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Abstract

Object detectors often suffer from the domain gap be-
tween training (source domain) and real-world applications
(target domain). Mean-teacher self-training is a powerful
paradigm in unsupervised domain adaptation for object de-
tection, but it struggles with low-quality pseudo-labels. In
this work, we identify the intriguing alignment and syn-
ergy between mean-teacher self-training and contrastive
learning. Motivated by this, we propose Contrastive Mean
Teacher (CMT) – a unified, general-purpose framework
with the two paradigms naturally integrated to maximize
beneficial learning signals. Instead of using pseudo-labels
solely for final predictions, our strategy extracts object-
level features using pseudo-labels and optimizes them via
contrastive learning, without requiring labels in the target
domain. When combined with recent mean-teacher self-
training methods, CMT leads to new state-of-the-art target-
domain performance: 51.9% mAP on Foggy Cityscapes,
outperforming the previously best by 2.1% mAP. Notably,
CMT can stabilize performance and provide more signifi-
cant gains as pseudo-label noise increases.

1. Introduction

The domain gap between curated datasets (source do-
main) and real-world applications (target domain, e.g., on
edge devices or robotic systems) often leads to deteriorated
performance for object detectors. Meanwhile, accurate la-
bels provided by humans are costly or even unavailable in
practice. Aiming at maximizing performance in the target
domain while minimizing human supervision, unsupervised
domain adaptation mitigates the domain gap via adversarial
training [7, 30], domain randomization [23], image transla-
tion [4, 20, 21], etc.

In contrast to the aforementioned techniques that explic-
itly model the domain gap, state-of-the-art domain adaptive
object detectors [5, 27] follow a mean-teacher self-training
paradigm [2, 9], which explores a teacher-student mutual

Code available at https://github.com/Shengcao-Cao/CMT
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Figure 1. Overview of Contrastive Mean Teacher. Top: Mean-
teacher self-training [2, 5, 9, 27] for unsupervised domain adap-
tation (left) and Momentum Contrast [16] for unsupervised rep-
resentation learning (right) share the same underlying structure,
and thus can be naturally integrated into our unified framework,
Contrastive Mean Teacher. Bottom: Contrastive Mean Teacher
benefits unsupervised domain adaptation even when pseudo-labels
are noisy. In this example, the teacher detector incorrectly detects
the truck as a train and the bounding box is slightly off. Rein-
forcing this wrong pseudo-label in the student harms the perfor-
mance. Contrarily, our proposed object-level contrastive learn-
ing still finds meaningful learning signals from it, by enforc-
ing feature-level similarities between the same objects and dis-
similarities between different ones.

learning strategy to gradually adapt the object detector for
cross-domain detection. As illustrated in Figure 1-top, the
teacher generates pseudo-labels from detected objects in the
target domain, and the pseudo-labels are then used to su-
pervise the student’s predictions. In return, the teacher’s
weights are updated as the exponential moving average
(EMA) of the student’s weights.
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Outside of unsupervised domain adaptation, contrastive
learning [3, 6, 14, 16] has served as an effective approach
to learning from unlabeled data. Contrastive learning opti-
mizes feature representations based on the similarities be-
tween instances in a fully self-supervised manner. Intrigu-
ingly, as shown in Figure 1-top, there in fact exist strong
alignment and synergy between the Momentum Contrast
paradigm [16] from contrastive learning and the mean-
teacher self-training paradigm [2, 9] from unsupervised do-
main adaptation: The momentum encoder (teacher detec-
tor) provides stable learning targets for the online encoder
(student detector), and in return the former is smoothly up-
dated by the latter’s EMA. Inspired by this observation,
we propose Contrastive Mean Teacher (CMT) – a unified
framework with the two paradigms naturally integrated. We
find that their benefits can compound, especially with con-
trastive learning facilitating the feature adaptation towards
the target domain from the following aspects.

First, mean-teacher self-training suffers from the poor
quality of pseudo-labels, but contrastive learning does not
rely on accurate labels. Figure 1-bottom shows an il-
lustrative example: On the one hand, the teacher de-
tector produces pseudo-labels in the mean-teacher self-
training framework, but they can never be perfect (other-
wise, domain adaptation would not be needed). The stu-
dent is trained to fit its detection results towards these
noisy pseudo-labels. Consequently, mis-predictions in the
pseudo-labels become harmful learning signals and limit
the target-domain student performance. On the other hand,
contrastive learning does not require accurate labels for
learning. Either separating individual instances [6, 16] or
separating instance clusters [3] (which do not necessarily
coincide with the actual classes) can produce powerful rep-
resentations. Therefore, CMT effectively learns to adapt
its features in the target domain, even with noisy pseudo-
labels.

