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Abstract

Building benchmarks to systemically analyze different
capabilities of video question answering (VideoQA) models
is challenging vyet crucial. Existing benchmarks often
use non-compositional simple questions and suffer from
language biases, making it difficult to diagnose model
weaknesses incisively. A recent benchmark AGQA [9] poses
a promising paradigm to generate QA pairs automatically
from pre-annotated scene graphs, enabling it to measure
diverse reasoning abilities with granular control. However,
its questions have limitations in reasoning about the fine-
grained semantics in videos as such information is absent
in its scene graphs. To this end, we present ANetQA, a
large-scale benchmark that supports fine-grained compo-
sitional reasoning over the challenging untrimmed videos
from ActivityNet [4]. Similar to AGQA, the QA pairs
in ANetQA are automatically generated from annotated
video scene graphs. The fine-grained properties of ANetQA
are reflected in the following: (i) untrimmed videos with
fine-grained semantics; (ii) spatio-temporal scene graphs
with fine-grained taxonomies, and (iii) diverse questions
generated from fine-grained templates. ANetQA attains 1.4
billion unbalanced and 13.4 million balanced QA pairs,
which is an order of magnitude larger than AGQA with
a similar number of videos. Comprehensive experiments
are performed for state-of-the-art methods. The best model
achieves 44.5% accuracy while human performance tops
out at 84.5%, leaving sufficient room for improvement.

1. Introduction

Recent advances in deep learning have enabled machines
to tackle complicated video-language tasks that involve
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Figure 1. Comparisons of ANetQA and AGQA [9]. The QA

pairs in both benchmarks are automatically generated from spatio-
temporal scene graphs by using handcrafted question templates.
Benefiting from the untrimmed long videos and fine-grained
scene graphs, our questions require more fine-grained reasoning
abilities than those in AGQA when similar templates are applied.
Moreover, the newly introduced attribute annotations allow us to
design many fine-grained question templates that are not supported
in AGQA (e.g., “what color” and “what is the occupation”).

both video and language clues, e.g., video-text retrieval,
video captioning, video temporal grounding, and video
question answering. Among these tasks, video question
answering (VideoQA) is one of the most challenging tasks
as it verifies multiple skills simultaneously. Taking the
question “What is the black object that the person is
wearing before various fish are seen swimming through the
reef?” in Figure 1 as an example, it requires a synergistic
understanding of both the video and question, together with
spatio-temporal reasoning to predict an accurate answer.



To comprehensively evaluate the capabilities of existing
VideoQA models, several prominent benchmarks have been
established [12,22,31,35,40,44,45]. Despite their useful-
ness, they also have distinct shortcomings. Some bench-
marks use simulated environments to synthesize video con-
tents [31,44], which provides controllable diagnostics over
different reasoning skills. However, the synthetic videos
lack visual diversity and the learned models on the bench-
marks cannot generalize to real-world scenarios directly.
Some real-world benchmarks generate QA pairs from off-
the-shelf video captions [40, 50] or human annotations [12,

,35,45], which suffer from simple question expressions
and biased answer distributions. These weaknesses may be
exploited by models to make educated guesses to obtain the
correct answers without seeing video contents [25,42].

One recent VideoQA benchmark AGQA poses a promis-
ing paradigm to address the above limitations [9]. AGQA
is built upon the real-world videos from Charades [34].
In contrast to previous benchmarks, AGQA adopts a two-
stage paradigm instead. For each video, a spatio-temporal
scene graph over representative frames is first annotated
by humans, which consists of spatially-grounded object-
relationship triplets and temporally-grounded actions. After
that, different types of questions are generated on top of
the scene graph using corresponding question templates,
enabling it to measure various reasoning abilities with
granular control. Despite the comprehensiveness of AGQA,
we argue that its foundation—the spatio-temporal scene
graph—has limitations in representing the fine-grained se-
mantics of videos. Specifically, their scene graphs encode
objects and relationships from limited taxonomies, which
are not fine-grained enough for generating questions that
require reasoning about the detailed video semantics.

To this end, we introduce ANetQA', a new benchmark
that supports fine-grained compositional reasoning over
complex web videos from ActivityNet [4]. Similar to the
strategy of AGQA, the QA pairs in ANetQA are automati-
cally generated from pre-annotated scene graphs. As shown
in Figure 1, we claim that ANetQA is more fine-grained
than AGQA in terms of the following:

(i) The benchmark is built upon untrimmed long videos
with fine-grained semantics. Each video may involves
multiple indoor or outdoor scenarios, containing com-
plicated interactions between persons and objects.

(i) The spatio-temporal scene graph consists of fine-
grained objects (e.g., “manta ray”, “diving gear”),
relationships (e.g., “jumping into”, “chasing”), at-
tributes (e.g., “swimming”, “black and white”), and
actions in natural language (e.g., “a manta ray swims
in the ocean over a reef™).

!Note that there is a VideoQA benchmark ActivityNet-QA [45] whose
QA pairs are fully annotated by humans. To avoid confusion, we name our
benchmark ANetQA.

(iii) Benefiting from the fine-grained scene graphs, we
are able to design diverse question templates that
requires fine-grained compositional reasoning (e.g.,
“what color ...” and “what is the occupation ...”).

Benefiting from the above fine-grained characteristics,
ANetQA obtains 1.4B unbalanced and 13.4M balanced QA
pairs. To the best of our knowledge, ANetQA is the largest
VideoQA benchmark in terms of the number of questions.
Compared with the previous largest benchmark AGQA,
ANetQA is an order of magnitude larger than it with a
similar number of videos. We conduct comprehensive
experiments and intensive analyses on ANetQA for the
state-of-the-art VideoQA models, including HCRN [20],
ClipBERT [21], and All-in-One [37]. The best model
delivers 44.5% accuracy while human performance tops out
at 84.5%, showing sufficient room for future improvement.
The benchmark is available at here?.

2. Related Work

We briefly review the field of VideoQA in terms of
methods and benchmarks. Since ANetQA is built upon
ActivityNet [4], we introduce ActivityNet and its derived
benchmarks in particular.

