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Abstract

Recent advances on text-to-image generation have wit-
nessed the rise of diffusion models which act as power-
ful generative models. Nevertheless, it is not trivial to
exploit such latent variable models to capture the depen-
dency among discrete words and meanwhile pursue com-
plex visual-language alignment in image captioning. In this
paper, we break the deeply rooted conventions in learning
Transformer-based encoder-decoder, and propose a new
diffusion model based paradigm tailored for image cap-
tioning, namely Semantic-Conditional Diffusion Networks
(SCD-Net). Technically, for each input image, we first
search the semantically relevant sentences via cross-modal
retrieval model to convey the comprehensive semantic in-
formation. The rich semantics are further regarded as se-
mantic prior to trigger the learning of Diffusion Trans-
former, which produces the output sentence in a diffusion
process. In SCD-Net, multiple Diffusion Transformer struc-
tures are stacked to progressively strengthen the output
sentence with better visional-language alignment and lin-
guistical coherence in a cascaded manner. Furthermore,
to stabilize the diffusion process, a new self-critical se-
quence training strategy is designed to guide the learn-
ing of SCD-Net with the knowledge of a standard autore-
gressive Transformer model. Extensive experiments on
COCO dataset demonstrate the promising potential of us-
ing diffusion models in the challenging image captioning
task. Source code is available at https://github.
com/YehLi/xmodaler/tree/master/configs/
image_caption/scdnet.

1. Introduction

As one of the fundamental tasks in vision and language
field, image captioning aims to describe the interested se-
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Figure 1. An illustration of (a) typical autoregressive model,
(b) conventional diffusion model in [6], and (c) our semantic-
conditional diffusion model in SCD-Net.

mantics in a natural sentence. This task naturally connects
computer vision and natural language processing by per-
ceiving visual content in a scene and interpreting them in
human language, simulating a basic capability of human
intelligence. The dominate force in current state-of-the-
art techniques [8, 14, 25, 36, 46] is to capitalize on encode-
decoder structure and frame the learning process in an au-
toregressive manner. In particular, an image encoder is re-
sponsible for encoding visual content as high-level seman-
tics, and a sentence decoder learns to decode the sequen-
tial sentence word-by-word (Fig.1 (a)). Nevertheless, such
autoregressive progress only allows for unidirectional tex-
tual message passing, and typically relies on considerable
computational resources that scale quadratically w.r.t. the
sentence length.

To alleviate this limitation, recent advances [11, 12, 30]
start to emerge as a non-autoregressive solution that enables
bidirectional textual message passing and emits all words in
parallel, leading to a light-weight and scalable paradigm.
However, these non-autoregressive approaches are gener-
ally inferior to the autoregressive methods. The perfor-
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mance degradation can be mostly attributed to the word
repetition or omissions problems if leaving the sequential
dependency under-exploited. In addition, the indisposed
sentence quality also makes it difficult to upgrade non-
autoregressive solution with powerful self-critical sequence
learning [35] widely adopted in autoregressive methods.

More recently, a superior generative module named dif-
fusion model [15] has brought forward milestone improve-
ments for visual content generation. This motivates a recent
pioneering practice [6] to explore diffusion model for im-
age captioning, pursuing non-autoregressive sentence gen-
eration in a high degree of parallelism. It manages to enable
continuous diffusion process to produce the discrete word
sequence by representing each word as binary bits. Differ-
ent from the typical discrete sentence generation in a single
shot, such continuous diffusion process (Fig.1 (b)) can be
represented as a parameterized Markov chain that gradu-
ally adds Gaussian noise to the sentence. Each reverse state
transition is thus learnt to recover the original sentence data
from noise-augmented data via denoising. Despite show-
ing comparable performances against basic autoregressive
models, the severe problem of word repetition or omissions
is still overlooked.

In an effort to mitigate this problem, we devise a new
diffusion model based non-autoregressive paradigm, called
Semantic-Conditional Diffusion Networks (SCD-Net). Our
launching point is to introduce the comprehensive semantic
information of the input images into the continuous diffu-
sion process, which act as semantic prior to guide the learn-
ing of each reverse state transition (Fig.1 (c)). SCD-Net is
henceforth able to encourage a better semantic alignment
between visual content and the output sentence, i.e., allevi-
ating the omission of semantic words. As a by-product, our
SCD-Net enables the powerful self-critical sequence learn-
ing during the continuous diffusion process. Such sentence-
level optimization of diffusion process strengthens the lin-
guistical coherence of the output sentence, and thus allevi-
ates word repetition issue.

Technically, our SCD-Net is composed of cascaded Dif-
fusion Transformer structures that progressively enhance
the output sentences. Each Diffusion Transformer ex-
ploits the semantic-conditional diffusion process to learn
Transformer-based encoder-decoder. In particular, for each
input image, Diffusion Transformer first retrieves the se-
mantically relevant words by using an off-the-shelf cross-
modal retrieval model. These semantic words are addi-
tionally incorporated into the continuous diffusion process,
targeting for constraining reverse state transition with the
semantic condition. More importantly, we upgrade the
semantic-conditional diffusion process with a new guided
self-critical sequence learning strategy. This strategy el-
egantly transfers the knowledge of a standard autoregres-
sive Transformer model to our non-autoregressive Diffusion

Transformer through sentence-level reward, leading to a sta-
bilized and boosted diffusion process.