Second, by introducing an object-level contrastive learn-
ing strategy, we learn more fine-grained, localized repre-
sentations that are crucial for object detection. Tradition-
ally, contrastive learning treats data samples as monolithic
instances but ignores the complex composition of objects
in natural scenes. This is problematic as a natural image
consists of multiple heterogeneous objects, so learning one
homogeneous feature may not suffice for object detection.
Hence, some recent contrastive learning approaches learn
representations at the pixel [35], region [1], or object [38]
levels, for object detection yet without considering the chal-
lenging scenario of domain adaptation. Different from such
prior work, in CMT we propose object-level contrastive
learning to precisely adapt localized features to the target
domain. In addition, we exploit predicted classes from
noisy pseudo-labels, and further augment our object-level
contrastive learning with multi-scale features, to maximize

the beneficial learning signals.
Third, CMT is a general-purpose framework and can be

readily combined with existing work in mean-teacher self-
training. The object-level contrastive loss acts as a drop-
in enhancement for feature learning, and does not change
the original training pipelines. Combined with the most
recent methods (e.g., Adaptive Teacher [27], Probabilistic
Teacher [5]), we achieve new state-of-the-art performance
in unsupervised domain adaptation for object detection.

To conclude, our contributions include:
• We identify the intrinsic alignment and synergy between

contrastive learning and mean-teacher self-training, and
propose an integrated unsupervised domain adaptation
framework, Contrastive Mean Teacher (CMT).

• We develop a general-purpose object-level contrastive
learning strategy to enhance the representation learning
in unsupervised domain adaptation for object detection.
Notably, the benefit of our strategy becomes more pro-
nounced with increased pseudo-label noise (see Figure 3).

• We show that our proposed framework can be combined
with several existing mean-teacher self-training methods
without effort, and the combination achieves state-of-the-
art performance on multiple benchmarks, e.g., improv-
ing the adaptation performance on Cityscapes to Foggy
Cityscapes from 49.8% mAP to 51.9% mAP.

2. Related Work
Unsupervised domain adaptation for object detection.
Unsupervised domain adaptation is initially studied for im-
age classification [12], and recently extended to object de-
tection applications. Adversarial feature learning meth-
ods [7, 30, 36, 40] employ a domain discriminator and train
the feature encoder and discriminator adversarially, so that
domain-invariant visual features can be learned. Image-
to-image translation methods [4, 20, 21] synthesize source-
like images from target-domain contents (or the other way
around) using generative models (e.g., CycleGAN [44])
to mitigate domain gaps. More recently, the idea of
Mean Teacher [33] is extended from semi-supervised ob-
ject detection to unsupervised domain adaptation for ob-
ject detection by [2]. Following this exploration, Unbi-
ased Mean Teacher (UMT) [9] integrates image translation
with Mean Teacher, Adaptive Teacher [27] applies weak-
strong augmentation and adversarial training, and Prob-
abilistic Teacher (PT) [5] improves pseudo-labeling with
uncertainty-guided self-training for both classification and
localization. Though this line of research plays a leading
role in unsupervised domain adaptation for object detec-
tion, the major challenge still comes from the poor quality
of pseudo-labels generated by Mean Teacher. For a com-
prehensive overview of this topic, one may refer to [28].
Contrastive learning. Contrastive loss [15] measures the
representation similarities between sample pairs. Recently,
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contrastive learning successfully powers self-supervised vi-
sual representation pre-training, with the help of a large
batch size [6], memory bank [16], asymmetric architec-
ture [14], or clustering [3]. Self-supervised contrastive
learning has outperformed supervised pre-training in some
settings [34]. To align contrastive pre-training with down-
stream tasks other than image classification (e.g., object
detection, semantic segmentation), more fine-grained ap-
proaches have been proposed based on masks [19, 35], ob-
jects [38], or regions [1]. Our object-level contrastive learn-
ing strategy is inspired by this line of research. Instead of
applying contrastive learning in pre-training visual back-
bones, we study how to improve domain adaptive object
detectors using noisy pseudo-labels and object-level con-
trast. Technically, we construct contrastive pairs using the
predicted classes in pseudo-labels and optimize multi-scale
features, both of which are different from typical object-
level contrastive learning. Recently, contrastive learning is
explored in teacher-student learning for detection [37, 41].
However, our work is the first to analyze the synergy be-
tween Mean Teacher [33] and contrastive learning. More-
over, we present a simple and general framework CMT that
does not rely on negative sample mining or selection.

3. Approach
We introduce our proposed Contrastive Mean Teacher

(CMT) in the following steps. In Section 3.1, we first
describe the mean-teacher self-training paradigm that is
shared by recent methods [2, 5, 9, 27] in unsupervised do-
main adaptation for object detection. Then in Section 3.2,
we connect mean-teacher self-training with Momentum
Contrast [16], a typical contrastive learning method, to
unify them into one framework, Contrastive Mean Teacher
(see Figure 2-left). Finally in Section 3.3, we introduce the
object-level contrastive learning strategy used in CMT (see
Figure 2-right). We include the pseudo-code for CMT in
the supplementary material.

