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Google

Metaphor: Killing trees is as harmful

as killing wildlife.

Classification

Is this a visual metaphor?
- YES
- NO

Localization
Detect image regions that invoke the

concepts:

- Killing trees

- killing wildlife

gEneration
Prompt: “An advertisement where

killing trees is as harmful as killing

wildlife.”

Stable Diffusion Imagen

Understanding
Retrieval

Pick the right one:

(a) Killing the forest is as deadly as

killing the animals too.

(b) Birds is as much a part of our

world as used cans.

Captioning

Sample predictions:

1. Deforestation is as damaging as

killing wildlife.

2. Deforestation is as bad as ending the

death penalty.

Visual Question Answering

Sample Questions:

Q. What is as harmful as killing

wildlife?

Q. What is compared to killing wildlife?

Figure 1. With MetaCLUE, we introduce several interesting tasks related to visual metaphors. We collect metaphor annotations (objects,
abstract concepts, relationships and object boxes) for evaluating existing models on these tasks. Specifically we perform a comprehensive
evaluation of vision and language models on four different tasks (Classification, Localization, Understanding, and gEneration). Com-
prehensive experiments in this work show that state-of-the-art techniques mostly focus on literal interpretation and perform poorly in
understanding and generation of metaphor images.

Abstract
Creativity is an indispensable part of human cognition

and also an inherent part of how we make sense of the
world. Metaphorical abstraction is fundamental in commu-
nicating creative ideas through nuanced relationships be-
tween abstract concepts such as feelings. While computer
vision benchmarks and approaches predominantly focus on
understanding and generating literal interpretations of im-
ages, metaphorical comprehension of images remains rel-
atively unexplored. Towards this goal, we introduce Meta-
CLUE, a set of vision tasks on visual metaphor. We also
collect high-quality and rich metaphor annotations (ab-
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stract objects, concepts, relationships along with their cor-
responding object boxes) as there do not exist any datasets
that facilitate the evaluation of these tasks. We perform
a comprehensive analysis of state-of-the-art models in vi-
sion and language based on our annotations, highlight-
ing strengths and weaknesses of current approaches in vi-
sual metaphor classification, localization, understanding
(retrieval, question answering, captioning) and generation
(text-to-image synthesis) tasks. We hope this work pro-
vides a concrete step towards developing AI systems with
human-like creative capabilities. Project page: https:
//metaclue.github.io
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1. Introduction
“Metaphor is pervasive in everyday life ... Our
ordinary conceptual system, in terms of which we
both think and act, is fundamentally metaphorical
in nature.” — Lakoff & Johnson [25]

Creativity is a process of generating a new perspective
on a problem or a situation. Metaphorical thinking has been
recognized as a key and powerful mechanism of creativ-
ity [24,29,50]. Humans engage metaphors in their creative
thinking process as strategies to link or blend concepts, or
to view a concept from a target domain in terms of another,
apparently dissimilar concept from a source domain [25].
Metaphors also provide a sophisticated tool for nuanced hu-
man communication. Let us take a closer look at the struc-
ture of metaphors – and especially visual metaphors.
Metaphors1 are a cognitive construct in which a concept
is compared to a seemingly unrelated concept via some
shared attribute. Take as an example ‘This car is a chee-
tah’, where ‘This car’ is compared to ‘a cheetah’ in terms
of speed. Metaphors have a simple syntactic structure of
‘A is B’ where A is referred to as the primary concept
and B as the secondary concept. The implied analogy in
a metaphor is of the form: ‘(primary concept) is as (rela-
tionship)2 as (secondary concept)’ and often involves an at-
tribute transfer from the secondary to the primary concept.
Some examples include ‘This phone is as fast as a rocket’,
‘Cigarettes are as harmful as bullets’ etc. The primary and
secondary concepts are usually unrelated at a glance, re-
sulting in an element of surprise and creativity in metaphor-
ical expressions. Despite following such simple structure,
metaphors are quite powerful in conveying creative ideas.
Metaphors are pervasive in all forms of communication,
such as speech, text, visual etc.
Visual Metaphors are images where the primary and sec-
ondary concepts are visually depicted in an image con-
veying the metaphorical message to the viewers. Visual
metaphors are widely used in mass media communications
like advertising and journalism [15, 43, 45]. In this work,
we work with Ad images, as metaphors tend to be prevalent
in ads. There are numerous ways a metaphor can be repre-
sented visually. Following the classification in [15], there
are at least 4 different types of visual metaphors. Fig. 2
shows sample images that belong to these types along with
our annotations of primary, secondary concepts and their
relationship. In contextual metaphors, either the primary or
secondary concept is not explicitly visible, but is inferred
from the context (e.g., apple in the left-most image). In
hybrid metaphors, the primary and secondary concepts are

