of 8 frames in a supervised setting. During
the zero-shot evaluation, we train the model with 8 frames
but evaluate with a single view of 32 frames.

4.2. Supervised Experiments

In the supervised setting, we present results on K400
and SSv2 in Tab. 1 and Tab. 2 respectively. We compare
against existing methods under various initializations (ran-
dom, ImageNet-1k/21k [13] and CLIP400M) and in terms
of GFLOPs, training frames and evaluation views.

Comparing Vita-CLIP with the ImageNet pretrained
methods, we see that our models perform better or com-
petitively against all others while maintaining much lower
GFLOP counts and keeping the entire backbone frozen. We
perform better than both TimeSformer [6] and Mformer
[56] while having 6× and 4× lower GFLOPs, respectively.

We perform on par with Swin-B [50] (IN-1k) while main-
taining competitive results against Swin-B (IN-21k) and
MViTv2-B with 2-3× lower GFLOPs. Note that each of
these models has been fully trained, while our Vita-CLIP
only trains the proposed prompting scheme.

Similarly, comparing Vita-CLIP with CLIP-400M pre-
trained methods, we achieve 3.6% better top-1 accuracy
against the A6 [36] prompting method which also uses a
frozen backbone similar to ours. We also perform competi-
tively against both X-CLIP [55] and ActionCLIP [70], both
of which fine-tune the pretrained backbone while maintain-
ing a lower GFLOP count. Compared with EVL [47], which
also uses a frozen backbone, our performance is save, and
we additionally hold two advantages. Firstly, we have 4.5×
lower GFLOPs, and secondly, we retain the zero-shot capa-
bility while EVL cannot be used for zero-shot recognition.

On SSv2, we compare supervised performance against
recent methods in Tab. 2. While we are lower than cross-
entropy-based methods, we surpass the best vision-text-
based method B6 [36], by more than 10%. Note that the per-
formance for vision-language models is consistently lower
than cross-entropy ones. This is due to the fine-grained na-
ture of the SSv2 class descriptions, which are more difficult
to differentiate compared to, for example, K400 classes.

From the above experiments, we can see that our Vita-
CLIP performs better or competitive against existing meth-
ods while maintaining the capability of zero-shot infer-
ence. This can be attributed to our prompting scheme that
helps capture both the per-frame variation (through the lo-
cal frame-level prompts) as well as the overall distribution
of the video and the dataset (through the summary token



Table 3. Comparison for zero-shot performances on HMDB51
[39] and UCF101 [64] against state-of-the-art.

Method HMDB-51 UCF-101

Methods with Vision Training
ASR (ECML’17) [71] 21.8 ± 0.9 24.4 ± 1.0
ZSECOC (CVPR’17) [57] 22.6 ± 1.2 15.1 ± 1.7
UR (CVPR’18) [84] 24.4 ± 1.6 17.5 ± 1.6
TS-GCN (AAAI’19) [24] 23.2 ± 3.0 34.2 ± 3.1
E2E (CVPR’20) [8] 32.7 48
ER-ZSAR (ICCV’21) [12] 35.3 ± 4.6 51.8 ± 2.9

Methods with Vision-Language Training
ActionCLIP (arXiv’21) [70] 40.8 ± 5.4 58.3 ± 3.4
A5 (ECCV’22) [36] 44.3 ± 2.2 69.3 ± 4.2
X-CLIP-B/16 (ECCV’22) [55] 44.6 ± 5.2 72.0 ± 2.3
Vita-CLIP B/16 (Mc = 8,Mv = 8) 48.6 ± 0.6 75.0 ± 0.6

Table 4. Comparison against state-of-the-art on Kinetics-600 [10]
zero-shot performance.

Method Top-1

Methods with Vision Training
SJE (ICCV’15) [2] 22.3 ± 0.6
ESZSL (ICML’15) [62] 22.9 ± 1.2
DEM (CVPR’17) [76] 23.6 ± 0.7
GCN (arXiv’2020) [28] 22.3 ± 0.6
ER-ZSAR (ICCV’2021) [12] 42.1 ± 1.4

Methods with Vision-Language Training
X-CLIP-B/16 (ECCV’2022) [55] 65.2 ± 0.4
Vita-CLIP B/16 (Mc = 8,Mv = 8) 67.4 ± 0.5

and the global video-level prompts respectively).

4.3. Zero-shot Experiments

As stated earlier, in the zero-shot experiments we train
our Vita-CLIP on the K400 training set with 8 frames, then
perform the zero-shot evaluation on three datasets, UCF101
[64], HMDB51 [39] and K600 [10]. Notably, we utilize the
same model and hyperparameters as used for the supervised
experiments, unlike the current SoTA method X-CLIP [55]
which uses a different train setting for zero-shot evaluation.

For the zero-shot setting, we simply replace the class-
specific context with a tokenized class description. Our
results for zero-shot performance on UCF101, HMDB51,
and K600 are presented in Tab. 3 and Tab. 4 respectively.
It can be seen from Tab. 3 that we outperform the pre-
vious methods by 4% and 3% respectively on HMDB51
and UCF101. Similarly, we achieve state-of-the-art zero-
shot performance on K600, surpassing the previous best by
2.2%. We attribute this strong performance to both our pro-
posed prompting scheme, as well as the fact that we retain
the pretrained general representation of the CLIP backbone.

4.4. Supervised vs. Zero-shot Trade-off

In this section, we further highlight the trade-off that
we attempt to balance through our proposed method. Con-

Table 5. Comparing performance (supervised/zero-shot) and train-
able parameter trade-off between X-CLIP [55] and Vita-CLIP. (*)
indicates results obtained by the official repository of [55].