In sum, we have made the following contributions: (I)
SCD-Net designs a novel semantic-conditional diffusion
process for image captioning, pursuing a scalable non-
autoregressive paradigm with better visual-language align-
ment. (II) SCD-Net paves a new way to couple the con-
tinuous diffusion process with a new guided self-critical se-
quence learning. (III) SCD-Net has been properly analyzed
and verified through extensive experiments on COCO,
demonstrating its encouraging potential.

2. Related Work

2.1. Autoregressive Image Captioning

Recent research on autoregressive image captioning
has proceeded along two dimensions: RNN-based and
Transformer-based approaches.

RNN-based Approaches. With the advent of deep
learning [3,9,37], modern image captioning techniques uti-
lize CNN plus RNN to generate sentences, yielding flexi-
ble syntactical structure. For example, the earlier attempts
[10, 19, 40] present an end-to-end neural network system
that encodes the visual content with CNN and decodes
the sentence with RNN. Attention mechanism [41] is fur-
ther employed to dynamically focus on the relevant region
when generating word at each decoding timestep. Mean-
while, semantic attributes [26, 44, 47, 48] are incorporated
into RNN to complement visual representations for enhanc-
ing description generation. In contrast to traditional visual
attention over equally-sized image regions, Up-Down [2]
combines bottom-up and top-down attention mechanism to
measure attention at object level. After that, GCN-LSTM
[45] models the relations between objects, which are in-
jected into the top-down attention model to boost caption
generation. SGAE [43] utilizes scene graph structure to de-
pict fine-grained semantics in the images, aiming to capture
the language inductive bias.

Transformer-based Approaches. Recently, taking the
inspiration from the success of Transformer [38] in NLP
field, numerous Transformer-based image captioning mod-
els start to emerge. [36] directly employs the primary
Transformer structure in NLP on image captioning task.
[14] incorporates the spatial relations among objects into
Transformer. Meshed-Memory Transformer [8] improves
both encoder and decoder in Transformer by learning prior
knowledge with persistent memory and exploiting low- and
high-level features with a mesh-like connections across
multiple layers. X-Transformer [31] further introduces
higher order intra and inter-modal interactions to enhance
the encoder and decoder of Transformer. Later on, APN
[42] learns to parse trees unsupervisedly by imposing prob-
abilistic graphical model on self-attention layers of Trans-



former for both captioning and visual question answering.

2.2. Non-Autoregressive Image Captioning

In contrast to autoregressive methods that generate sen-
tences word-by-word, non-autoregressive methods emit all
words in parallel, enabling bidirectional textual message
passing. NAT [12] first proposes non-autoregressive decod-
ing to improve the inference speed for neural machine trans-
lation, attracting increasing attention in captioning field.
MNIC [11] presents masked non-autoregressive decoding
to generate captions parallelly with enhanced semantics and
diversity. O2NA [30] first generates the object-oriented
coarse-grained caption and then refines each object word
to alleviate description ambiguity issue. SATIC [49] pro-
poses semi-autoregressive Transformer that predicts a group
of words in parallel and generates the groups from left to
right, pursuing a better trade-off between speed and qual-
ity. Most recently, sparked by the success of diffusion mod-
els [15] in image generation, Bit Diffusion [6] encodes the
discrete text into binary bits, and utilizes diffusion model
with self-conditioning for caption generation. Nevertheless,
the performance of Bit Diffusion is still inferior to state-of-
the-art autoregressive Transformer. Moreover, how to opti-
mize the diffusion model with sentence-level reward (e.g.,
CIDEr [39]) has not yet been explored.

Our work also falls into the latter category of non-
autoregressive image captioning with diffusion models.
Our SCD-Net goes beyond Bit Diffusion by strengthen-
ing the visual-language semantic alignment with semantic-
conditional diffusion process. A new guided self-critical
sequence learning is designed to further stabilize and boost
the diffusion process with sentence-level reward.

3. Method
In this section, we present our proposed Semantic-

Conditional Diffusion Networks (SCD-Net), that facilitates
diffusion process based image captioning with rich seman-
tic prior. Figure 2 depicts the cascaded framework of SCD-
Net with multiple stacked Diffusion Transformers, and the
detailed architecture of each Diffusion Transformer.