1Grammarians distinguish a metaphor “A is B” from a simile “A is like
B”. In our work we use “metaphor” to encompass both variants.

2We use the word ‘relationship’ to denote the shared property of pri-
mary and secondary concepts, usually adjectives or adjectival phrases.

visually conflated. Juxtaposition forms one of the simplest
visual metaphor types, where the two concepts are just pre-
sented next to each other. Multimodal metaphors represent
one of the concepts with another modality, such as text or
logo. In practice, visual metaphors use multiple of these
strategies to convey a metaphor in an effective manner. In
many cases, the implied metaphorical meaning is somewhat
open-ended. Interpretation of visual metaphors depends on
several external factors, such as familiarity with the brands
and cultural context.

These visual variations and nuances make automatic
cognition or generation of visual metaphors highly chal-
lenging. While the last decade has seen rapid progress in
many areas of understanding and generation tasks, prior
works in computer vision focus heavily on literal interpreta-
tion of images and overlook the importance of metaphorical
reasoning in understanding the image message [1, 48]. We
believe that developing AI systems with metaphorical com-
prehension and generation capabilities can greatly assist hu-
mans in creative endeavors involving conveying concepts in
new and exciting ways. Such systems provide an important
step towards conferring human-like creativity to AI models.

To this end, we introduce multiple interesting tasks and
construct metaphor annotations that enable comprehensive
research on visual metaphors. As metaphors are more com-
mon in visual Ads, we start with the Pitt’s Ads dataset im-
ages [20] and then perform a rigorous multi-stage annota-
tion process with expert annotators to filter metaphorical
images, add metaphor annotations, and perform additional
validation steps to clean the annotations3. While there is re-
cent work making advances in understanding non-literal in-
terpretations in natural language research [7, 12], this work
proposes the first step towards metaphor analysis in images.

As illustrated in Fig. 1, we perform comprehensive eval-
uations with state-of-the-art techniques on four sets of tasks,
which we call MetaCLUE: 1. Classification: This is binary
classification task of estimating whether a given image con-
tains a metaphor or not. In other words, Are visual features
indicative of whether there exists a metaphor in a given im-
age or not?. 2. Localization: Here, the task is to localize
the image regions that invoke the primary and secondary
concepts in the viewer. This is similar to a standard object
detection task, but is more complicated in the case of visual
metaphors as the primary/secondary concepts may not be
explicitly present in an image. 3. Understanding: Can our
models understand the metaphorical message in a given im-
age? We pose this understanding problem as 3 tasks where
we can quantitatively measure the performance: Retrieval,
Captioning and Visual question answering. 4. gEneration:
Can we generate an image that conveys the metaphor, given
the metaphorical message as a text prompt?

3The Ads, while useful for the purposes of our paper, some images may
perpetuate harmful stereotypes according to characteristics such as gender.



This beer is as tasty as a real apple.
This car is as adventurous as a space

ship.

Contextual

Driving this SUV is as smooth as birds

flying in the sky.
This pencil is as red as a fire truck.

Hybrid

This chocolate bar is as rich as gold.
This car is as made for the beach as a

crab.

Juxtaposition

These donuts are as unique as as talk-

ing people.

The car is as rugged as this muddy

trailer.

Multimodal

Figure 2. Sample Visual Metaphors with their Annotations. There are different types of visual metaphors. The type depends on how
the primary and secondary concepts are visually depicted. Here are sample Ad images from [20] where we annotated the primary concept,
secondary concept and their relationship.