Method
K400
Top 1

Supervised

HMDB51
Top 1

Zeroshot

UCF101
Top 1

Zeroshot

Trainable
Parameters

(M)

X-CLIP B/16 (Supervised) 82.3 41.4* 67.9* 131.5
X-CLIP B/16 (Zero-shot) 78.2* 44.6 72.0 131.5
Ours B/16 80.5 48.6 75.0 38.88

Table 6. Ablations for different types of video prompts proposed
in this work: Summary Token (S), Global Prompts (G) and Lo-
cal Prompts (L). Text side prompting is fixed to Class-Specific
Context (CSC) with Mc = 8 for this ablation.

Method Top-1

CLIP B/16 (Zero-shot) 40.10
Vita-CLIP B/16 + CSC (Mc = 8) 73.00
Vita-CLIP B/16 + CSC (Mc = 8) + G (Mv = 8) 77.83
Vita-CLIP B/16 + CSC (Mc = 8) + G (Mv = 8) + L 79.16
Vita-CLIP B/16 + CSC (Mc = 8) + G (Mv = 8) + L + S 80.51

sider Tab. 5 where the current state-of-the-art approach X-
CLIP [55] has two different sets of hyper-parameters for
supervised and zero-shot settings. The authors use 8 frame
sampling and train for 30 epochs in the supervised setting.
While in the zero-shot setting, X-CLIP trains for 10 epochs
while sampling 32 frames per clip. This results in two mod-
els which only perform well in either supervised or zero-
shot settings, but not both. Instead, our Vita-CLIP, which
aims at retaining the generalized representation of the back-
bone while adapting to videos using prompt learning, is able
to achieve a balance between both settings. This allows us
to use a single model, trained with sampling 8 frames per
clip, for a total of 30 epochs to be used in both settings.

4.5. Ablations

In this section, we present an ablative study on different
components of our method. All experiments are performed
with training on the K400 training set and testing on the val-
idation set. All models are trained for 30 epochs, as stated
earlier with 8 frames sampled per video clip.

Video Prompting: We first perform an ablation on the
vision side prompting in Tab.6. Note for this ablation, text-
side prompting in all Vita-CLIP models is fixed at Mc = 8
using Class-Specific Context. We define a simple baseline,
the zero-shot accuracy of the vanilla CLIP [58]. Building on
that we add the Global video-level prompts, G (Mv = 8),
while keeping the rest of the model frozen. This achieves
77.83% top 1 accuracy on K400. We then add the Local
frame-level prompts (L) which push the model to 79.16%.
The inclusion of summary token brings us up to 80.51%.
This shows that the three prompting techniques are comple-
mentary and contribute to the overall accuracy of the model.

Number of Global Video-Level Prompts: We next
evaluate the impact of increasing the number of Global



(a) Class Label: ”Cooking Chicken” (b) Class Label: ”Golf Putting” (c) Class Label: ”Playing Guitar”

(d) Class Label: ”Playing Trumpet” (e) Class Label: ”Pull Ups” (f) Class Label: ”Skipping Rope”

Figure 3. Attention Rollout [1] on sample videos showing raw frames, heatmap without our proposed prompting method, and heatmap
with Vita-CLIP prompting method. For example, in actions like ‘Cooking Chicken’, ‘Playing Guitar’, ‘Pull Ups’, and ‘Skipping Rope’,
our approach fixates on the important localized parts that matter the most in terms of discriminative information and motion properties.
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Figure 4. Ablations for number
of Global video-level prompts
(G(l) = [g

(l)
1 , · · · ,g(l)

Mv
]) on

K400 dataset. The video-side
prompting includes local frame-
level prompting (L) and sum-
mary token (S), while the text
side prompting is fixed to Class-
Specific Context (CSC) with
Mc=8.

video-level prompts. We test different values for the number
of prompts as presented in Fig.4. We can see that the accu-
racy saturates around Mv = 8, which is why it’s the default
number of Global prompts we use in all experiments.

Number and Type of Text Prompts: Here, we consider
the text-side prompting. We use a baseline where only the
tokenized class name is used as context and evaluate two de-
sign choices: the number of text prompts Mc, and the type
of text prompt, Unified Context (UC) (i.e. a single set of
prompts for all classes), and Class-Specific Context (CSC)
(i.e. an independent prompt set for each class). The abla-
tion is shown in Fig. 5. It is clear that CSC gives better
accuracy, which is intuitive given that there is an indepen-
dent learnable context for each class. Increasing the context
size beyond 8 does not give any significant gain. Thus, we
chose to fix the text side prompting to CSC with Mc = 8.

Visualization: We illustrate the attentions of our model
using the attention roll-out [1] method in Fig. 3. We com-
pare the visualizations of our method with a baseline that
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Figure 5. Ablations for
the number of text prompts
(Mc = 8/16/32) and type of
text prompts: Unified Context
(UC) vs. Class-Specific Context
(CSC) on K400. Vision prompt-
ing is fixed to global video-level
prompting G (Mv = 8) with
local frame-level prompting L
and summary token S.

does not include our proposed prompting scheme. We note
that the proposed prompting scheme helps the model to fo-
cus on the salient parts and essential dynamics of the video
which are relevant to the end recognition task.

5. Conclusion
We propose a multimodal prompting scheme to adopt

image-language pretrained models to the task of video
recognition. Existing solutions do not leverage video-text
joint prompt learning and often resort to finetuning the CLIP
backbone which lacks the balance between zero-shot gener-
alization and supervised performance. Our approach strikes
a balance between zero-shot and supervised performance,
presenting a unified method that performs well in both set-
tings using the same training scheme. We achieve state-of-
the-art zero-shot performance on three datasets (UCF101,
HMDB51, and K600) and still remain competitive with re-
spect to supervised performance on K400 and SSv2 while
training a much lower number of parameters.
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