VideoQA approaches. The research of visual question
answering lies mainly in the image domain. A number of
image question answering (ImageQA) methods have been
developed to push state-of-the-art performance on public
benchmarks successively [0, 14,46,47]. As a natural exten-
sion of the ImageQA task, VideoQA is more challenging
as it requires effective temporal representation modeling
and spatio-temporal reasoning. Existing studies explore
end-to-end neural networks in conjunction with hierarchical
representations [40, 51], memory networks [7,32, 35], and
graph networks [10,26,39]. Motivated by the encouraging
success of Transformers [36] in various NLP [16, 33],
CV [3,27], and multimodal tasks [1, 2, 28], Transformer-
based approaches have become the mainstream of recent
VideoQA research. Early approaches only exploit the
Transformer architecture and train models from scratch
[15,24]. More recently, pretrained Transformer models on
large-scale datasets have shown effectiveness when fine-
tuned on VideoQA tasks. Some approaches incorporate the
pretrained language Transformers [17, 43] or multimodal
Transformers on image-text pairs [21] to improve VideoQA
performance. Some other studies perform video-language
pretraining directly on massive video-text pairs, which
learn better multimodal representations and achieve state-
of-the-art performance on various VideoQA benchmarks
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VideoQA benchmarks. The rapid progress in VideoQA is
inextricably related to the established benchmarks. Existing
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video question grounding taxonomy
type  #videos avg. len. | #QA pairs  #templates | #objects #relations #attributes #actions
CLEVRER [44] synth. 20K Ss 305K 5 1 2 13 3
TVQA+ [23] real 4.2K 7.2s 29.4K - 2,527 - - open
HowtoVQAG6IM [41] real 69M 12.1s 6OM - - - - open
AGQA [9] real 9.6K 30s 192M/3.9M 28 36 44 - 157
ANetQA | real 115K 180s | 1.4B/13.4M 119 | 2072 86 618 open

Table 1. Comparisons of ANetQA and other representative large-scale VideoQA benchmarks. Benefiting from the fine-grained video
and grounding annotations, ANetQA attains massive fine-grained questions and is an order of magnitude larger than the current largest
benchmarks [9,41] in terms of the number of QA pairs. “open” indicates the grounded actions are depicted in natural language.

VideoQA benchmarks can be categorized into two groups
based on whether their videos are synthesized by simulation
[31,44] or collected from the real world [9, 18,22, 29, 35,

,40,41,45,48,50]. The synthesized benchmarks can
easily obtain massive QA pairs without human annotations.
Their synthetic nature also enables granular control over
reasoning abilities and language biases. However, the
synthesized videos are often short and lack visual diversity,
making it difficult to generalize the learned models to real-
world scenarios.

Establishing VideoQA benchmarks on real-world videos
requires human annotations inevitably. Early benchmarks
rely on the associated video captions to generate QA pairs
automatically [29,40, 50, 53]. Although these captions are
annotated by humans, they are often too general to cover
all the fine-grained semantics in videos. This makes these
benchmarks be dominated by simple questions that lack
detailed information. To obtain fine-grained and diverse
questions, some recent benchmarks have been established
by asking annotators to design questions of specific rea-
soning abilities, e.g., object localization [23], relationship
recognition [45], and causality analysis [38]. Nevertheless,
prohibitive annotation costs restrict the sizes of these bench-
marks and free-form question expressions lead to severe
language biases. One recent benchmark AGQA introduces
a new paradigm to automatically generate QA pairs upon
video scene graphs [9]. Through the composition of scene
graph elements, AGQA is orders of magnitude larger than
its counterparts. Similar to AGQA, our ANetQA is also
built upon spatio-temporal scene graphs. In contrast to
AGQA, ANetQA shows its fine-grained characteristics in
terms of the videos, annotated scene graphs, and generated
questions. Detailed comparisons of ANetQA and other
representative large-scale VideoQA benchmarks are shown
in Table 1.

ActivityNet and its derivatives. ActivityNet (abbr. ANet)
is one of the most important video recognition benchmarks
[4]. It consists of 20K untrimmed videos from 200 activ-
ity classes, including both indoor and outdoor scenarios.
The benchmark is challenging as its videos contain rich
semantics. Therefore, some derived benchmarks are built
upon ANet to provide fine-grained annotations [19, 52].

ANet-Captions [19] annotates each video with multiple
temporally-grounded captions. ANet-Entities [52] provides
spatially-grounded bounding boxes for the noun phrases
mentioned in the captions. We establish our ANetQA based
on the annotations of these two benchmarks .

3. The ANetQA Benchmark

ANetQA is a large-scale VideoQA benchmark to mea-
sure a variety of spatio-temporal reasoning abilities at a
fine-grained level. In this section, we first provide an
overview of the construction process of our benchmark and
then introduce the key stages in detail.

3.1. Overview

The videos in ANetQA are derived from ActivityNet [4].
As mentioned above, we leverage the auxiliary annotations
on ActivityNet [19, 52] to reduce the annotation costs
during the construction of our benchmark. These result in
11,525 videos in total, which are comprised of 9,155 and
2,370 videos in the train and val splits of ActivityNet,
respectively. We keep the train split unchanged and
further divide the val split evenly into a new val split of
1,185 videos and a test split of 1,185 videos.

Next, we annotate each video with a spatio-temporal
scene graph via crowdsourcing. Each video has been anno-
tated with temporal-grounded captions [19] and spatially-
grounded objects from a few representative frames [52],
For each frame, we first clean the mislabeled objects and
complement the omitted objects, and then annotate each
object with fine-grained relationships and attributes. The
accomplished scene graph annotations consist of 118K
objects, 83K relationships, 1M attributes, and 16K natural
language actions across 43K representative video frames.

Finally, we handcraft a variety of templates to generate
linguistically diverse QA pairs with both grammatical and
logical guarantees. By composing the elements in the scene
graphs and then filling them into proper template slots, we
obtain 1.4B unbalanced and 13.4M balanced QA pairs.

3.2. Fine-grained Video Scene Graph Annotation

Representative frames. Annotating a scene graph over all
video frames is impractical. Similar to [9], each of our
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Figure 2. Statistics of the annotated video scene graphs. We visualize the distributions of the top-15 (a) object occurrences and (b)
relationship occurrences. The attributes form a hierarchical taxonomy shown in (c), where the values in the parentheses indicate the
number of bottom-level attributes to be annotated. More details are provided in the supplementary material.

scene graph is annotated over a few representative frames
in a video. Concretely, we use the selected frames from
ANet-Entities [52] as the initialization, which cover the
key semantics of all the action segments in ANet-Captions
[19]. After that, we manually check and filter out those
frames that hamper further annotation, i.e., the frames do
not contain any meaningful objects or contain too many
objects from the same class. Finally, we obtain 43K frames
for further annotation, which indicates an average number
of 3.69 frames per video®.

Objects. ANet-Entities also provides object-level annota-
tions for all the selected frames. Each object is annotated
with a bounding box and a noun phrase (e.g., “a young
woman”, “a black jacket”). To better organize the object
annotations, we first extract nouns from the noun phrases
and convert them into a set of object labels. After that, we
merge the synonymous object labels (e.g., “mountain” and
“hill”, “saxophone” and “sax”). Finally, we ask annotators
to go through all the selected frames to refine the annota-
tions, including object augmentation, label correction, and
bounding box calibration. By doing the above, we obtain
a total number of 118K objects of 2,072 classes over the
selected frames. The top most frequent classes are shown
in Figure 2a. We exclude the most frequent class “person”
for better visualization.