We comprehensively evaluate existing state-of-the-art
techniques for each of these tasks on our collected metaphor
annotations. We evaluate the models both in a zero-shot
manner as well as with finetuning on our annotations. Even
though finetuning resulted in some improvements, most
models struggle to produce satisfactory results in many
cases, demonstrating the difficulty of these tasks. Our ex-
periments highlight several strengths and weaknesses of the
existing techniques on comprehending and generating vi-
sual metaphors, providing a concrete first step towards fur-
ther AI research on this fascinating topic.

2. Related Work
Creativity and Metaphorical Abstraction. Creativity of-
ten involves an innovative fusion of objects, attributes, or
relationships from previous knowledge to generate new
concepts [5, 52]. Metaphors can serve as an invaluable
tool for expressing creative insights and also to stimulate
new ones [14, 21]. The cognitive research community has
made initial attempts in understanding different realiza-
tions of metaphors such as language metaphors and visual
metaphors [15, 16, 32]. Studies of visual persuasion show
that visual metaphors may be more effective than language
metaphors in terms of producing a greater degree of cog-
nitive creativity [34]. In addition to improving creativity,
metaphors are also known to elicit pleasure since the initial
ambiguity in (re-)conceptualizing a target entity in terms of
a source stimulus generates interest and motivation, and the
subsequent resolution is rewarding – explaining the impor-

tance of using creative metaphorical processes in art, adver-
tising, and marketing [6, 30, 38].
Metaphors in Language Research. Computational Lin-
guistic studies show that metaphors are ubiquitous in lan-
guage, occurring once per three sentences on average [40,
44, 49]. Recently, an increasing number of research ef-
forts have explored the limitations and challenges in de-
tecting and decoding the meaning of language metaphors
[7, 48]. While there exist several computational mod-
els [9, 12, 17, 33, 35, 45, 47, 56] for metaphor identification,
interpretation and generation in language, there exists very
little work on computational modeling of visual metaphors.
Metaphors in Computer Vision. Much of computer vi-
sion literature is focused on understanding and generat-
ing literal images. Automatic metaphorical interpretations
of images is highly challenging and requires multi-faceted
cognitive reasoning that involves visual reasoning coupled
with the use of external knowledge. Recent work on af-
fective captioning using the ArtEmis data set [1] includes
some captions that evoke metaphors to explain emotions,
but that dataset is focused on visual art and does not specifi-
cally consider metaphors. There is no explicit prior work
for comprehensive evaluation and development of mod-
els that can automatically comprehend or generate visual
metaphors. At the same time, there exist several studies that
demonstrate the potential of visual metaphors. For instance,

some studies [4, 37] suggest that advertisements con-
taining metaphorical images will be more persuasive com-
pared to ads with language metaphors, non-metaphorical



Figure 3. Distribution of Topics in our annotated metaphorical
images from Pitt’s Ad dataset.

ads, or literal images. There have been some prior computa-
tional models [11,22] for metaphor generation, but they are
not thoroughly validated against any benchmark datasets or
user studies. Some works [20, 54] propose datasets and
techniques for general Ad image understanding with a fo-
cus on the challenging aspects of non-literal interpretations
in Ad images. . However they do not explicitly collect
any metaphorical annotations, nor do they provide the cor-
responding analysis. In this work, we start with an exist-
ing Ad image dataset [20] and perform extensive human
studies to filter metaphorical images and collect detailed
annotations accounting various aspects of metaphoric inter-
pretation. Prior works such as Multi-MET [57] and MET-
Meme [53], propose metaphorical annotations but does not
annotate the relationship between primary and secondary.
In MetaCLUE, in addition to providing relationship anno-
tations, we also collect detailed bounding box annotations
that help localize the image regions invoking the primary,
secondary concepts in the viewer. We further provide VQA
style question and answers.

3. MetaCLUE
We introduce four different high-level tasks in Meta-

CLUE that enable comprehensive evaluation and de-
velopment of visual metaphor research: Classification,
Localization, Understanding and gEneration. In the rest
of this section, we first describe our annotation collection
process for the tasks and next provide the analysis of using
existing state-of-the-art techniques for each of these tasks.