3.1. Problem Formulation

Notation of Diffusion Model. Suppose we have an input
image with K interested objects, which will be described
by a textual sentence S in Ns words. Let V = {vi}Ki=1 de-
note the set of objects detected by Faster R-CNN [2, 34],
where vi ∈ RDv represents the Dv-dimensional feature
of each object. Here we basically formulate the procedure
of caption generation with diffusion model [6, 15]. Con-
sidering that the words in the textual sentence are discrete
data, we follow Bit Diffusion [6] and convert each word
into n = dlog2We binary bits (i.e., {0, 1}n), where W is
the vocabulary size. In this way, the textual sentence S is

transformed into real numbers x0 ∈ Rn×Ns to trigger dif-
fusion model. In particular, the diffusion model consists of
two processes, i.e., the forward and reverse process.

Forward Process. The forward process is defined as
a Markov chain that gradually adds Gaussian noise to the
sentence data x0. For any t ∈ (0, T ], the forward state
transition [21] from x0 to xt is calculated as:

xt =
√
sigmoid(−γ(t′))x0 +

√
sigmoid(γ(t′))ε, (1)

where t′ = t/T , ε ∼ N (0, I), t ∼ U(0, T ), N is nor-
mal distribution, U is uniform distribution, and γ(t′) is a
monotonically increasing function. After that, a Diffusion
Transformer f(xt, γ(t′),V) is trained to reconstruct x0 con-
ditioned on V through denoising in `2 regression loss:

Lbit = Et∼U(0,T ),ε∼N (0,I)‖f(xt, γ(t′),V)− x0‖
2
. (2)

Reverse Process. In an effort to generate sentences from
the learnt Diffusion Transformer based on the given image,
the reverse process samples a sequence of latent states xt
from t = T to t = 0. Specifically, given the number of
steps T , we discretize time uniformly with width 1/T to
obtain s = t − 1 − ∆, t′ = t/T , and s′ = s/T . Next the
reverse state transition xt−1 is measured as:

αs =
√

sigmoid(−γ(s′)), αt =
√

sigmoid(−γ(t′)),

σs =
√
sigmoid(γ(s′)),

c = −expm1(γ(s′)− γ(t′)),

u(xt; s
′, t′) = αs(xt(1− c)/αt + cf(xt, γ(t′),V)),

σ2(s′, t′) = σ2
sc,

xt−1 = u(xt; s
′, t′) + σ(s′, t′)ε,

(3)
where ∆ denotes the time difference and expm1(·) =
exp(·) − 1. After iteratively triggering Diffusion Trans-
former from xT , we can obtain the estimation and a quanti-
zation operation is operated to transform it into bits x0.

3.2. Diffusion Transformer

The basic Diffusion Transformer is constructed as a
typical Transformer-based encoder-decoder structure, in-
cluding a visual encoder and a sentence decoder. For-
mally, given the detected objects V in image, the visual
encoder transforms them into visual tokens through self-
attention. Then the visual tokens and the word tokens
xt = {wt0, wt1, ..., wtNs} at time step t are fed into the sen-
tence decoder for caption generation.

Visual Encoder. The visual encoder consists of Nv
stacked Transformer encoder blocks. Each block is com-
posed of a multi-head self-attention layer plus a feed-
forward layer. The i-th Transformer encoder block in the



Diffusion Transformer

Multi-Head
Self-Attention

Add & Norm

Feed
Forward

Add & Norm

 Diffusion 
Transformer

 Diffusion 
Transformer

xT

...

 Diffusion 
Transformer

a solid white bicycle 
is parked next to 

statues on a sidewalk

R
e

trieval

M
ulti-H

ead
Self-A

tten
tio

n

A
d

d
 &

 N
o

rm

Feed
Fo

rw
ard

A
d

d
 &

 N
o

rm

Multi-Head
Cross-Attention

Add & Norm

Multi-Head
Self-Attention

Add & Norm

Feed
Forward

Add & Norm

Em
b

e
d ... ...

...

a white bike parked next 
to a couple of statues Linear

zxzr

Nv

Nt

Np

Visual Encoder

Se
m

an
tic 

Tran
sfo

rm
er

Se
n

te
n

ce
 D

e
co

d
e

r

h0

Feat.
Extractor

Feat.
Extractor

Figure 2. An overview of Semantic-Conditional Diffusion Networks (SCD-Net) consisting of multiple stacked Diffusion Transformers in a
cascaded manner (left). Each Diffusion Transformer is composed of Visual Encoder, Semantic Transformer, and Sentence Decoder (right).

visual encoder operates as:

Vi+1 = FFN(norm(Vi + MultiHead(Vi,Vi,Vi))),
FFN(Z) = norm(Z + FC(δ(FC(Z)))),

MultiHead(Q,K,V) = Concat(head1, ..., headH)WO,

headi = Attention(QWQ
i ,KW

K
i ,VW

V
i ),

Attention(Q,K,V) = softmax(
QKT

√
d

)V,

(4)
where FFN is the feed-forward layer, MultiHead is the
multi-head self-attention layer, norm is layer normaliza-
tion, FC is the fully-connected layer, Concat(·) is the
concatenation operation, δ is the activation function, WQ

i ,
WK
i , WV

i , WO are weight matrices of the i-th head, H is
the number of head, and d is the dimension of each head.
Note that the input of the first Transformer encoder block is
the primary set of detected objects V0 = V . Accordingly,
after stacking Nv blocks, we achieve the contextually en-
hanced visual tokens Ṽ = VNv .