Relationships. Beyond recognizing objects, predicting
pairwise relationships between two objects is also important
for scene understanding. Referring to the taxonomy in
AGQA, we design a set of 86 relationships containing 81
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contact relationships (e.g., “holding”, “riding”, “wearing”),

3The number of sampled frames in our ANetQA is much lower than
that of AGQA (3.69 vs. 24.4 on average). The motivation derives from our
observation that the scene graph elements barely change within an action
segment. With a limited annotation budget, we favor the annotation density
in one frame rather than the annotation scale across many frames.

th)

4 spatial relationships (“near”, “on”, “in”, “part of”)*,
and 1 temporal relationship (“identical’”’). Our contact
relationship categories are broader than AGQA (81 vs. 16),
because: (i) our videos contain both indoor and outdoor
scenarios while AGQA only contains indoor ones; (ii) our
relationships contain interactions between two arbitrary ob-
jects (i.e., human-object, human-human, and object-object
interactions) while AGQA only contains human-object in-
teractions. For each paired objects in one frame, annotators
are asked to label ar most one spatial relationship and one
contact relationship, respectively. The “identical” temporal
relationship indicates the objects in different frames refer
to the same instance, which is used to provide indirect
references of objects during question generation. Unlike
other manually annotated relationships, this relationship is
automatically obtained from the annotated attributes, which
will be described below. The relationship occurrences
follow a long-tail distribution and we illustrate the top most
frequent classes in Figure 2b.

Attributes. To distinguish the fine-grained discrepancies
between two objects, especially when they share the same
object label, we need attribute annotations. Different from
the single-label object taxonomy, the attribute taxonomy
has a multi-label nature in that each object has multiple
attributes. Moreover, the attributes for different objects are
different. To address the challenges above, we handcraft a
hierarchical attribute taxonomy by taking the characteris-
tics of our annotated objects into consideration. As shown
in Figure 2c, our attribute taxonomy includes three levels.
At the top level, we categorize all the object classes into
the human and non-human groups. For each group at the
middle level, we design a set of representative attribute
types (e.g., “hair style” and “skin color for the human

4As the viewpoints of our videos are varied, we exclude two spatial
relationships (“in front of” and “behind”’) in AGQA to avoid ambiguity.



group, “shape” and “material” for the non-human group).
A few attribute types like “location” and “status” are shared
across the two groups. At the bottom level, we provide a set
of attribute labels for each attribute type (e.g., “long hair”
and “short hair” for the hair length attribute type). For
each object, annotators are asked to label the bottom-level
attributes thoroughly. Due to space limitations, we only
show the numbers of attributes at the bottom level in the
figure. We have annotated 1M attributes over 118K objects,
with an average number of 8.6 attributes per object.

As a by-product, the annotated attributes can facili-
tate the annotation process of the “identical” relationship.
Specifically, if two objects in different frames have the
same object label, we calculate their overlapping ratio of
the annotated attributes. The pairs that surpass a confidence
threshold are manually checked to ensure correctness.

To the best of our knowledge, our benchmark is the
first attempt to provide large-scale and hierarchical attribute
annotations for grounded objects in real-world videos.

Actions. In contrast to the objects, attributes, and relation-
ships above, the action segments over specific time intervals
of the video often contain much richer semantics. Using a
simple label may lose the essential semantics of the action.
Therefore, we use a natural language caption to describe
each action segment in detail, which has been provided
in ANet-Captions [19]. However, some long captions are
syntactically complex and are hard to be used for question
generation. To this end, we set the maximum length of
a caption to 10 and filter out those captions exceeding
this threshold. This results in 16K temporally-grounded
captions with an average length of 8.1 words.

3.3. Compositional QA Generation

On top of the annotated spatio-temporal scene graphs,
we aim to generate massive questions for diverse reasoning
abilities. As shown in Table 2, we design a set of 21
question types to cover diverse reasoning skills in varying
degrees of complexities. Each question type is catego-
rized into one of the five structures (query, verify, choose,
compare, and logic), which refers to the intention of the
question. To fulfill the functionality of different question
types, we handcraft at least one template for each question
type, resulting in 119 grammatical and logical question tem-
plates. Similar to AGQA, we design a functional program
for each template that traverses and composes the elements
in the scene graphs, and fills them into proper template slots
to produce compositional QA pairs automatically.

Compared to the question types in AGQA, our major
improvements lie in that we introduce 6 extra types with
respect to attributes (i.e., the types starting with ‘attr’
in Table 2). The annotated rich attributes enable us to
design up to 101 question templates (e.g., “what color
is ..”, “what is the shape of ...”), resulting in 612.6M

type structure  #templ. #unbal. #bal.
attrRelWhat' query 30 169.5M  2.63M
attrWhat' query 15 704M  1.43M
re]lWhat query 1 33.1M 1.01M
objRelWhere query 2 25M  0.55M
objRelWhat query 2 7.1M  0.56M
objWhere query 1 29M  043M
objWhat query 1 0.5M  0.14M
objExist verify 1 51.7M  1.00M
objRelExist verify 1 98.3M  0.94M
actExist verify 1 04M 0.08M
objRelWhatChoose choose 2 347.0M 0.57M
objWhatChoose choose 1 180.5M  0.55M
attrRelWhatChoose' choose 36 149.5M  0.42M
attrWhatChoose choose 18 85.IM  0.40M
attrCompare compare 1 138.0M 2.02M
attrSame compare 1 0.09M 0.01M
actTime compare 1 0.01IM 0.01M
actLonger Verify compare 1 0.01M 0.01M
actShorter Verify compare 1 0.01IM 0.01M
andObjRelExist logic 1 202M  0.35M
xorObjRelExist logic 1 202M  0.35M
overall - 119 14B 13.4M

Table 2. Statistics of the generated questions. Each question
type belongs to a certain structure and contains at least one
template. More details are provided in the supplementary material.
T: new question types that are not supported in AGQA.

unbalanced and 6.9M balanced QA pairs. Furthermore,
the attribute annotations are also used to describe ob-
jects in almost all the rest templates (e.g., “what is the
relationship between the [attribute] [object] and
[attribute] [object]?”). The introduction of at-
tributes not only provides a more precise description of
the referred object but also increases the reasoning steps of
the generated questions. It is worth noting that although
we can describe an object in great detail (e.g., “a walking
young woman wearing green t-shirt and sunglasses”), this
would lead to a risk of combinational explosion and affect
the readability of the questions. Therefore, we set the
maximum number of attributes used in each question to two.