3.1. Metaphor Classification

Following the fundamental vision task of image clas-
sification, we first ask: Can we develop models that can
classify whether or not a given image contains a visual
metaphor? In other words, is it possible to just use visual
cues to estimate whether or not there exists a metaphorical
interpretation of an image?
Annotations. For this task, we need to label whether or

not each image contains a metaphor. Since we tend to see
more metaphorical images in Ads, we start with images
from an existing Ads dataset published by the University of
Pittsburgh [20] and manually annotate whether a given Ad
image contains a metaphor or not. Pitt’s Ads dataset con-
tains images of both product ads (e.g. phone ads) as well
as public service announcements (e.g. forest conservation
ads). Concretely, to make annotations more efficient, we
use a subset of 8.5K Ad images from this dataset that are
annotated to have ‘symbolic’ (fun, adventurous, etc.) refer-
ences. We find this subset to contain a considerable portion
of metaphors. Specifically, we collect 5 Yes/No annotations
for each of these 8K images from different annotators. To
obtain high-quality annotations, we explained what a visual
metaphor is to the annotators and also conducted qualify-
ing exams to pick final annotators for this task. We con-
sider the images with 3 or more ‘Yes’ annotations as visual
metaphors and the remaining as non-metaphorical. At the
end, we identify 5061 images containing visual metaphors
out of 8480 images. Pitt’s Ads dataset [20] also comes with
topic annotations (e.g., restaurant, car, animal rights etc.).
Fig. 3 shows the word cloud plot of different topics in these
5061 metaphorical images. We split the metaphorical im-
ages into 3730 train and 1331 test images by maintaining
the same distribution of topics in both the splits. We have
two types of negative sets (non-metaphorical images) for
classification experiments. One is formed by the remain-
ing 3419 non-metaphorical images in the symbolic set, and
another one is created separately by annotating an addi-
tional 3000 literal (and non-symbolic) images from Pitt’s
Ads dataset [20]. We add 2000 of 3419 symbolic negative
images to our train split, and add the remaining 1419 images
to our test split. Similarly 2000 of 3000 literal negatives are
used in training, and the remaining 1000 are used for test-
ing.
Evaluation and Results. Using our collected metaphor im-
ages, we evaluate the performance of the following state-of-
the-art models in classifying an input image as metaphor:
EfficientNet [46] and Vision Transformer (ViT) [13]. We
fine-tune these models to classify metaphor vs. symbolic-
non-metaphors and metaphor vs. literal, and use 20% of
corresponding train splits for validation. Test results are
reported in Table 1. Although the performance of ViT is
significantly better than EfficientNet and random baselines,
there is still ample room for improvement. In particular,
models find it easier to distinguish metaphor images from
literal images, and struggle to identify metaphors within the
symbolic image pool.

3.2. Metaphor Understanding

We now describe how we collect annotations that help
in capturing the metaphorical message from the images col-
lected in previous section.



Symbolic Neg. Literal Neg.

Model #Params Val Test Val Test

Random N/A 63.10 51.60 60.66 57.12
EfficientNet-B0 5.3M 60.76 49.67 70.94 50.30
EfficientNet-B7 66M 61.44 48.54 69.84 49.82
ViT-B/16 86M 69.31 66.98 84.04 81.24
ViT-L/16 307M 65.83 60.65 81.45 80.52

Table 1. Accuracy of Metaphor Classification (binary classifica-
tion accuracy) using state-of-the-art classification architectures of
EfficientNet [46] and ViT [13].

Annotations. We provide detailed instructions and several
examples to the annotators to help them annotate primary
and secondary concepts in the metaphor and also the char-
acteristic/relationship that is transferred from secondary to
the primary. We conduct multiple pilot studies to reduce the
noise and to improve inter-annotator agreement. Enforc-
ing the annotators to make sure that their annotations are
linguistically readable in the following syntactic structure
helped us in improving quality and consistency of the an-
notations: “ is as as ”, where the first blank
is the primary concept, the second blank is the relationship,
and the third blank is the secondary concept. Figure 2 shows
some examples of these annotations. We collect 5 metaphor
annotations for each image. As interpretations of metaphor-
ical images can be highly subjective, there can exist more
than one interpretation for each image, which makes it dif-
ficult to automatically remove noisy annotations. Therefore
we conduct an additional human study where we show each
of the annotation to five annotators and ask them to verify
the correctness along three dimensions: (a) Is the grammar
correct?; (b) Are primary and secondary concepts correct?;
and (c) Is the relationship correct?. We remove annotations
with a low number of votes out of 5 along each of the three
dimensions, resulting in a total of over 26k clean annota-
tions. We evaluate state-of-the-art models in understanding
metaphorical message from the input images using 3 tasks
namely, Retrieval, Captioning and Visual question answer-
ing.