Sentence Decoder. The sentence decoder contains Nt
stacked Transformer decoder blocks. Each block consists
of one multi-head self-attention layer, one multi-head cross-
attention layer, and one feed-forward layer. In contrast to
conventional Transformers [36,38] that utilize mask to pre-
vent positions from attending to subsequent positions, the
multi-head self-attention layer in Diffusion Transformer is
bi-directional without masks. In this way, the i-th Trans-
former decoder block operates as:

hi+1 = FFN(norm(h̃i + MultiHead(h̃i, Ṽ, Ṽ))),

h̃i = norm(hi + MultiHead(hi, hi, hi)).
(5)

The inputs of the first Transformer decoder block at time
step t are the word tokens h0 = {wt0, wt1, ..., wtNs}. After
stacking Nt blocks, the hidden state outputted by the last
block hNt is utilized to predict the probability distribution

of each output word, which is calculated by:

pi = softmax(WThNti ), (6)

where WT is the weight matrix, hNti and pi ∈ RW is the
hidden state vector and probability distribution correspond-
ing to the i-th word, respectively. After that, we map the
probability distribution of pi into bits bi by taking weighted
average over all theW bits in the vocabulary:

bi =
∑W

c=1
pciB

c, (7)

where pci is the c-th probability of pi and Bc is the bit rep-
resentation of the c-th word in the vocabulary. To speedup
convergence of Diffusion Transformer, we also integrate the
diffusion process objective Lbit in Eq. (2) with a typical
cross entropy loss LXE over the probability distribution p
during training. Therefore, the final objective is calculated
as: L = LXE + Lbit.

3.3. Semantic Condition

Recent practice attempts to employ diffusion model for
image captioning by directly estimating x0 from the la-
tent state xT sampled from noise distribution N (0, I) in
the reverse process. Nevertheless, this way overlooks the
complex visual-language alignment and inherent sequen-
tial dependency among words during diffusion process,
thereby resulting in the word repetition or omissions prob-
lems. To mitigate this limitation, we upgrade the diffusion
model with additional semantic prior, yielding a semantic-
conditioned diffusion process for Diffusion Transformer.

Technically, given an image, we first search the semanti-
cally relevant sentence from training sentence pool by using
an off-the-shelf cross-modal retrieval model. The relevant
sentence is further represented as a sequence of word tokens
sr, which reflect the comprehensive semantic information.
After that, we take sr as semantic condition to constrain the
diffusion process of Diffusion Transformer. In particular,
at each time step t, we capitalize on an additional semantic



Transformer with Np semantic Transformer blocks to con-
textually encode current latent state xt with semantic prior
sr. Here we concatenate xt with the previous timestep pre-
diction x̃0 along channel dimension as in [6]. The textual
features of latent state xt and semantic prior sr are thus cal-
culated as:

zx = FC(Concat(xt, x̃0)) + ϕ(γ(t′)),

zr = FC(sr).
(8)

where ϕ is a multi-layer perception. The positional encod-
ings are omitted for simplicity. Next, we concatenate the
textual features zx and zr as (W0 = [zx, zr]), which is fur-
ther fed into semantic Transformer to achieve the semantic-
conditional latent state. In this way, the i-th semantic Trans-
former block is calculated as:

Wi+1 = FFN(norm(Wi+MultiHead(Wi,Wi,Wi)))
(9)

Finally, by denoting the outputs of semantic Transformer
as WNp = [WNp

x ,WNp
r ], we take WNp

x as the strength-
ened semantic-conditional latent state WNp

x = h0 =
{wt0, wt1, ..., wtNs}, which will be fed into sentence decoder
for caption generation in diffusion model.

3.4. Cascaded Diffusion Transformer

Inspired by the success of cascaded diffusion models for
image generation [16], our SCD-Net stacks multiple Dif-
fusion Transformers in a cascaded fashion. Such cascaded
structure aims to progressively strengthen the output sen-
tence with better visual-language alignment and linguistical
coherence. Formally, this cascaded diffusion process can be
represented as:

F (xt, γ(t′),V) = fM ◦fM−1 ◦ · · · ◦f1(xt, γ(t′),V), (10)

where M is the total number of stacked Diffusion Trans-
former, and f1 is the first Diffusion Transformer equipped
with aforementioned semantic condition. In this way, each
Diffusion Transformer fi (i ≥ 2) operates diffusion pro-
cess conditioned on the sentence prediction xi−10 of pre-
vious Diffusion Transformer fi−1. Accordingly, for each
Diffusion Transformer fi (i ≥ 2), we slightly modify its
structure to take the additional semantic cues of xi−10 into
account. Specifically, given the latent state xt, previous
timestep prediction x̃0, and the previous Diffusion Trans-
former prediction xi−10 , we remould Eq. (8) by measuring
textual features of latent state zx as:

zx = FC(Concat(xt, x̃0, x
i−1
0 )) + ϕ(γ(t′)). (11)

Then the textual features zx are concatenated with semantic
prior zr, and we feed them into the semantic Transformer.
At inference, the output of each Diffusion Transformer fi is
directly fused with the output of previous Diffusion Trans-
former fi−1 at each timestep.