3.1. Mean-teacher Self-training

We build our approach upon recent unsupervised do-
main adaptation methods of the mean-teacher self-training
paradigm. In this section, we summarize the mutual-
learning process in this paradigm.
Overall structure. This paradigm mainly consists of two
detector models of the identical architecture, the teacher and
the student. There is mutual knowledge transfer between
the two, but the two directions of knowledge transfer are
in different forms. Both models take inputs from the target
domain. Figure 1-top-left shows a brief sketch of this mean-
teacher self-training paradigm.
Teacher→ Student knowledge transfer. The teacher first
detects objects in the target-domain input images. Then,
pseudo-labels can be generated from the detection results by

some post-processing (e.g., filtering by confidence scores
and non-maximum suppression). The teacher’s knowledge
is transferred by fitting the student’s predictions towards
these pseudo-labels in the target domain. Standard bound-
ing box regression loss and classification loss are minimized
in this knowledge transfer. To ensure high quality of the
pseudo-labels, the teacher’s inputs are weakly augmented
(e.g., simple cropping and flipping) [5, 27] or translated to
the source-domain style [9]. Meanwhile, the student’s in-
puts are strongly augmented (e.g., blurring and color jitter-
ing) or not translated to the source-domain style.
Student → Teacher knowledge transfer. The student is
updated by minimizing the detection loss with gradient de-
scent. We do not compute gradients for the teacher, though.
The teacher’s weights θT are updated as the exponential
moving average (EMA) of the student’s weights θS :

θT ← αθT + (1− α)θS , (1)

where α ∈ [0, 1) is a momentum coefficient and is usu-
ally large (0.9996 in our setting) to ensure smooth teacher
updates. Therefore, the teacher can be considered as an
ensemble of historical students and provides more stable
learning targets. The teacher is also used as the model for
evaluation, due to its reliable target-domain performance.

3.2. Aligning Mean-teacher Self-training with Mo-
mentum Contrast

In this section, we first briefly introduce Momentum
Contrast (MoCo) [16], and then describe the alignment be-
tween mean-teacher self-training and MoCo.
Momentum Contrast. MoCo is a widely used con-
trastive learning method for unsupervised visual repre-
sentation learning. Figure 1-top-right shows the over-
all pipeline of this method. It has an online encoder
f(·; θQ) and a momentum encoder f(·; θK) that share the
same architecture but have different weights. Each in-
put image Ii is augmented into two different views tQ(Ii)
and tK(Ii), and then fed into the two encoders to pro-
duce features zQi = Normalize

(
f(tQ(Ii); θ

Q)
)

and zKi =

Normalize
(
f(tK(Ii); θ

K)
)
. The online encoder is opti-

mized by minimizing the contrastive loss:

LMoCo = − log
exp(zQi · zKi /τ)∑

j∈D exp(zQi · zKj /τ)
, (2)

where τ > 0 is a temperature hyper-parameter and D is
a memory bank of other image features. The feature pair
⟨zQi , zKi ⟩ in the numerator corresponds to the same original
image, so it is called a positive pair; ⟨zQi , zKj ⟩ is a negative
pair. In MoCo the memory bank contains a large amount
of features generated by the momentum encoder in previ-
ous iterations, but in this work we find only using features
within one image batch is adequate for our task.
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Figure 2. Our proposed Contrastive Mean Teacher (CMT) framework. Left: Mean-teacher self-training paradigm in unsupervised
domain adaptation for object detection. The unsupervised branch uses unlabeled target-domain images and pseudo-labels generated by
the teacher, which is updated by the student’s exponential moving average (EMA), and performs object-level contrastive learning; the
supervised branch uses labeled source-domain images. Right: Object-level contrastive learning strategy. Object-level features can be
extracted from the teacher’s and student’s feature maps using the pseudo-labels. Contrastive loss is enforced for refined feature adaptation.

The weights of the momentum encoder θK is updated as
the EMA of the online encoder’s weights θQ:

θK ← αθK + (1− α)θQ. (3)

Alignment between two paradigms. The mean-teacher
self-training and MoCo share the same intrinsic structure,
though their designated tasks are different (see Figure 1):
• Two networks of the same architecture are learned jointly.

The teacher detector (momentum encoder) is updated as
the EMA of the student detector (online encoder), while
the latter is updated by gradient descent of minimizing the
detection loss (contrastive loss).

• The image needs no label. It is augmented differently
by tS , tT (tQ, tK) into different views. However, the ob-
ject classes and locations (semantic information) stay the
same in two views, so that supervision can be enforced.

• The teacher detector (momentum encoder) produces sta-
ble learning targets, because it evolves smoothly due to a
large α and can be considered as an ensemble of previous
models. In mean-teacher self-training, the teacher’s data
augmentation encourages stable pseudo-labels as well.
Therefore, we can naturally integrate the two paradigms

into one unified framework, Contrastive Mean Teacher
(CMT, as shown in Figure 2). Since our focused task is still
unsupervised domain adaptation for object detection, the
main body of CMT follows the mean-teacher self-training
paradigm as described in Section 3.1, and contrastive learn-
ing is combined into it as a drop-in enhancement for feature
adaptation. Specifically, we introduce an object-level con-
trastive learning strategy in CMT.

3.3. Object-level Contrastive Learning

As described in Section 3.1, the teacher generates
pseudo-labels from target-domain images for the student to

learn. In addition to the supervision at the final prediction
level, we make better use of the pseudo-labels to refine the
features, via object-level contrastive learning.
Extracting object-level features. Both the teacher and
student take the same image batch I from the target do-
main, but may transform I differently as tT (I) and tS(I).
The teacher generates a set of N pseudo-labels for I, in-
cluding bounding boxes B = {B1, . . . , BN} and pre-
dicted classes C = {C1, . . . , CN}. From the input tT (I),
we can extract an intermediate feature map F T from the
teacher’s backbone, and similarly get the student’s feature
map FS . We use RoIAlign [17], a pooling operation for
Regions of Interest (RoI), to extract object-level features
and normalize them following the common practice [6,16]:
zMi = Normalize(ROIAlign(FM, Bi)), where the model
M ∈ {T ,S}. If tT and tS change bounding boxes differ-
ently, we need to transform Bi to align two feature maps.
Class-based contrast. We perform contrastive learning be-
tween the teacher’s and student’s object-level features. In-
spired by supervised contrastive learning [22], we utilize the
teacher’s predicted classes to exploit learning signals from
pseudo-labels. The contrastive loss is formulated as:

Lcontrast =
λcontrast
N

∑N
i=1

−1
|P(i)|

∑
p∈P(i) log

exp(zS
i ·zT

p /τ)∑N
j=1 exp(zS

i ·zT
j /τ)

,

(4)
where the positive pair set P(i) = {p | Cp = Ci, p ∈
{1, . . . , N}} includes all objects of the same predicted class
as object i, and the balancing weight λcontrast > 0 and tem-
perature τ > 0 are hyper-parameters. Lcontrast is added
to all other losses (e.g., supervised source-domain detec-
tion loss, unsupervised target-domain detection loss) in the
mean-teacher self-training method.
Multi-scale features. To provide additional learning sig-
nals, we perform our object-level contrastive learning at
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multiple feature levels of the backbone (e.g., VGG [32],
ResNet [18]). For example for the teacher, we have k fea-
ture maps {F T

1 , . . . , F T
k } of multiple scales. We then scale

bounding boxes accordingly, so that they still correspond
to the same objects, and extract multi-scale features. The
object-level contrastive losses (Equation 4) at multiple lev-
els are added up and optimized together.

4. Experiments

4.1. Datasets and Evaluation

Our proposed approach Contrastive Mean Teacher
(CMT) is evaluated on the following datasets: Cityscapes,
Foggy Cityscapes, KITTI, Pascal VOC, and Clipart1k.
Cityscapes [8] is a dataset of street scenes. It contains 2,975
training images and 500 validation images, collected from
50 cities. For object detection, we use 8 categories and the
bounding boxes are converted from segmentation masks.
Foggy Cityscapes [31] is a dataset synthesized from
Cityscapes by adding fog to the original images. Three
fog levels (0.02, 0.01, 0.005) are simulated corresponding
to different visibility ranges. We use the most challenging
0.02 split as well as all splits in our experiments.
KITTI [13] is another dataset of street scenes, but the data
are collected using cameras and in cities that are different
from Cityscapes. We use the training split of 7,481 images
for domain adaptation, and only consider the car category
shared by both KITTI and Cityscapes.
Pascal VOC [11] is a dataset of 20 categories of common
objects in realistic scenes. We use the training split of Pascal
VOC 2012 containing 11,540 images.
Clipart1k [21] is a dataset of clip art images. It shares the
same categories as Pascal VOC, but the image style differs.
The training and validation splits both have 500 images.

Following prior work, we conduct experiments on three
domain adaptation tasks: From normal weather to adverse
weather (Cityscapes→ Foggy Cityscapes), across different
cameras (KITTI → Cityscapes), and from realistic images
to artistic images (Pascal VOC → Clipart1k). We use the
training splits of both the source domain and the target do-
main in the unsupervised domain adaptation procedure, and
use the validation split of the target domain for performance
evaluation. For comparison, we use the mean average pre-
cision (mAP) metric with the 0.5 threshold for Intersection
over Union (IoU), following the standard practice on the
Pascal VOC object detection benchmark.

We consider two base methods in mean-teacher self-
training: Adaptive Teacher (AT) [27] and Probabilistic
Teacher (PT) [5], since they are state-of-the-art unsuper-
vised domain adaptation methods for object detection. We
combine them with our Contrastive Mean Teacher (CMT)
framework by adding the object-level contrastive learning
objectives to their original adaptation pipelines.

4.2. Implementation Details

For a fair comparison with previous methods, we use
the standard Faster R-CNN object detector [29] with the
VGG-16 [32] (on Cityscapes) or ResNet-101 [18] (on Pas-
cal VOC) backbone as the detection model. As for hyper-
parameters in all experiments, we set the temperature τ =
0.07 (following [16, 22]) and balancing weight λcontrast =
0.05 (around which we observe only minor performance
variations). We extract multi-scale features from the last
4 stages of the backbone networks. Other hyper-parameters
are the same as in the original implementation of AT and
PT. Our implementation is based on Detectron2 [39] and
the publicly available code by AT and PT. Each experiment
is conducted on 4 NVIDIA A100 GPUs.
Post-processing pseudo-labels. For AT, we observe that
some objects are completely erased in the student’s view
due to the strong augmentation of Cutout [10, 43]. In such
cases, it is no longer meaningful to enforce their features to
be similar to those in the teacher’s view. We exclude such
objects by an empirical criterion: In each object bounding
box, we count the pixels where the RGB value difference
between the teacher’s and student’s view is larger than 40.
If the ratio of such pixels is higher than 50%, then the object
is considered as removed by Cutout and not included in our
object-level contrastive learning. This criterion excludes
about one third of all objects. For PT, since the uncertainty-
aware pseudo-labels are represented as categorical distribu-
tions (for classification) and normal distributions (for loca-
tion), we need to post-process them to acquire one-hot class
labels and bounding boxes for our object-level contrast. We
simply take the argmax of the categorical distribution and
only keep labels that are foreground and have a confidence
score higher than 60%. The bounding box is constructed
from the mean (most possible) of the normal distributions.