Retrieval. The goal of this task is to retrieve the cor-
rect metaphor interpretation/statement from a candidate set
given an image. In our candidate set, we choose exactly one
positive (correct) metaphorical statement from its ground
truth messages and uniformly sample K − 1 random nega-
tive statements from other images. Table 2 shows the results
obtained with CLIP [39] and ALBEF [26] for K=50, report-
ing retrieval precision@1 and rank4. Although CLIP ViT-
L/14 shows good zero-shot performance on random nega-
tives with more than 76% accuracy, we observe a large drop

4Rank measures the averaged ranking value of the highest-ranked
ground-truth statement with 1 being the highest possible rank.

Metaphor: Smoking cigarettes is as

life-shortening as sharpening a pencil.

Captioning Result

Prediction: Smoking is as dangerous

as burning a pencil.

Visual Question Answering Result

Q1: What is a smoker’s life compared to

a sharpened pencil?

Pred: Sharp GT: Shortened

Q2: What is used as a visual metaphor

for a sharpened pencil?

Pred: Not smoking GT: Smoker’s life

Metaphor: Smoking is as deadly as

injecting drugs.

Captioning Result

Prediction: Drinking and driving is

as bad as injecting drugs.

Visual Question Answering Result

Q1: What is a cigarette as compared to

injecting drugs?

Pred: Scary GT: Deadly

Q2: What is used as a visual metaphor

for injecting drugs?

Pred: Drinking GT: Cigarette

Figure 4. Results of PaLI [10] for captioning and visual question
answering on sample images in our test split.

in performance as we increase K to {100, 500, 1000}. We
further fine-tune CLIP models using 70% of metaphor an-
notations as the train set and see gains by up to +7 absolute
points in p@1. In summary, the performance of models is
impressive with less than 50 negative candidates whereas
the performance drops greatly by increasing K.

We hypothesize that models might simply be looking
at salient objects rather than comprehending the underly-
ing semantics of metaphor in finding the correct candidate.
To test this, we mine hard negative (HN) statements and
use them as our candidate set. Specifically, we construct
the following five types of HNs: (a) Neg Prim: candidates
obtained by replacing the primary concept in the metaphor
statement with the primary concept from another image5;
(b) Neg Sec: replacing secondary concept likewise; (c) Neg
Prim+Rel: replacing primary and relationship; (d) Neg
Sec+Rel: replacing secondary and relationship; (e) Swap
Prim&Neg: swapping primary and secondary from the
same image6. Table 2 shows the results. We see a significant
drop of up to 30% by using HNs as negative statements for
K = 50, indicating the difficulty in comprehending and dis-
tinguishing metaphorical abstraction of concepts. We find
performance of Neg Prim is significantly higher than Neg
Sec, suggesting that the models tend to rely more on pri-
mary object than secondary object in identifying correct in-
terpretation. Overall, there is ample room for improvement
indicated by the steep drop in model performance with HNs.

Captioning.

5We swap objects with images having different topic to make sure that
the generated HNs are actually negatives.

6With swapping K is always 2.