3.5. Guided Self-Critical Sequence Training

Conventional autoregressive image captioning tech-
niques [2, 35, 36] commonly utilize the Self-Critical Se-
quence Training [35] (SCST) to boost up performances with
sentence-level optimization (e.g., CIDEr metric [39]):

LR(θ) = −Ey1:Ns∼pθ [R(y1:Ns)], (12)

where R denotes the CIDEr score function. The gradient of
the loss can be approximated as:

∇θLR(θ) ≈ −(R(ys1:Ns)−R(ŷ1:Ns))∇θ log pθ(y
s
1:Ns),

(13)
where ys1:Ns is the sampled caption and R(ŷ1:Ns) denotes
the sentence-level reward of baseline in greedily decod-
ing inference. However, it is not trivial to directly apply
SCST to the diffusion process in Diffusion Transformer.
The difficulty mainly originates from two aspects. First, the
non-autoregressive inference procedure of Diffusion Trans-
former contains multiple steps (e.g., more than 20), and thus
it is impractical to sample sentences directly from the noise
xT . Furthermore, since each output word in the Diffusion
Transformer is sampled independently, simply assigning the
same reward to each word would result in typical word rep-
etition problem [13]. To address these limitations, we pro-
pose a new Guided Self-Critical Sequence Training, which
nicely guides the learning of SCD-Net with the knowledge
derived from a standard autoregressive Transformer model.

Technically, we first train a standard autoregressive
Transformer teacher model that shares same architecture of
Diffusion Transformer. Next, for each training image, this
Transformer teacher model predicts high-quality sentence
Stea as additional semantic guidance. Then we feed the
predicted high-quality sentence Stea into the cascaded Dif-
fusion Transformer, instead of the ground-truth sentences.
Rather than randomly sampling several captions as in con-
ventional SCST, we enforce one of the sampled sentences to
be the same as the predicted sentence Stea. Let y′sj1:Ns |

Ny
j=0

denote the sampled sentences containing Stea, where Ny is
the number of sampled sentences. The gradient of LR(θ) is
thus measured as:

∇θLR(θ) ≈ −
1

Ny

Ny∑
j=0

(R(y′
sj
1:Ns

)−R(ŷ1:Ns))∇θ log pθ(y
′sj
1:Ns

).

(14)
In this way, the sampling of the high-quality sentence Stea

tends to receive a positive reward, that encourages Diffusion
Transformer to produce high-quality sentence. The possi-
bility of other low-quality sentences (e.g., sentences with
word repetition) is thus suppressed. It is worthy to note that
when the diffusion model becomes saturated, we replace
the sentence Stea derived from autoregressive Transformer
model with the estimated S′ by the diffusion model, if the
quality of S′ (measured in CIDEr) is higher than Stea.



4. Experiments

In this section, we empirically verify the effectiveness of
our SCD-Net by conducting experiments over the widely
adopted COCO benchmark [28] for image captioning.

4.1. Datasets and Experimental Settings

Dataset. COCO is the most popular dataset in image
captioning field, which comprises 82,783 training images,
40,504 validation images, and 40,775 testing images. Each
image is annotated with five descriptions. Considering that
the annotations of the official testing set are not provided,
we utilize the widely adopted Karpathy split [2,35] and take
the 113,287 images for training, 5,000 images for valida-
tion, and 5,000 image for testing. Moreover, we also report
the performances on the official testing set through online
testing server. We convert all the training sentences into
lower case and filter out rare words which occur less than
four times following [2]. In this way, the final vocabulary
consists of 10,199 unique words.

Implementation Details. The whole SCD-Net is imple-
mented in X-modaler codebase [24]. In SCD-Net, we em-
ploy the Faster-RCNN pre-trained on ImageNet [9] and Vi-
sual Genome [22] to extract image region features. The di-
mension of the original region feature is 2,048 and we trans-
form it into a 512-dimensional feature by a fully-connected
layer. Each word is converted into 14-bits as in [6]. The
visual encoder, sentence decoder, and the semantic Trans-
former contains Nv = 3, Nt = 3, and Np = 3 Transformer
blocks. The hidden size of each Transformer block is set
as 512. The training of SCD-Net includes two stages. In
the first stage, the whole architecture of SCD-Net is opti-
mized via Adam [20] optimizer on four V100 GPUs with
`2 regression loss and labels smoothing. The optimization
process includes 60 epochs with a batch size of 16 and the
same learning rate scheduling strategy as in [38] (warmup:
20,000 iterations). In the second stage, we select the ini-
tialization model trained by the first stage that achieves the
best CIDEr score on validation set. Then SCD-Net is op-
timized with CIDEr score via our guided self-critical se-
quence training for 60 epochs. We fix the batch size and
learning rate as 16 and 0.00001, respectively. At infer-
ence, the time step number and the time difference is set
as 50 and 0, respectively. Five types of evaluation metrics
are adopted: BLEU@N [32] (B@1-4), METEOR [4] (M),
ROUGE [27] (R), CIDEr [39] (C), and SPICE [1] (S). All
the metrics are measured through the source codes released
by COCO Evaluation Server [7].