Using the above question templates, we obtain 1.4 billion
QA pairs. These QA pairs are unbalanced and have strong
language biases that models can exploit. We conduct
composite balancing strategies on both the questions and
answers. Following the question structure distribution in
balanced AGQA, our question balancing strategy adjusts
the percentages of the query/verify/choose/compare/logic
questions to 50%/15%/15%/15%/5%, as shown in Figure
10. While maintaining these percentages above, we conduct
answer balancing within each question template to make
sure that its answers are uniformly distributed (unbiased).
In Figure 3b, we visualize the global answer distributions
of the unbalanced and balanced sets in terms of the top-50
most frequent open answers (i.e., the answers to the guery
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Figure 3. Distributions before and after balancing. (a)
The question balancing is performed on question structures to
adjust the percentages of the query/verify/choose/compare/logic
questions to 50%/15%/15%/15%/5%. (b) The answer balancing is
conducted on each question template to make its answers follow
a uniform distribution. Its effect to the global answer distribution
can be observed from the change in the distributions of the top 50
most frequent open answers.

structure questions). The obtained results demonstrate the
effectiveness of our balancing strategies.

Our final ANetQA benchmark contains 13.4M balanced
QA pairs, which consists of 10.4M train, 1.5M val,
and 1.5M test QA pairs’. We compare the question
and answer length distributions of ANetQA to existing
VideoQA benchmarks. The results in Figure 4a show that
the ANetQA questions have a wider range of lengths and
are longer on average than those of all the counterparts,
showing the diversity and fine granularity of our questions,
respectively. Moreover, according to these challenging
questions, our answer vocabulary size is much larger than
that of the counterparts (see Figure 4b), which further
increases the difficulty of our benchmark.

4. Experiments

This section contains comprehensive experiments and
intensive analyses of ANetQA. We conduct evaluations on
several state-of-the-art models and diagnose their capabil-
ities to deal with different question structures, semantic
classes, reasoning skills, and answer types, respectively.
All the models are trained on the train split, validated
on the val split, and evaluated on the test split. Fur-
thermore, we also conduct a human evaluation to see the
performance gap between the top-performing models and
humans. Finally, we investigate the effects of different
auxiliary annotations to model performance.

4.1. Experimental Setup

Compared models. We choose three state-of-the-art mod-
els for comparison, namely HCRN [20], ClipBERT [21],

SFor more efficient evaluation, we additionally provide a test-dev
split by random sampling 0.3M QA pairs from the test split. Note that
both the test and test-dev splits are conducted on the same video set
and the evaluation for both splits are performed online.
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Figure 4. Question lengths and answer vocabulary sizes. We
compare the (a) question lengths and (b) answer vocabulary sizes
of our ANetQA and some typical VideoQA benchmarks like
MSVD-QA [40], MSRVTT-QA [40], ActivityNet-QA [45], and
AGQA [9]. Compared to the counterparts, our questions are longer
and answer vocabulary size is larger, showing the fine granularity,
diversity, and difficulty of our benchmark.

and All-in-one [37]. HCRN introduces a reusable condi-
tional relation network (CRN) module and stacks multiple
CRNs in depth to integrate the motion, question, and
appearance features at different levels [20]. We use its
default settings to extract 128 appearance features and 8
motion features, respectively.

Different from HCRN, ClipBERT and All-in-one are two
Transformer-based models that incorporate vision-language
pretraining (VLP) on a large-scale corpus. ClipBERT is
pretrained on massive image-text pairs, which enables end-
to-end learning by employing a sparse sampling mech-
anism. We adopt its official pretrained model weights
as initial and then finetune the model on ANetQA using
the (4 x 2) sampling strategy, which means 4 segments
are sampled (with 2 sampled frames in each segment) at
each training step. During model testing, we sample 16
frames uniformly for each video, as recommended in [21].
All-in-one is a current top-performing VideoQA model,
which is the first attempt to perform end-to-end video-
language pretraining using raw video and textual signals as
inputs [37]. It is pretrained directly on a large-scale video-
text corpus. We finetune its base model All-in-one-B on
ANetQA by randomly sampling 3 frames for each video
at each training step. At inference time, we also extract
3 frames uniformly and feed them to the learned model to
predict the answer.

Human evaluation. We conduct an intensive human
evaluation to quantify the errors and ambiguities induced
during the construction of ANetQA. As the labeling costs
is unaffordable to provide a thorough evaluation over all
the QA pairs, we follow [9, | 1] to randomly sample 4,000
QA pairs from the test set with the following two rules:
(i) each video contains at least one sample, and (ii) each
question type contains at least 50 samples. Each sample
is assigned to five random annotators from a diverse group



taxnomy type prior HCRN [20]  ClipBERT [21]  All-in-one [37] human
w/ w/o w/ w/o w/ w/o

query 1.04 2130 19.24 2393 1687 2510 1840 | 9292

compare 49.70 55.66 50.01 55.62 50.06 5441 50.06 | 81.34

question structures  choose 29.13 63.97 6737 69.51 66.17 7039 67.00 | 71.84
verify 50.00 68.56 50.02 72.57 50.00 7235 50.00 | 86.69

logic 50.00 7870 76.82 80.06 7433 80.58 74.20 | 86.06

object 17.74 5599 4955 58.69 4822 59.81 4899 | 84.26

question semantics relationship 22.61 39.65 33.28 40.19 30.89 40.78 32.64 | 90.79
attribute 14.60 35.80 34.05 39.71 32.81 40.14 3339 | 82.17

action 47.83 7250 5029 7496 5099 7439 51.14 | 82.33

object-relationship 10.48 35.17 3238 37.66 30.03 3842 31.32 | 86.47

object-attribute 17.44 4095 37.02 4372 3545 4433 3639 | 84.75

reasoning skills duration-comparison 50.00 4990 49.38 4998 50.10 51.65 5434 | 76.73
exist 50.00 71.20 5697 7451 5631 7449 56.28 | 86.52

sequencing 10.21 31.70 3136 34.19 2876 3527 30.10 | 87.50

superlative 30.32 4746 39.78 4955 38.83 50.14 39.60 | 90.14

answer types binary 49.96 64.36 5391 66.19 5355 65.65 53.54 | 83.72
open 6.49 2995 29.00 33.17 2686 3433 2825 | 84.82

overall \ 17.66 41.15 37.11 4392 3555 44.53 3648 | 84.48

Table 3. A comprehensive comparison of three VideoQA methods on ANetQA. All results are evaluated on the test set. Apart from
the overall accuracy, we follow [9] to report the per-type accuracies under different taxonomies. For each method, the variant trained with
vision clues (w/) outperforms its blind counterpart without vision clues (w/0), implying that the language biases are well controlled.

to answer the question and the majority vote over their
predictions is regarded as the final human answer.

The human performance reach at 84.48% on the sampled
test set. We take a closer look into these 15.52% incon-
sistent human predictions and find that they are constituted
by 0.75% annotation errors, 1.95% answer ambiguities, and
12.82% human errors. These results imply that both of our
scene graphs and generated QA pairs are of high quality.
Furthermore, our benchmark contains difficult questions
that even educated humans can not answer correctly. More
analyses are provided in the supplementary material.