Random Neg Neg Prim Neg Sec Neg Prim+Rel Neg Sec+Rel Swap

Model p@1 ↑ rank ↓ p@1 ↑ rank ↓ p@1 ↑ rank ↓ p@1 ↑ rank ↓ p@1 ↑ rank ↓ accuracy ↑

CLIP (ViT-B/16) 70.97 3.49 46.67 10.11 38.14 13.97 49.36 8.80 42.25 11.69 40.61
CLIP (ViT-B/32) 61.78 4.19 38.74 11.60 33.20 14.84 39.79 10.29 36.27 12.71 41.28
CLIP (ViT-L/14) 76.66 3.17 51.75 9.22 39.86 13.19 54.74 7.70 45.99 11.02 43.08
ALBEF 39.79 8.57 27.00 16.53 29.31 15.79 26.77 15.58 28.42 14.59 46.67
ALBEF (MSCOCO) 44.87 7.55 31.78 15.13 31.41 14.09 32.53 14.04 33.28 12.85 48.24
ALBEF (Flickr30k) 47.49 8.77 35.60 14.56 35.22 13.66 36.35 13.58 36.12 12.79 49.81

FT CLIP (ViT-B/16) 76.81 2.25 49.81 9.65 45.47 10.24 53.40 8.07 50.63 8.18 44.65
FT CLIP (ViT-B/32) 68.06 2.82 43.00 10.82 39.64 11.23 44.72 9.39 43.45 9.35 45.69
FT CLIP (ViT-L/14) 81.75 1.78 57.66 7.48 49.06 9.40 61.25 5.99 57.06 7.33 43.75

Table 2. Performance of retrieval models on K random (column 2) and hard negative candidates (columns 3-7) (K = 50 for columns
2-6, K = 2 for last column).

Captioning Acc BLEU4 ROUGE-L METEOR SPICE CIDEr

Whole caption 1.1% 0.254 0.536 0.220 0.186 1.076
Primary 29.9% 0.327 0.407 0.338 0.244 0.931
Secondary 13.7% 0.249 0.307 0.193 0.155 0.550
Relationship 23.6% 0.485 0.203 0.226 0.028 0.296

VQA Acc BLEU4 ROUGE-L METEOR SPICE CIDEr

All questions 19.9% 0.329 0.286 0.249 0.185 0.851
Primary 21.5% 0.291 0.348 0.277 0.290 1.099
Secondary 12.8% 0.238 0.232 0.181 0.234 0.735
Relationship 25.6% 0.449 0.275 0.285 0.038 0.706

Table 3. Metaphorical image captioning (left) and visual question answering (right) performance of PaLI [10]. We report different
metrics (higher the better) using both the exact match accuracy (Acc) and standard text generation metrics. For image captioning, we
evaluate the whole predicted caption as well as parsed primary object, secondary object, and relationship. For VQA, we evaluate on all
predicted answers as well as provide the breakdown for each question type.

Here, we propose metaphor image captioning
task, where the input is an image and the target is
the metaphorical message in the syntactic structure
<primary concept> is as <relationship>
as <secondary concept>. We fine-tune and
evaluate the state-of-the-art literal image caption model
PaLI-17B [10] based on the exact match accuracy (maxi-
mum over all references) and standard metrics for image
captioning BLEU4 [36], ROUGE-L [28], METEOR [3],
SPICE [2], and CIDEr [51]. Since the target captions
follow the fixed syntactic structure, we parse each predicted
caption into the primary concept, the secondary concept,
and their relationship, and use the same set of metrics for
the whole caption to evaluate.7 Table 3 (left) summarizes
the results and Figure 4 provides sample qualitative results.
We observe that PaLI generally struggles on this task. For
instance, it achieves a CIDEr score of 1.076, compared to
1.491 for state-of-the-art literal image captioning on the
popular COCO-Captions [8]. Further, the model struggles
with predicting the target relationship when the metrics
favor recall (e.g., ROUGE-L) and with predicting the target
secondary concept when the metrics favor precision (e.g.,
BLEU).
Visual Question-Answering (VQA). We propose
metaphorical open-ended (i.e., not vocab-based) VQA

7The score of 0 is given if parsing fails.

task, where the input is an image and a given question, and
the target is the answer. We use fixed templates to generate
2 VQA questions whose answer is the primary concept,
2 for secondary concept, and 2 for relationship. Again,
we fine-tune and evaluate the state-of-the-art literal VQA
model PaLI-17B [10], using the same set of metrics as in
image captioning. Table 3 (right) summarizes the results
and Figure 4 provides sample qualitative results. Overall,
we find that PaLI performs poorly, only achieving the
average accuracy score of 19.9%, while the state-of-the-art
literal VQA on the popular VQAv2 [18] benchmark is
77.6% on “other” questions. Additionally, the model
struggles the most with answering questions that ask for
the secondary concept.