4.3. Adverse Weather

Object detectors deployed in real-world applications of-
ten face a weather condition that is different from the train-
ing. For example, the quality of input images captured by
cameras may deteriorate when there is rain, snow, or fog.
Such adverse weather conditions can be a great challenge
to the performance of object detectors. Therefore, we apply
domain adaptation methods to overcome this domain shift
from normal weather to adverse weather. In this experi-
ment, we evaluate CMT on the commonly used benchmark
Cityscapes→ Foggy Cityscapes, where the object detector
needs to adapt from a normal weather condition to a foggy
scene with limited visibility.

The results are summarized in Table 1. To ensure a fair
comparison, we provide the results for training and eval-
uating on both the foggiest images (“0.02” split) and all
synthetic images (“All” split) in Foggy Cityscapes. As dis-
cussed in Section 2, the mean-teacher self-training meth-
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Type Method Split person rider car truck bus train motor bike mAP

- Source† 0.02 22.4 26.6 28.5 9.0 16.0 4.3 15.2 25.3 18.4
- Oracle† 0.02 39.5 47.3 59.1 33.1 47.3 42.9 38.1 40.8 43.5

DR DM [23] 0.02 30.8 40.5 40.5 27.2 38.4 34.5 28.4 32.3 34.6
AFL + IT HTCN [4] 0.02 33.2 47.5 47.9 31.6 47.4 40.9 32.3 37.1 39.8
AFL MeGA-CDA [36] 0.02 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8
AFL TIA [42] 0.02 34.8 46.3 49.7 31.1 52.1 48.6 37.7 38.1 42.3
GR SIGMA [25] 0.02 46.9 48.4 63.7 27.1 50.7 35.9 34.7 41.4 43.5

MT + GR MTOR [2] 0.02 30.6 41.4 44.0 21.9 43.4 40.2 31.7 33.2 35.1
MT + IT UMT [9] 0.02 33.0 46.7 48.6 34.1 56.5 46.8 30.4 37.3 41.7
MT PT [5] 0.02 40.2 48.8 59.7 30.7 51.8 30.6 35.4 44.5 42.7
MT PT [5] + CMT (Ours) 0.02 42.3 51.7 64.0 26.0 42.7 37.1 42.5 44.0 43.8 (+1.1)
MT + AFL AT‡ [27] 0.02 45.3 55.7 63.6 36.8 64.9 34.9 42.1 51.3 49.3
MT + AFL AT [27] + CMT (Ours) 0.02 45.9 55.7 63.7 39.6 66.0 38.8 41.4 51.2 50.3 (+1.0)

- Source† All 27.9 33.4 40.4 12.1 23.2 10.1 20.7 30.9 24.8
- Oracle† All 41.2 49.1 61.6 32.6 56.6 49.0 37.9 42.4 46.3

AFL + IT PDA [20] All 36.0 45.5 54.4 24.3 44.1 25.8 29.1 35.9 36.9
AFL ICR-CCR [40] All 32.9 43.8 49.2 27.2 36.4 36.4 30.3 34.6 37.4

MT PT [5] All 43.2 52.4 63.4 33.4 56.6 37.8 41.3 48.7 47.1
MT PT [5] + CMT (Ours) All 45.6 55.1 66.5 34.0 59.4 42.4 43.9 47.4 49.3 (+2.2)
MT + AFL AT‡ [27] All 46.3 55.9 64.3 38.5 61.1 39.3 40.8 52.3 49.8
MT + AFL AT [27] + CMT (Ours) All 47.0 55.7 64.5 39.4 63.2 51.9 40.3 53.1 51.9 (+2.1)

† Results from PT [5]. ‡ Results reproduced using the released code by AT [27] to acquire complete results on the “0.02” split.

Table 1. Domain adaptation from normal weather (Cityscapes) to adverse weather (Foggy Cityscapes). Mean-teacher self-training
(“MT”) methods are leading in unsupervised domain adaptation for object detection, outperforming adversarial feature learning (“AFL”),
image-to-image translation (“IT”), domain randomization (“DR”), and graph reasoning (“GR”) methods. Our proposed Contrastive Mean
Teacher (CMT) consistently improves mean-teacher methods including PT [5] and AT [27] on both splits of Foggy Cityscapes (“0.02” and
“All”), and achieves a new state-of-the-art result of 51.9% mAP. The performance gain of CMT is more significant when more unlabeled
training data are available, revealing its potential in improving real-world applications.

ods [5, 27] are leading unsupervised domain adaptation for
object detection. They not only outperform previous non-
mean-teacher methods, but also surpass the “Oracle” mod-
els, which are directly trained in the target domain using
ground-truth labels that are not available to unsupervised
domain adaptation methods. The reason is that they can
leverage the images in both the source domain and the tar-
get domain, and transfer cross-domain knowledge.