4.2. Main Results

We provide an intensive comparison of the state-of-the-
art methods on ANetQA In Table 3. Besides the overall ac-
curacy, we follow [9] to report the per-type accuracies under
different taxonomies, i.e., question structures, question se-
mantics, reasoning skills, and answer types. More detailed
descriptions of the taxonomies and corresponding question
templates are provided in the supplementary material. For
each type, we provide a simple baseline, type prior, that
uses the most frequent answer as the prediction.

From the results, we have the general observations as
follows: (i) The All-in-one model pretrained on large video-
text corpus achieves the overall best performance while
using the least number of sampled frames. This suggests
good video representations play a central role in VideoQA
performance; (ii) the best performing model is still far from

the human level, showing the difficulty of our benchmark
and sufficient room for further improvements; and (iii)
for each method, the variant trained with vision clues
(w/) steadily outperforms its blind counterpart without any
vision clues (w/0), indicating that the language biases are
well controlled by our balancing strategies.

The observations above are quite different from those on
AGQA, where on their benchmark all models are on par
with their corresponding blind counterparts. This can be
explained that ANetQA has more unbalanced QA samples
than AGQA, thus providing more room to perform thorough
balancing strategies. Moreover, given the same model
HCRN, its accuracy (especially the open answer type) on
ANetQA is much lower than that on AGQA, verifying the
fine-grained nature of our scene graphs elements.

Question structures and answer types. The guery type
questions are the most challenging ones as they have open
answers. Among the rest four types which have limited
answer choices’, the compare type questions report the
lowest accuracy as they require more reasoning steps.

Question semantics. The attribute-oriented questions are
the most difficult ones, as they require a more fine-grained
understanding of video contents than the rest questions.

Reasoning skills. Similar to AGQA, each of our question is

5The compare, verify, and logic type questions have binary answers.
The choose type question conducts a comparison between [A] and [B],
and the answer refers to one of the four choices: [A], [B], both, or none.



associated with one or more reasoning abilities necessary to
answer the question. The questions requiring the sequenc-
ing skills deliver the lowest accuracy as they require the
temporal grounding ability. In contrast to the coarse action
labels used in AGQA, our actions are depicted in natural
language, which are more difficult to understand.

4.3. Effects of Auxiliary Annotations

All the comparative studies above only use the basic
annotations (i.e., the QA pairs) for model training. As all
the QA pairs are automatically generated from scene graph
annotations, it is natural to investigate whether and how
auxiliary annotations facilitate model performance. We in-
troduce two auxiliary annotations scene graph statistics and
oracle frames to see their impacts on model performance,
respectively. The results are provided in Table 4.

Scene graph statistics. The annotated scene graph of a
given video contains all the necessary information to answer
any questions on the video. Therefore, it is meaningful
to investigate the impact of this information on model
performance. The fine-grained characteristics of our scene
graphs make it nontrivial to encode each scene graph into
a feature bank like [13]. Alternatively, we introduce a
simple statistical-based strategy to approximately represent
the scene graph to a given video by extracting the top-K
high-frequency (HF) words from all the questions on this
video. The extracted HF words can be seamlessly used
in any off-the-shelf model by concatenating them with the
question words. We adopt HCRN [20] as the reference
model and extract the top-40 HF words from different
vocabularies (i.e., objects, relationships, attributes, and their
combinations). These HF words are concatenated with the
question words in both the training and testing phases.

From the results in the upper part of Table 4, we can
see that adding HF objects or relationships solely do not
bring further improvement over the reference model. This
can be explained by the fact that relationships are strongly
coupled with objects, using either of them solely can not
provide sufficient scene graph information for the model
to understand. Moreover, the model with HF attributes
results in a distinct performance gain compared to the
counterpart with HF objects. This observation verifies
that our questions requires the abilities of fine-grained
understanding and reasoning. Finally, exploiting all three
types of HF information results in the best performance due
to their complementary nature.

Oracle frames. As each question in ANetQA is generated
from the scene graph elements in specific video frames, we
denote these frames as the oracle frames for the question
and investigate whether they can facilitate model perfor-
mance. For each question, we inject the corresponding
oracle frames into its sampled frames to ensure the neces-

binary open overall
(a) scene graph statistics
HRCN [20] (reference) 64.36 2995 41.15
+ high-freq. objects (O) 65.81 29.29 41.18
+ high-freq. relationships (R) | 63.84 29.21 40.48
+ high-freq. attributes (A) 67.67 3221 435
+ high-freq. O+R+A 68.15 34.50 4545

(b) oracle frames
All-in-one [37] (reference) 65.65 3433 4453

+ training phase injection 66.54 35.18 45.40
+ testing phase injection 66.04 34.83 4499
+ both phases injections 66.88 36.02 46.07

Table 4. Effects of different auxiliary annotations. (a) The scene
graph statistics of a given video are represented as a set of high-
frequency words extracted from all the questions of that video. (b)
The oracle frames contain necessary visual information to answer
a given question, which are injected in different phases.

sary visual information to answer this question is provided.
We use All-in-one [37] as the reference model since it
uses few sampled frames and thus has a high probability
of not covering the oracle frames. We have experimented
with the oracle frames in the training, testing, and both
phases, respectively. The results in the lower part of
Table 4 show that injecting oracle frames in the training
and testing phases bring 0.87 and 0.46 point improvements
over the reference model in terms of overall accuracy,
respectively. Moreover, when oracle frames are applied to
both the training and testing phases, the model performance
is further improved due to their synergistic effects.

5. Conclusion and Future Work

In this paper, we present ANetQA, a challenging
VideoQA  benchmark that examines fine-grained
compositional reasoning over untrimmed real-world
videos.  Benefiting from the fine-grained video scene
graphs annotated by humans, ANetQA attains 13.4M
balanced QA pairs, which is an order of magnitude larger
than all previous VideoQA benchmarks. We provide
comprehensive experiments and intensive analyses for
state-of-the-art VideoQA methods, and the best-performing
model showing that a fine-grained video understanding
plays a vital role in our benchmark. Moreover, there
remains a significant gap between the best model and
humans, indicating the challenge of our benchmark while
providing room for future improvements.

We will persistently improve our benchmark. e.g., fur-
ther reducing the language biases and answer ambiguities,
and introducing more question types with diverse reasoning
skills like scene-text understanding and causality inference.
We hope that our ANetQA will serve as a cornerstone to
facilitate future research in the video-language learning.
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A. Scene Graph Annotations
A.1. Annotation Pipeline

As mentioned in the main paper, ANetQA is built
upon the annotations of ANet-Entities [52], which grounds
objects in representative frames with noun phrases (NPs).
Nouns and adjectives are extracted from these NPs using the
Stanford Parser [30] to form our initial object and attribute
vocabularies, respectively. Meanwhile, we handcraft the
initial relationship vocabulary on the activity labels of the
original ActivityNet [4]. These initial vocabularies are
intermittently updated during the annotation process.