3.3. Metaphor Localization

Here, the task is to localize the image regions that invoke
either the primary or secondary concept in the viewer. This
is similar to the phrase grounding task of localizing objects
using free-form natural language phrases [23, 31, 55], but
with some key differences due to the peculiarities of visual
metaphors in comparison to literal images used in standard
vision datasets.
Annotations. As discussed earlier, there are diverse types
of metaphors based on how the primary and secondary con-
cepts are visually depicted in an image (see Fig. 2). There



The shoe is as light as feathers. Ketchup is as hot as a volcano.
Getting two ice creams is as exciting as

getting two movie tickets for one.

This car is as out of this world as

three dimensional.

Figure 5. Sample Localization annotations showing annotated bounding boxes around primary and secondary concepts. Notice the
diversity of types in bounding boxes: explicit, contextual, logo and texts. This makes metaphor localization more challenging compared to
standard object detection.

Parking assist is as safe as parking far

from objects.

This chocolate is as fun as going to a

concert.

Figure 6. Sample Localizations with the phrase-grounding model
from [27], where the secondary concepts are contextual. GT boxes
are shown in green, whereas the predictions are shown in blue.

are at least two key differences in metaphor localization
compared to standard localization in literal images: 1. A
given concept can be present in the image either explic-
itly or in a contextual manner (for e.g., contextual visual
metaphors in Fig. 2). 2. Visual metaphor Ads are inher-
ently multimodal and a concept can be invoked by other
modalities such as text or logo. See the multimodal visual
metaphors in Fig. 2. As a result, we not only annotate the
bounding boxes that invoke the primary/secondary concept
in the viewer, but we also annotate the type of that bounding
box. A bounding box can be of one of the 4 types: Explic-
itly present, Contextually present, Logo or a Text. Specifi-
cally, for each of the 5061 metaphorical images, we pick the
best metaphor annotation (primary, secondary concepts and
their relationship) according to their validation scores (see
previous section) and collect bounding box annotations for
both the primary and secondary concepts. We collect all the
bounding boxes that invoke both the primary and secondary
concepts and also their type (explicit, contextual, logo or
text) for each of the images. We use 5 annotators for each
annotation and choose the bounding boxes with the best
inter-annotator agreement. We use the same train and test
splits as used in understanding tasks. Fig. 5 shows sample
localization annotations. We collected over 30k bounding
box annotations for this task on 5061 metaphor images.
Detection. Recent detection and localization models [27,

mAP50 mAP70

Primary concept 33.22 14.25
Secondary concept 43.54 31.23

Table 4. Localization results with CLIP based phrase localization
model [27] on our test split.

58] pre-trained on image and caption pairs are shown to
achieve remarkable localization performance on discrimi-
nating fine-grained objects and unseen concepts. Specifi-
cally, we evaluate [27] which leverages the effective image
representations in CLIP by extracting spatial features from
it. Using these spatial features, for each pixel location, the
model computes the inner product between the spatial fea-
ture and the phrase embedding extracted from CLIP to pre-
dict the bounding box. In our case, we pass the primary or
secondary concept as input phrase to [27] the estimate the
corresponding bounding box. Table 4 summarizes the de-
tection results (using Mean Average Precision) on our test
split. We find relatively better performance in localizing
secondary objects compared to primary objects.

We show few qualitative results in Figure 6. It is worth
noting that our collected annotations allow for more com-
prehensive analysis on localization tasks due to the avail-
ability of different types of bounding boxes (explicit, con-
textual, logos and texts).