By combining state-of-the-art mean-teacher methods
with our proposed framework CMT, we acquire further per-
formance gain and achieve the best results so far. On both
dataset splits of “0.02” and “All,” we consistently improve
two methods PT [5] and AT [27]. Notably, the combina-
tion of AT + CMT improves the previous best performance
(from AT) by +1.0% mAP on the “0.02” split and +2.1%
mAP on the “All” split. We observe a relatively larger gain
from CMT on the “All” split than the “0.02” split, and this
demonstrates a strong ability to learn robust features from
more unlabeled data: In real-world applications, we can
obtain abundant unlabeled data but labeling them can be

costly. We hope that domain adaptation methods can per-
sistently improve target-domain performance as unlabeled
training data grow, and CMT is exactly fitted for this role.

4.4. Across Cameras

Real-world sensors like cameras have drastically differ-
ent configurations (e.g., intrinsic parameters, resolutions),
and such differences can adversely affect the deployed ob-
ject detectors. In addition, Cityscapes is collected from
multiple cities different from KITTI, so the street scenes
exhibit more diversity and bring more challenge to this
task. We evaluate CMT on the KITTI → Cityscapes do-
main adaptation benchmark to study its effectiveness in
cross-camera adaptation. Following the practice of previ-
ous work, we only train and evaluate object detectors for the
common category “Car” shared by KITTI and Cityscapes.
The results are compared in Table 2. The mean-teacher self-
training method PT outperforms all previous methods by a
large margin (about 15% AP). Moreover, when combined
with our proposed CMT framework, PT receives an addi-
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Method AP (Car) Gain w.r.t. Source

Source† 40.3 -
Oracle† 66.4 -

MeGA-CDA [36] 43.0 +2.7
TIA [42] 44.0 +3.7
SIGMA [25] 45.8 +5.5

PT [5] 60.2 +19.9
PT [5] + CMT (Ours) 64.3 (+4.1) +24.0

† Results from PT [5].

Table 2. Domain adaptation between datasets captured by dif-
ferent cameras (from KITTI to Cityscapes). Mean-teacher self-
training method PT [5] outperforms other methods by a large mar-
gin, and our CMT further boosts the target-domain performance by
4.1% AP. The resulting object detector performs almost as well as
a detector directly trained using target-domain labels (“Oracle”).

tional 4.1% AP performance improvement.

4.5. Realistic to Artistic

We also study a domain adaptation task with different
image styles, from realistic images to artistic images. Here
we use Pascal VOC as the source domain dataset, which
contains images captured in natural scenes. The object de-
tector is adapted to the target domain of Clipart, an artis-
tic image dataset, without any human supervision. Table 3
shows the results in this domain adaptation task. The com-
bination of AT + CMT improves AT by 1.3% mAP, and out-
performs the previous best TIA [42] by 0.7% mAP.

4.6. Analysis and Ablation Study

In this section, we provide additional experimental re-
sults to understand the source of performance gain in
our proposed approach CMT. We use the challenging
Cityscapes → Foggy Cityscapes benchmark (“All” split)
as an example, and conduct experiments with AT [27] and
PT [5] base methods.
Noise in pseudo-labels. One benefit of contrastive learn-
ing is that it does not require accurate class labels. By
discriminating each individual instance [6, 16] or clusters
of instances [3], contrastive learning optimizes their visual
representations. Two facts are worth noting in contrastive
learning: 1) A pair of instances from the same class may
form a negative pair and thus are pushed apart. 2) A clus-
ter of instances found by learned features may not coincide
with an actual class defined by humans, and instances in it
are still pulled together. Yet, contrastive learning can still
acquire robust and reliable visual representation for down-
stream tasks. This observation suggests that contrastive
learning is tolerant to noisy pseudo-labels.

To demonstrate our object-level contrastive learning in
CMT can extract beneficial learning signals from pseudo-
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Figure 3. Impact of pseudo-label noise on Foggy Cityscapes
target-domain performance. Shadows depict the standard devi-
ation across three runs. Baseline AT suffers from injected noise
(implemented by randomly perturbing class labels). CMT helps
recover the accuracy from noisy pseudo-labels and reduce perfor-
mance instability.

labels even if they are noisy, we design the following ana-
lytical experiment: In each training iteration of AT, we man-
ually perturb the pseudo-labels generated by the teacher be-
fore using them for the contrastive loss and detection loss.
Specifically, for a fraction (ranging from 20% to 100%) of
the predicted objects, we re-assign a random class label to
them. Thus, the quality of pseudo-labels is affected by the
injected noise and will harm the domain adaptation pipeline.

The results of this analytical experiment are shown in
Figure 3. As we inject more noise into the pseudo-labels,
the target-domain performance of AT drops considerably.
The accuracy does not decrease to a random-prediction
level, because the model still receives correct supervision
from source-domain labels. By contrast, CMT utilizes
object-level contrastive learning to combat the pseudo-label
noise and partially recover the target-domain performance
from two aspects: First, CMT reduces performance vari-
ance across multiple runs, resulting in greater stability in
the presence of noisy pseudo-labels. Specifically, CMT
reduces the standard deviation of performance from 1.4%
to 0.4% when the level of noise is at 1.0. Second, as the
level of pseudo-label noise increases, CMT provides larger
performance gains. For example, when the injected noise
increases from 0.0 to 1.0, the mean performance gain in-
creases from +2.0% to +2.8%. This phenomenon demon-
strates that our object-level contrastive learning is able to
exploit helpful information from pseudo-labels with noise
for unsupervised domain adaptation.
Components in object-level contrastive learning. As de-
scribed in Section 3.3, our object-level contrastive learning
has two design choices for exploiting the pseudo-labels: 1)
class-based contrast, and 2) multi-scale features. Here, we
dissect these components and use the example of PT + CMT
on Cityscapes → Foggy Cityscapes to observe the perfor-
mance gain from each component.