We provide a web-based interface shown in Figure 5 for
crowdsourcing. In total, more than 50 human annotators
have participated in the annotation process for over 4
months. Each annotator is asked to watch the video
first and then select attributes, and relationships from the
corresponding vocabularies. When no suitable option is
available, they are allowed to add a new option. These new
options will be manually checked and the valid ones will be
added to the vocabularies intermittently. Meanwhile, the
mislabeled objects and inaccurate object bounding boxes
are fixed and omitted key objects are complemented during
the annotation process. To control the annotation costs, we
set the maximum number of augmented objects to three.

A.2. Scene Graph Taxonomies

Our completed scene graph annotations include tax-
onomies of 2,072 object classes, 86 relationship classes, and
618 attributes classes. The detail taxonomies for objects,
relationships, and attributes are shown in Table 5, Table 6,
and Figure 6, respectively. As our actions are depicted in
natural language, we illustrate a word cloud for the most
frequent verbs in Figure 7.

A.3. Case Study

In Figure 8, we provide comparative examples of the
annotated scene graphs from ANetQA and AGQA, respec-
tively. From the visualized results we can see that: (i)
our scene graph is more informative than that in AGQA
as our untrimmed video contains richer semantics with
multiple switched scenarios; (ii) our scene graph is much
more fine-grained than that in AGQA due to the objects,

relationships, actions, especially the newly introduced at-
tributes; (iii) our scene graph contains varied relationships
between human-object, human-human, and object-object
pairs, while the scene graph of AGQA only contains human-
object relationships; and (iv) our scene graph uses the
“identical” relationship to annotate the same instance across
different frames, which effectively avoids the generation of
ambitious questions. In contrast, the scene graph of AGQA
is centered on one person, which cannot always be satisfied
in real-world videos. As shown at the bottom, the annotated
“person’ refers to the man in the first four frames and shifts
to the boy in the last frame.

B. Compositional QA Generation
B.1. Taxonomies, Templates, and Programs

We show the question taxonomies and templates for our
benchmark in Table 7. Similar to AGQA, each question
type is categorized into different in terms of different
perspectives (i.e., structure, semantics, reasoning skill, and
answer type). Each question type corresponds to at least one
question template with a maximum number of reasoning
steps. Compared with AGQA, ANetQA has more diverse
question templates (119 vs. 28) , showing the diversity, fine
granularity, and difficulty of our benchmark. The functional
program for each template is shown in Table 8.

B.2. Question Distributions

ANetQA contains 13.4M balanced QA pairs in total.
We display the distributions of these QA pairs in terms of
different taxonomies in Figure 9. The results show that:
(i) the question structure distribution meets the expectation
of our balancing strategy; (ii) the attribute-related ques-
tions account for a large percentage in terms of question
semantics and reasoning skills, respectively; and (iii) the
proportion of the open type answers is roughly twice that
of the binary type answers. In Figure 10, we illustrate
the question distribution by the first three words. The
results show that our questions are both semantically and
linguistically diverse.

B.3. Example QA pairs

We provide some example QA pairs from the train
and val splits in Figure 11. Each example contains five QA
pairs on the same video with different question structures
(i.e., query, verify, choose, compare, and logic). The
examples verify that our questions are diverse, fine-grained,
and challenging at the same time.



C. Experiments
C.1. Human Evaluation

As reported in the main paper, human performance tops
out at 84.48% overall accuracy by taking the majority vot-
ing over five answers per question. In Figure 12, we provide
more detailed analyses of the human evaluation statistics
to better understand the behavior of individual annotators.
The results in Figure 12a indicate that the deviations among
different annotators do exist, and majority voting helps
eliminate individual errors. The results in Figure 12b show
that different question types lead to diverse accuracies and
deviations. The average accuracy per individual annotator
is 81.5%.

C.2. Per-Split & Per-Type Accuracies

In Table 9, we provide comparisons of the same model
on the val and test split, respectively. The results show
that: (i) the results on the test split is slightly lower that
the val split; and (ii) there is no much difference between
the performance on the test and test—dev splits.

In Table 10, we report the per-type accuracies of the
three models. From the results we can see that the best-
performing model All-in-one [37] consistently outperforms
the other two models in majority of the question types.



video id segment id frame id object id

133 = o f2 3 K8 - 40628

video all bboxes current bbox

> 000/305

action duration: 118.87-182.95
current frame: 2:53

action captioning: He continues to roam around with the dog performing tricks with the dog and frisbee.

basic information

object class: frisbee bbox: [415,227,32,33] is crowds: no
O class error o bbox error O corwds error

save basic information

attributes

attribute class

person
person class hair hair color main hair color headwear color main headwear color  accessory
boy - none - Chooseanoption - none - Chooseanoption - none - Choose an option
muti clothes upper garment type upper garment color main upper color lower garment type lower garment color main lower color
none - none - Chooseanoption - none - none - Chooseanoption - none
skin color status location occupation nationality
none - Chooseanoption - none - none - none

save attribute

relationships
subject object
40628 - 40628

relationship number

2 - .
subjectl objectl relationship typel relationship1
40630 - 40628 - action - biting

preview : dog is biting frisbee
subject2 object2 relationship type2 relationship2

40629 - 40630 - action - playing with

preview : person is playing with dog

save relationship

Figure 5. A web-based interface for video scene graph annotation by crowdsourcing. Annotators are asked to watch the video first and
then select attributes and relationships from corresponding vocabularies. When no suitable item is available, they can add new items freely.
These new items will be manually checked and the valid ones will be appended to the vocabularies intermittently.



hand car dog room water hair field table

horse bike floor ground river boat rope board

bar wall shoe hill arm bowl shirt face

tree gym pool stage drum barbell cup skateboard

track clothes mat leg sSnow paper sink stick

street brush tire tool court beach ingredient head

chair glass grass knife machine roof foot cat

wood plate pole bottle road house ocean food

beam mower bull hoop frisbee yard guitar box

window wave kitchen towel sea pot football ski

slope tube bucket nail bowling ball  fence leaf dart

pumpkin eye canoe pasta building tile drink rock

lawn camel surfboard  lake slide rubik’s cube ice pinata

pan contact len  kayak counter hat violin bow pit

raft arena fish swing cake potato cigarette volleyball

park arrow saxophone baton motorbike croquet racket cookie

dodgeball carpet bread sandwich short sleeves  vacuum hockey hammer

bag shovel area elliptical machine javelin curling kite shot

mirror tennis piano lemon mouth door sidewalk  accordion

line icecream shop shuffleboard table tennis  lane stair body

microphone finger paint net harmonica helmet liquid water polo

discus product egg bathroom platform fire gun studio

suit alcohol back paddle sand glove mop hole

sofa stilt stand pin beer flute dish rag

smoke scissors tattoo sky tomato razor vest basketball

Table 5. A list of top-200 object classes in terms of occurrences in our benchmark. Sorted by row first.
spatial near in on part of
temporal identical
pulling holding touching fighting with  wearing hitting
playing standing on playing with  sweeping wiping sitting on
spitting stirring eating jumping into  taking picture of  driving
riding leading throwing climbing leaning on covering
lying on kneelingon  walkingon  raising biting hugging
cutting running on jumping on  squating on trimming scraping
carrying pushing brushing pointing at dancing with chasing
contact o . C . . .