3.4. Metaphor Generation

Recent large-scale text-to-image (T2I) generative mod-
els show remarkable success in generating highly realistic
images from text prompts. Can these models also work well
in metaphorical image generation? We evaluate two state-
of-the-art generative models (Imagen [42], Stable diffu-
sion [41] (SD)) using 300 samples from MetaCLUE test set
where we use the text prompts: “An advertisement where
primary-concept is as relationship as secondary concept.”
In addition, we finetune the stable diffusion model on our
train split (same split as in Sec. 3.2).
Results. Fig. 7 shows sample visual results from differ-



Model FID ↓ CLIP Similarity ↑

Imagen [42] 153.1 32.1
Stable Diffusion [41] 161.6 30.8
Stable Diffusion - FT 154.3 32.0

Table 5. Analysis of Image Generation results with standard met-
rics of FID [42] and CLIP similarity [39] scores.

ent T2I models, with the metaphor annotation shown on the
top. The generated images capture different aspects of the
metaphor (tablet, waterproof), but not the entire metaphor-
ical message. We compute standard metrics to automati-
cally evaluate the quality of the generations. Tab. 5 shows
the standard FID [19] and CLIP-Similarity [39] scores of
different models. FID score evaluates the image distribu-
tion similarity between the generation images with the cor-
responding real image distribution. FID scores in Tab. 5
shows that Imagen performs slightly better than SD. And,
there is a slight improvement in FID with finetuning (SD-
FT vs. SD). In general, high FID scores in Tab. 5 indicate
the large distribution gap between the generated and real
images. CLIP similarity score, on the other hand, measures
the prompt fidelity - similarity between the generated im-
age and the corresponding input text prompt according to
the CLIP model [39]. CLIP similarity scores in Tab. 5 fol-
low the similar trend as FID scores: Imagen performs better
than SD in terms of the prompt fidelity, and finetuning SD
model improved its prompt fidelity.

Given that both FID and CLIP scores are not tailored to-
wards metaphorical images, these metrics are not reliable in
assessing whether the generated images capture the essence
of visual metaphors. To analyze this, we perform human
studies comparing two different models at a time. Specifi-
cally, we show a metaphorical message and the correspond-
ing generations from two models and ask the users to pick
an image that best conveys that metaphorical message. We
obtain 7 user ratings for each image pair and consider 3-out-
of-7 or 4-out-of-7 to be ties. Fig. 8 shows the percentage of
user preferences across different pairs of results. User stud-
ies also indicate that Imagen performed better than SD. An
interesting finding is that finetuning SD resulted in slightly
worse user preference compared to base SD model (SD-
FT vs. SD). This is in contrast to standard FID and CLIP
metrics that improved with finetuning. We hypothesize that
finetuning SD resulted in more realistic Ad images, but the
resulting model may have forgotten some of the metaphor-
ical priors. This calls for more effective finetuning strate-
gies with the limited training datasets, which forms an im-
portant future work. In addition, both Imagen and SD per-
formed quite poorly compared to real images in conveying
metaphorical messages. Real images are preferred around
88% of time over Imagen results. This illustrates the big
scope of improvements in generating visual metaphors.

Metaphor: This android tablet is as waterproof
as someone in a swimtube.

Real Imagen

Stable Diffusion Stable Diffusion - FT

Figure 7. Sample Image Generations for a given metaphorical
message (shown on top) with Imagen [42], Stable Diffusion [41]
and fine-tuned (FT) version of Stable Diffusion.

Left preferred Tied Right preferred

Real Imagen88 % 2 %10 %

Real SD94 % 15

SD Imagen28 % 21 % 51 %

SD SD-FT41 % 24 % 35 %

Figure 8. User Study on Image Generation Results. Percentage
of results users preferred across real, Imagen [42], Stable Diffu-
sion (SD) [41] and its fine-tuned version (SD-FT) results. Users
are asked to choose the image that better depicts a given metaphor.

4. Conclusion

In this paper, we present a step towards comprehen-
sive evaluation of progress on visual metaphor research.
Specifically, we propose a collection of tasks related to
comprehending and generating visual metaphors using AI
techniques. Our MetaCLUE tasks include Classification,
Understanding (Retrieval, Captioning, VQA), Localization
and Generation. For comprehensive evaluations, we col-
lected high quality and rich annotations that facilitate the
measurable progress. Existing methods demonstrate poor
results in many cases with our experimental analysis shed-
ding light on strengths and drawbacks of different ap-
proaches paving a path for future research in this fascinating
field.
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