7



Method aero bike bird boat bottle bus car cat chair cow table dog horse motor prsn plant sheep sofa train tv mAP

Source† 23.0 39.6 20.1 23.6 25.7 42.6 25.2 0.9 41.2 25.6 23.7 11.2 28.2 49.5 45.2 46.9 9.1 22.3 38.9 31.5 28.8
Oracle† 33.3 47.6 43.1 38.0 24.5 82.0 57.4 22.9 48.4 49.2 37.9 46.4 41.1 54.0 73.7 39.5 36.7 19.1 53.2 52.9 45.0

ICR-CCR [40] 28.7 55.3 31.8 26.0 40.1 63.6 36.6 9.4 38.7 49.3 17.6 14.1 33.3 74.3 61.3 46.3 22.3 24.3 49.1 44.3 38.3
HTCN [4] 33.6 58.9 34.0 23.4 45.6 57.0 39.8 12.0 39.7 51.3 20.1 20.1 39.1 72.8 61.3 43.1 19.3 30.1 50.2 51.8 40.3
DM [23] 25.8 63.2 24.5 42.4 47.9 43.1 37.5 9.1 47.0 46.7 26.8 24.9 48.1 78.7 63.0 45.0 21.3 36.1 52.3 53.4 41.8
UMT [9] 39.6 59.1 32.4 35.0 45.1 61.9 48.4 7.5 46.0 67.6 21.4 29.5 48.2 75.9 70.5 56.7 25.9 28.9 39.4 43.6 44.1
TIA [42] 42.2 66.0 36.9 37.3 43.7 71.8 49.7 18.2 44.9 58.9 18.2 29.1 40.7 87.8 67.4 49.7 27.4 27.8 57.1 50.6 46.3

AT‡ [27] 33.1 66.1 35.3 44.9 57.5 44.9 51.0 5.8 59.5 54.9 34.6 23.5 64.3 84.0 75.4 51.5 17.1 30.3 43.3 37.2 45.7
AT [27] + CMT (Ours) 39.8 56.3 38.7 39.7 60.4 35.0 56.0 7.1 60.1 60.4 35.8 28.1 67.8 84.5 80.1 55.5 20.3 32.8 42.3 38.2 47.0 (+1.3)

† Results from AT [27]. ‡ Results reproduced using the released code by AT [27].

Table 3. Domain adaptation from realistic images (Pascal VOC) to artistic images (Clipart1k). Our CMT improves upon AT [27] and
achieves the new best overall accuracy of 47.0% mAP.

Method Class-based Multi-scale mAP Gain
Contrast Features w.r.t. PT

PT - - 47.1 -

✗ ✗ 47.8 +0.7
PT + CMT ✗ ✓ 48.2 +1.1
(Ours) ✓ ✗ 48.7 +1.6

✓ ✓ 49.3 +2.2

Table 4. Ablation study of components in object-level con-
trastive learning. Our proposed CMT improves the performance
of PT in the Foggy Cityscapes target domain. There are two
key designs in our object-level contrastive learning: 1) contrast-
ing object-level features based on the predicted classes in pseudo-
labels (Equation 4), and 2) learning multi-scale features from var-
ious backbone stages. Class-based contrast brings more perfor-
mance gain as compared with multi-scale features, and their com-
bination leads to a further improvement.

We summarize the results in Table 4. The vanilla object-
level contrastive learning without the two additional designs
is already helpful to PT, demonstrating its effectiveness in
feature adaptation. Class-based contrast brings more per-
formance gain than learning multi-scale features (+1.6% vs.
+1.1% mAP). Furthermore, when the two designs function
jointly, an additional performance gain is achieved.
Qualitative results. Finally, we provide some detec-
tion visualizations to intuitively demonstrate the benefit of
CMT. We compare AT and AT + CMT on the challeng-
ing Cityscapes→ Foggy Cityscapes benchmark. As shown
in Figure 4, the better object-level representations learned
by CMT assist the detector to distinguish foreground object
categories and better locate them. More high-resolution vi-
sualization is presented in the supplementary material.

5. Conclusion

In this work, we identify the intrinsic alignment be-
tween contrastive learning and mean-teacher self-training,
and propose Contrastive Mean Teacher, an integrated unsu-
pervised domain adaptation framework. Extensive experi-

Figure 4. Qualitative results. We compare the detection results of
AT (left) and AT + CMT (right) on Foggy Cityscapes. CMT fixes
errors of mis-classification (row 1, the train), false negative (row
2, the truck), and false positive (row 3, the person-like sculptures),
and improves the localization (row 4, the train).

ments show that our object-level contrastive learning con-
sistently improves several existing methods and achieves
state-of-the-art results on multiple benchmarks. There are
several interesting future directions: 1) developing unsu-
pervised domain adaptation methods for more challeng-
ing real-world data with diverse types of domain shifts, 2)
selecting or prioritizing objects in object-level contrastive
learning according to their significance, and 3) integrat-
ing contrastive learning with source-free domain adapta-
tion [24, 26].
Acknowledgement. This work was supported in part by the IBM-Illinois
Discovery Accelerator Institute, NSF Grant 2106825, NIFA Award 2020-
67021-32799, and the NCSA Fellows program. This work used NVIDIA
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A. Additional Visualization Results
We present more high-resolution visualization to compare the baseline Adaptive Teacher (AT) [27] and our AT + CMT

qualitatively on the Pascal VOC→ Clipart1k benchmark in Figure 5, and on the Cityscapes→ Foggy Cityscapes benchmark
in Figure 6. Each pair of images show results by AT (top) and AT + CMT (bottom).