surfing on polishing washing drinking from stamping fishing
speaking with  pouring drinking crossing dragging repairing
smoking sliding on bowing to drawing on hanging on drawn on
making flying from drawing feeding poured into flowing from
kissing twisting writing on burning lighting pouring into
spraying commanding blowing heating pointing painting on
painting painted on wirting on

Table 6. A list of all the 86 relationships in our benchmark, including 4 spatial, 1 temporal, and 81 contact relationships. Sorted by row

first in terms of occurrences.
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black, brown, yellow,
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purple, blue, silver,
pink, ...

red, yellow, grey,
green, brown, pink,
orange, purple, ...
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t-shirt, shirt, coat,
vest, naked, dress,

)

hair length

hair color
(14)

headwear color
(15)

H %
1

age & sex
(10)

occupation
(98)

man, woman, boy,

girl, adult, old man,

person, old woman,
child, old person
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blue, grey, orange,
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'semicircular, conical,...
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quadrantal, triangular,

bracelet, glove, ring,
glasses, watch, bag,

metal, wood, plastic,
rubber, cloth, glass,

sportsman, audience,

contestant, performer,
dancer, ballplayer,

cook, referee, worker,

instructor, customer, ...

grass, snow, sand,

saddle, paint, plant,

leaf, cloth, blanket,
tile, foam, ...

INEICHE]

sunglasses, ceramic, leather, (15)
necklace, earring, ear stone, nylon, ice
black, white, blue, stud, tattoo, ... , »1ce, ..

covered by
(55)

1

upper clothes
type (38)

life jacket, camisole,
hoodie, gymnastics
suit, ...
| —

N (
american, chinese,
japanese, korean,

russian,dutch,english,
indian, canadian,
german, spaniard, ...

water, gas, liquid,
alcohol, drink,
sponge, food, sand,
detergent, ice,
tobacco, ...

nationality
(44)

1 i

black, white, blue,

red, grey, green,
yellow, pink, brown,

purple, orange, ...

upper clothes
color (15)

t

. location (2)
trousers, shorts, skirt,
underpants, swimming
trunks, fundoshi, silk,
dungarees, apron,
stockings, fishtail, ...

lower clothes

type (12) indoors, outdoors

black, blue, white, . )

grey, red, brown, lower clothes -
green, yellow, pink, color (15) standing, sitting, exercising, speaking, walking, running,
purple, orange, ... racing, working, smiling, bowing, performing, ...

Figure 6. A hierarchy of attributes in our benchmark. The hierarchy consists of three levels. On the top level, objects are classified into the
human and non-human groups. On the middle level, up to 20 representative attribute types are designed for each top groups (e.g., “hair
style” and “skin color* for the “human” group, “shape” and “material” for the “non-human” group). A few attributes like “location” and
“status” are shared across the two groups. On the bottom level, a total number of 618 attribute labels are provided for all the middle-level
attribute types (e.g., “long hair” and “short hair” for the “hair length” attribute type). For each object, annotators are asked to label the
bottom-level attributes as thoroughly as possible. Due to space limitations, we show a maximum number of 10 bottom-level attributes for
each mid-level attribute type.
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Figure 7. A word cloud for frequent verbs in action descriptions. We merge the words with the same etymon for better visualization.



ANetQA

id
holding
tennis person
yellow  plack
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Figure 8. A comparison of the example scene graphs of our ANetQA and AGQA. The visualized results suggest: (i) our scene graph is
more informative than that in AGQA as our untrimmed video contains richer semantics with multiple switched scenarios; (ii) our scene
graph is much more fine-grained than that in AGQA due to the objects, relationships, actions, especially the newly introduced attributes;
(iii) our scene graph contains varied relationships between human-object, human-human, and object-object pairs, while the scene graph of
AGQA only contains human-object relationships; and (iv) our scene graph uses the “identical” relationship to annotate the same instance
across different frames, which effectively avoids the generation of ambitious questions. In contrast, the scene graph of AGQA is centered
on one person, which cannot always be satisfied in real-world videos. Specifically, the annotated “person” refers to the man in the first four
frames and shifts to the boy in the last frame.
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template

functional program

what [attr-type] is the [attr]] [obj1] [rel] [attr2] [obj2]?

what [attr-type] is the [attr2] [obj2] that [attr]] [obj1]
is [rel]?

select:[obj2]+filter:|attr2] srelate:[objl],[rel]
—filter:|attrl | =>query:([attr-type])

what [attr-type] is the [attr] [obj]?

select:[obj]—»filter:[attr] >query:([attr-type])

what is the relationship between [attr1] [obj1]
and [attr2] [obj2]?

select:[objl]—=filter:[attrl]+select: [0bj2]
—filter:[attr2]—query:(relationship)

where is the [attr]] [obj1] [rel] [attr2] [obj2]?

where is the [attr]] [obj1] that [attr2] [obj2] is [rel]?

select:[obj2]—»filter:[attr2] »relate:[objl],[rel]
—filter:[attrl | >query:(spatial-relationship)

what is the [attr1] object [rel] [attr2] [obj2]?

what is the [attr]] object that [attr2] [obj2] is [rel]?

select:[obj2]»filter:[attr2] »relate: [rel]
—filter:[attrl]—»query:(object)

where is the [attr] [obj]?

select:[obj]—filter:[attr|—query:(spatial-relationship)

what is [attr] object?

select:.—filter:[attr]>query:(object)

does [attr] [obj] appear?

select:[obj]l—>filter:[attr]—»exist

is [attr1] [obj1] [rel] [attr2] [obj2]?

select:[objl]—=filter:[attrl|>relate:[obj2],[rel]
—filter:|attr2]—exist

is someone |act]?

select:|act|>exist

which is [attr]] object [rel] [attr2] [obj2],
[obj-A] or [obj-B]?

which is [attr1] object that [attr2] [obj2] is [rel],
[obj-A] or [obj-B]?

select:[obj2]+filter:|attr2] wrelate:_[rel]
—filter:[attrl]—choose:[obj-A] | [obj-B]

which is [attr] object, [0obj-A] or [0bj-B]?

select:.—filter:[attr]>choose:[obj-A] | [0bj-B]

which [attr-type] is the [attr1] [objl] [rel] [attr2] [obj2],
[attr-A] or [attr-B]?

which [attr-type] is the [attr]] [obj1] that [attr2] [obj2]
is [rel], [attr-A] or [attr-B]?