4.2. Performance Comparison

Offline Evaluation. Table 1 summaries the perfor-
mances of our SCD-Net on the offline COCO Karpathy
test split under two different optimization strategies, i.e.,

the standard cross-entropy loss and the sentence-level op-
timization in CIDEr score. Considering that our SCD-Net
belongs to non-autoregressive image captioning techniques,
here we include two groups of baselines (autoregressive and
non-autoregressive methods).

In general, there is a clear performance gap between the
most state-of-the-art autoregressive and non-autoregressive
baselines under both optimization strategies. The re-
sults basically verify the weakness of non-autoregressive
techniques that incurs word repetition or omissions prob-
lems. In between, even a basic autoregressive Transformer
encoder-decoder model (Transformer [36]) can achieve
comparable performances with the best competitors in non-
autoregressive baselines (Bit Diffusion and SATIC). In
contrast, by constraining the typical diffusion model with
additional semantic prior, our SCD-Net consistently ex-
hibits better performances than autoregressive Transformer
across all metrics. In particular, the CIDEr and SPICE
score of SCD-Net under cross-entropy loss is 118.0% and
21.6%, which manifest the absolute improvement of 4.7%
and 0.6% against autoregressive Transformer, respectively.
This demonstrates the key advantage of our semantic-
conditional diffusion model for image captioning in a non-
autoregressive fashion. Nevertheless, the performances of
our SCD-Net under cross-entropy loss are still inferior to
state-of-the-art autoregressive methods with deliberate de-
signs of upgraded Transformer structures (e.g., attention on
attention in AoANet and meshed memory in M2 Trans-
former). When further equipped with guided self-critical
sequence training, our SCD-Net manages to outperform
the most competitive autoregressive baseline with an up-
graded Transformer structure (M2 Transformer), leading to
slight improvements in CIDEr (0.4%) and SPICE (0.4%).
Such encouraging performances confirm the effectiveness
of guided self-critical sequence training tailored for diffu-
sion model in SCD-Net.

Online Evaluation. In addition, we also evaluate our
SCD-Net on the official testing set by submitting the results
to online testing server1. Table 2 shows the performance
comparisons. It is worthy to note that here we only re-
port the performances of our SCD-Net with single model,
without using any model ensemble as in some baselines
(e.g., APN and AoANet). Similar to the observations in of-
fline evaluation, our SCD-Net again surpasses all the single-
model baselines across most metrics, including both autore-
gressive methods (e.g., SGAE) and non-autoregressive ap-
proach (CMAL). Moreover, the single model of our SCD-
Net even attains comparable performances with the ensem-
ble version of some state-of-the-art autoregressive methods
(e.g., APN). The results basically prove the advantage of
exploiting semantic condition in diffusion model for im-

1https://competitions.codalab.org/competitions/
3221

https://competitions.codalab.org/competitions/3221
https://competitions.codalab.org/competitions/3221


Table 1. Comparison results of SCD-Net with other state-of-the-art autoregressive and non-autoregressive approaches on COCO Karpathy
test split for image captioning. † denotes the use of a superior object detector Pix2seq [5].

Cross-Entropy Loss CIDEr Score Optimization
B@1 B@2 B@3 B@4 M R C S B@1 B@2 B@3 B@4 M R C S

Autoregressive
SCST [35] - - - 30.0 25.9 53.4 99.4 - - - - 34.2 26.7 55.7 114.0 -
RFNet [18] 76.4 60.4 46.6 35.8 27.4 56.5 112.5 20.5 79.1 63.1 48.4 36.5 27.7 57.3 121.9 21.2
Up-Down [2] 77.2 - - 36.2 27.0 56.4 113.5 20.3 79.8 - - 36.3 27.7 56.9 120.1 21.4
GCN-LSTM [45] 77.3 - - 36.8 27.9 57.0 116.3 20.9 80.5 - - 38.2 28.5 58.3 127.6 22.0
LBPF [33] 77.8 - - 37.4 28.1 57.5 116.4 21.2 80.5 - - 38.3 28.5 58.4 127.6 22.0
SGAE [43] 77.6 - - 36.9 27.7 57.2 116.7 20.9 80.8 - - 38.4 28.4 58.6 127.8 22.1
ORT [14] - - - - - - - - 80.5 - - 38.6 28.7 58.4 128.3 22.6
Transformer [36] 76.1 59.9 45.2 34.0 27.6 56.2 113.3 21.0 80.2 64.8 50.5 38.6 28.8 58.5 128.3 22.6
AoANet [17] 77.4 - - 37.2 28.4 57.5 119.8 21.3 80.2 - - 38.9 29.2 58.8 129.8 22.4
M2 Transformer [8] - - - - - - - - 80.8 - - 39.1 29.2 58.6 131.2 22.6