select:[obj2]— filter:|attr2]—srelate:[objl],[rel]
—filterlattrl]|—choose:[attr-A] | [attr-B]

which [attr-type] is the [attr] [obj], [attr-A] or [attr-B]?

select:[obj]—=filter:[attr]->choose:[attr-A] | [attr-B]

is the [attr-type] of the [attr1] [obj1] the same as that
of the [attr2] [obj2]?

select:[objl]—filter:[attrl|—select:[obj2]
—filterattr2]—compare:([attr-type])

what is the same attributes of [attr]] [obj1] and
[attr2] [obj2]?

select:[objl]—filter:[attrl|—>select:[obj2]
—filterattr2]—compare:{attribute)

is someone |act1 | before or after [act2]?

is the duration of someone [act]] for longer
than the duration of [act2]?

is the duration of someone [act!] for shorter
than the duration of [act2]?

select:|lactl|]—>localize:|actl|—select:|act2]
—localize:[act2]—compare:(time)

is [attr1] [obj1] [rel] [attr2] [obj2] and [attr3] [obj3]?

select:[objl]—=filter:[attrl|] >relate:[obj2],[rel]
—filter:|atr2]+and—relate:[obj3],[rel]
—filter:|attr3]—exist

is [attr]] [obj1] [rel] [attr2] [obj2] but not [attr3] [obj3]?

select:[objl]—filter:[attrl|]»relate:[obj2],[rel]
—filter:|atr2]+xor—relate:[obj3],[rel]
—filter:|attr3]—exist

Table 8. Functional programs and their corresponding question templates. Each program consists of a sequence of predefined primary
functions. The relate function can support the association of either subject or object. The symbol ‘.’ means traversing all objects to

meet the following constraint.
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Figure 9. Question distributions in terms of different taxonomies on the balanced version. (a) The question structure distribution meets
the expectation of our balancing strategy; (b) and (c) The attribute-related questions account for a large percentage in terms of question

semantics and reasoning skills, respectively. (d) The proportion of the open type answers is roughly twice that of the binary type answers.
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Figure 10. Question distribution by their first three words on the balanced benchmark. The innermost ring refers to the 21 question
types. The ordering of the words starts towards the center and radiates outwards. The arc length is proportional to the number of questions

from the same color scheme (blue, orange, green, yellow, and purple).

containing the word. For the questions with the same structure (query, compare, verify, choose, and logic), we use the background color
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Q1: At the end of the video, what shape is the
silver harmonica that the person wearing the
t-shirt is playing?

Q2: Is someone playing the harmonica

at the end of the video?

Q3: Which color is the upper garment of the

person who is performing, yellow or silver?
Q4: Is duration of someone playing the harmonica
for longer than the duration of 2 man plays
guitar and harmonica at the same time?

Q5: Is the person wearing the yellow upper
garment playing the yellow object and the

white flute at the beginning of the video?

A: cuboid

A: yes

A: yellow

A: yes

A: no

Q1: Where is the target before someone is doing
archery?

Q2: Is the long-haired person holding the black

arrow?

Q3: Before someone is doing archery, Which is
the metal object that the person with curly

hair is holding, the arrow or the scythe?

Q4: Before someone is doing archery, what is

the same attribute of bow and black arrow?

Q5: Is the person in the vest holding the bow and

the metal arrow?

A: on the field

A: yes

A: arrow

A: material

A: yes

Q1: After the lady brushes her hair ,what is the
relationship between the hairdryer and the
person with long hair?

Q2: Does the straight-haired person with the

watch appear in the video?

Q3: Which color is the upper garment of the

person who is standing, black or grey?

Q4: Is someone blow-drying hair before or after a

lady stands in a bathroom talking?

: After the lady brushes her hair, is the person
with straight hair holding the silver comb but
not the black brace?

A: the person
is holding
the hairdryer

A: no

A: both false

A: after

A: yes

Q1: What color is the upper garment of the
brown-haired person in the t-shirt after
someone is starting a campfire?

Q2: Does the curly-haired person wearing the

red upper garment appear in the video?

Q3: Which color is the fire, brown or gold?

Q4: Is the duration of someone starting a
campfire for shorter than the duration of 2

camper describes how to make a fire?

: Is the person with brown hair holding the
knife and the silver object?

A:white

A: no

A: gold

A: yes

A: yes

Q1: What is the lighting green object before
someone is washing hands?

Q2: Is the person with the bracelet holding the
phone indoors?

Q3: Which is the occupation of the person with
the glasses and the necktie touching the leg,
the doctor or the nail artist?

Q4: Is the hair color of the person who is sitting
the same as that of the doctor?

Q5: Is the person holding the rectangular object
and the stethoscope?

A: sparkle

A: no

A: doctor

A: no

A: yes

Q1: What is the orange object filled with powder?

Q2: Is the person in the white upper garment

holding the white toothbrush?

Q3: Which is the pink object that the person

in the t-shirt is holding, the rag or the tarp?

Is the material of the sink the same as that of
the faucet indoors?

Q4:

Q5: Is the standing person holding the brown

paint but not the pink rag?

A:baking soda

A: yes

A: sink

A: yes

A: no

Figure 11. Example QA pairs from the train and val splits. Each example contains five QA pairs on the same video with different

question structures, i.e., query, verify, choose, compare, and logic.
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Figure 12. Given the predictions from five individual annotators,
we illustrate (a) the distribution of the majority votes and (b)
average accuracies with standard deviations in terms of different
question structures and the overall type.

‘ HCRN  ClipBERT  All-in-one

val 41.69 44.34 45.44
test 41.15 43.92 44.53
test-dev | 41.18 44.00 44.57

Table 9. Comparative results of the three models which are trained
on the train split and then evaluated on the val, test, and
test-dev splits of ANetQA, respectively.

type HCRN ClipBERT All-in-one
attrRelWhat 24.06 29.03 29.42
attrWhat 21.95 26.58 28.75
relWhat 16.35 14.59 16.94
objRelWhere 15.78 16.81 16.21
objRelWhat 19.60 19.36 22.23
objWhere 16.34 14.25 15.39
objWhat 39.10 39.39 40.11
objExist 68.54 72.76 73.20
objRelExist 68.00 71.85 70.92
actExist 75.34 78.04 77.85
objRelWhatChoose | 67.09 67.96 69.13
objWhatChoose 71.51 77.63 77.93
attrRelWhatChoose | 56.14 64.60 65.74
attrWhatChoose 57.92 65.90 66.89
attrCompare 55.66 55.60 54.42
attrSame 56.25 82.14 58.93
actTime 67.24 70.44 56.16
actLonger Verify 50.00 50.00 52.48
actShorter Verify 49.79 49.79 50.83
andObjRelExist 70.89 70.38 73.97
xorObjRelExist 86.50 89.74 87.18

Table 10. Per-type accuracy of the three models on the test split.
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