Non-Autoregressive
MNIC [11] 75.4 57.7 42.6 30.9 27.5 55.6 108.1 21.0 - - - - - - - -
MIR [23] - - - 32.5 27.2 - 109.5 20.6 - - - - - - - -
CMAL [13] 78.5 - - 35.3 27.3 56.9 115.5 20.8 80.3 - - 37.3 28.1 58.0 124.0 21.8
SATIC [49] 77.3 - - 32.9 27.0 - 111.0 20.5 80.6 - - 37.9 28.6 - 127.2 22.3
Bit Diffusion † [6] - - - 34.7 - 58.0 115.0 - - - - - - - - -
SCD-Net 79.0 63.4 49.1 37.3 28.1 58.0 118.0 21.6 81.3 66.1 51.5 39.4 29.2 59.1 131.6 23.0

Table 2. Comparison results of SCD-Net with other state-of-the-art approaches on the official test split in online test server.

Model B@1 B@2 B@3 B@4 M R C
c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Ensemble Model
SCST [35] 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7
Up-Down [2] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
RFNet [18] 80.4 95.0 64.9 89.3 50.1 80.1 38.0 69.2 28.2 37.2 58.2 73.1 122.9 125.1
GCN-LSTM [45] 80.8 95.2 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5
APN [42] - - - - - - 38.9 70.2 28.8 38.0 58.7 73.7 126.3 127.6
AoANet [17] 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6

Single Model
CMAL [13] 79.8 94.3 63.8 87.2 48.8 77.2 36.8 66.1 27.9 36.4 57.6 72.0 119.3 121.2
CAVP [29] 80.1 94.9 64.7 88.8 50.0 79.7 37.9 69.0 28.1 37.0 58.2 73.1 121.6 123.8
SGAE [43] 80.6 95.0 65.0 88.9 50.1 79.6 37.8 68.7 28.1 37.0 58.2 73.1 122.7 125.5
SCD-Net 80.2 95.1 64.9 89.3 50.1 80.1 38.1 69.4 29.0 38.2 58.5 73.5 126.2 129.2

age captioning.

Qualitative Analysis. Figure 3 further illustrates the im-
age captioning ground-truths and qualitative results of dif-
ferent approaches for five different images. In general, all
the three methods are able to produce somewhat semanti-
cally relevant and linguistically coherent captions. How-
ever, the explicit modeling of key semantics in an image
is overlooked in Transformer, which might result in word
omissions (e.g., the missing of “blanket” in the first im-
age). Moreover, the non-autoregressive Bit Diffusion some-
times produces low-quality caption with word repetition
problem (e.g., the repetition of “blanket” in the first im-
age). To address these issues, our SCD-Net novelly capi-

talizes on semantic-conditioned diffusion model and guided
self-critical sequence training to facilitate image captioning,
leading to more accurate and descriptive captions.

4.3. Experimental Analysis

Ablation Study. Here we investigate how each design in
our SCD-Net influences the overall image captioning per-
formance on COCO Karpathy test split. Table 3 details
the performances across different ablated runs of SCD-Net.
We start from a base model (Base) that directly leverages
the typical diffusion process as in [6] to train single Dif-
fusion Transformer, which achieves 114.5% in CIDEr un-
der cross-entropy loss. Note that our implemented Base



Transformer: a man doing a trick on a skateboard in the air
Bit Diffusion: a man doing a trick on a skateboard on a street  
SCD-Net: a man doing a trick on a skateboard over a fire hydrant
GT1: a man riding a skateboard over a fire hydrant
GT2: a young man jumping a skateboard over a fire hydrant on a 
city street with tall buildings
GT3: the young skateboarder in the cap is jumping over a fire 
hydrant

Transformer: a black and white cat laying on a bed
Bit Diffusion: a cat laying under a blanket on a blanket  
SCD-Net: a cat laying under a blanket on a bed
GT1: a cat under a blanket looking at something
GT2: a gray tiger cat sleeping on a bed under a blanket
GT3: a cat is peeping out from under a blanket

Transformer: a blue double decker bus parked on the street
Bit Diffusion: a blue double decker bus parked in front of a 
building  
SCD-Net:  a triple decker bus parked in front of a street
GT1: a triple decker purple bus is fenced in
GT2: a large triple deck bus parked on a street
GT3: a purple triple decker passenger bus waits for riders

Transformer: a woman sitting at a table with a pizza 
Bit Diffusion: a woman sitting at a table with a box of pizza
SCD-Net: a woman holding a pizza in a box
GT1: a woman holds an open box of pizza
GT2: a young woman holding a pizza in a box
GT3: a woman is holding a box of pizza

Transformer: a teddy bear sitting on the back of a car
Bit Diffusion: a stuffed teddy bear sitting in the front of a car  
SCD-Net: a stuffed bear sitting in the dashboard of a car
GT1: the small stuffed bear is propped into the car dashboard
GT2: stuffed toy bear sitting on dashboard of motor vehicle
GT3: a small tan teddy bear is wedged into a spot on the 
dashboard of this car

Figure 3. Examples of image captioning results generated by
Transformer [36], Bit Diffusion [6] and our SCD-Net, as well as
the corresponding ground-truths (GT).

Table 3. Ablation study on each design in SCD-Net on COCO
Karpathy test split. Base denotes the conventional diffusion
model. Semantic represents the use of semantic condition in diffu-
sion model. RL refers to the sentence-level optimization in rein-
forcement learning, which can be set as the typical Self-Critical
Sequence Training (SCST) [35] or our proposed Guided SCST
(GSCST). Cascade denotes the use of the cascaded structure.

Base Semantic RL Cascade B@4 M R C S
X 35.9 27.3 57.2 114.5 20.7
X X 36.4 27.8 57.4 116.2 21.2
X X SCST 34.6 27.7 57.1 120.8 21.5
X X GSCST 38.5 29.1 58.6 128.6 22.9
X X GSCST X 39.4 29.2 59.1 131.6 23.0

model is slightly inferior to primary Bit Diffusion (CIDEr:
115.0%) which is equipped with a stronger object detec-
tor. Next, by upgrading conventional diffusion model with
the additional semantic prior (Semantic), we observe clear
performance boosts for such semantic-conditional diffusion
model. When further training our Diffusion Transformer
with sentence-level optimization (RL) via SCST, only the
CIDEr and SPICE scores are slightly improved, while the
other scores even decrease. The results basically reveal
the difficulty of applying SCST to non-autoregressive so-
lution, due to the indisposed sentence quality of randomly
sampled captions in SCST. As an alternative, our Guided
SCST (GSCST) guides the reinforcement learning of Dif-

Table 4. Ablation on different Transformer block number in sin-
gle Diffusion Transformer (without cascaded structure) on COCO
Karpathy test split.

# Transformer Block B@4 M R C S
3 38.5 29.1 58.6 128.6 22.9
4 38.3 29.1 58.5 128.6 23.0
5 38.4 29.0 58.5 128.1 22.9
6 38.2 29.0 58.4 128.1 22.9

Table 5. Ablation on different Diffusion Transformer number in
SCD-Net (with cascaded structure) on COCO Karpathy test split.

# Diffusion Transformer B@4 M R C S
1 38.5 29.1 58.6 128.6 22.9
2 39.4 29.2 59.1 131.6 23.0
3 39.5 29.2 59.1 131.7 23.0

fusion Transformer with high-quality sentence derived from
an autoregressive Transformer teacher model, thereby lead-
ing to significant improvements in terms of all metrics. Fi-
nally, after stacking multiple Diffusion Transformers in a
cascaded manner (Cascade), our SCD-Net obtains the best
image captioning performance.

Ablation on Different Transformer Block Number.
We further examine how image captioning performances
are affected when capitalizing on different numbers of
Transformer blocks in single Diffusion Transformer. As
shown in Table 4, the performances are relatively smooth
when the Transformer block number varies between 3 and
4. When enlarging the block number to 5, the performances
slightly decreases. We speculate that this may be the results
of unnecessary context information mining among the in-
put tokens with more Transformer blocks in visual encoder
and sentence decoder. Accordingly, the Transformer block
number in Diffusion Transformer is set as 3, which achieves
the best performances with less computational cost.

Ablation on Different Diffusion Transformer Num-
ber in SCD-Net. To explore the relationship between
the performance and the Diffusion Transformer number in
SCD-Net, we show the performances by varying this num-
ber from 1 to 3. As listed in Table 5, more stacked Diffusion
Transformer in a cascaded manner generally leads to perfor-
mance improvements. This finding basically highlights the
merit of progressively strengthening the output sentence in
a cascaded fashion. In particular, once the number of Dif-
fusion Transformer is larger than 1, the performances are
less affected, easing the selection of Diffusion Transformer
number in SCD-Net practically. Finally, we empirically set
the Diffusion Transformer number as 2.

5. Conclusion
In this work, we delve into the idea of strengthening

visual-language alignment and linguistical coherence in dif-



fusion model for image captioning. To verify our claim,
we shape a new semantic-conditional diffusion process that
upgrades diffusion model with additional semantic prior.
A guided self-critical sequence training strategy is further
devised to stabilize and boost the diffusion process. We
empirically validate the superiority of our proposal against
state-of-the-art non-autoregressive approaches. At the same
time, we are happy to see that our new diffusion model
based paradigm manages to outperform the competitive au-
toregressive method sharing the same Transformer encoder-
decoder structure. The results basically demonstrate the en-
couraging potential of diffusion model in image captioning.
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