(a) CMT detects the bird missed by the base-
line.

(b) CMT avoids detecting the moon and star as
bird and aeroplane.

(c) CMT detects the boat and birds missed by
the baseline.

(d) CMT detects the motorbike missed by the
baseline.

(e) CMT fixes the mis-classification of the mo-
torbike.

(f) CMT detects the persons missed by the
baseline.

Figure 5. Additional qualitative results from Clipart1k. In the visualized images, AT (top in each sub-figure) makes some incorrect
predictions, while AT + CMT (bottom in each sub-figure) can correct them.
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(a) CMT detects the car in the mirror and distant persons. (b) CMT fixes the mis-classification of the train.

(c) CMT provides a more precise bounding box of the train. (d) CMT detects the truck missed by the baseline.

(e) CMT fixes the mis-classification of the bus. (f) CMT avoids detecting the sculptures as real persons.

Figure 6. Additional qualitative results from Foggy Cityscapes. In the visualized images, AT (top in each sub-figure) makes some
incorrect predictions, while AT + CMT (bottom in each sub-figure) can correct them.
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B. Pseudo-code for Contrastive Mean Teacher
In Algorithm 1, we present a pseudo-code outline of our Contrastive Mean Teacher (CMT) framework. The key difference

between CMT and a traditional Mean Teacher (MT) [33] framework is highlighted.

Algorithm 1: Contrastive Mean Teacher

Input: Object detectors: Student D(·; θQ) and Teacher D(·; θK). For consistency with prior work, we use letter Q
for student-related variables, and K for teacher-related ones. We denote their feature extraction modules as
f(·; θQ) and f(·; θK). Hyper-parameters: Momentum α in exponential moving average (EMA), pseudo-label
score threshold γ, temperature τ in contrastive loss, loss weights λcontrast, λunsup det, λsup det, and learning rate η.

Output: Student D(·; θQ) and Teacher D(·; θK) after unsupervised domain adaptation.
1 for iteration← 1 to Tmax iterations do

// 1. Load data mini-batch
2 Get batch of source-domain labeled images I labeled, corresponding bounding boxes Blabeled, and classes C labeled

3 Get batch of target-domain unlabeled images Iunlabeled

4 Student’s strong augmentation: I labeled,Q = tQ(I labeled), Iunlabeled,Q = tQ(Iunlabeled)

5 Teacher’s weak augmentation: I labeled,K = tK(I labeled), Iunlabeled,K = tK(Iunlabeled)
// 2. Update Teacher

6 Update Teacher by EMA: θK = αθK + (1− α)θQ

// 3. Pseudo-label
7 Generate pseudo-labels with Teacher detector: Bunlabeled, Cunlabeled = Filter

(
D(Iunlabeled,K; θK), γ

)
// 4. Compute multi-scale feature maps
// In practical implementation, feature maps are obtained from forward

passes needed for pseudo-labels and unsupervised detection loss, so
there is no computation overhead.

8 Compute Student’s features: FQ = f(Iunlabeled,Q; θQ)

9 Compute Teacher’s features: FK = f(Iunlabeled,K; θK)
// 5. Unsupervised branch: object-level contrastive loss

10 (Optional) Post-processing pseudo-labels: Bunlabeled, Cunlabeled = PostProc(Bunlabeled, Cunlabeled)

11 Get number of objects: N = len(Bunlabeled)
// Each level of multi-scale features

12 for k ← 1 to Kmax levels do
// Each object

13 for i← 1 to N do
14 Locate Student’s object-level features: zQk,i = Normalize(ROIAlign(FQ

k , Bunlabeled
i ))

15 Locate Teacher’s object-level features: zKk,i = Normalize(ROIAlign(FK
k , Bunlabeled

i ))

16 Compute contrastive loss according to Equation 4:

Lcontrast,k = Lcontrast

(
{zQk,1, . . . , z

Q
k,N}, {zKk,1, . . . , zKk,N}, {Cunlabeled

1 , . . . , Cunlabeled
N }, τ

)
17 Compute total contrastive loss: Lcontrast =

∑Kmax levels
k=1 Lcontrast,k

// 6. Unsupervised branch: detection loss
18 Compute unsupervised detection loss: Lunsup det = Ldet(D(Iunlabeled,Q; θQ),Bunlabeled, Cunlabeled)

// 7. Supervised branch: detection loss
19 Compute supervised detection loss: Lsup det = Ldet(D(I labeled,Q; θQ),Blabeled, C labeled)

// 8. Optimize
20 Compute total loss: L = λcontrastLcontrast + λunsup detLunsup det + λsup detLsup det

21 Take SGD step: θQ = θQ − η∇θQL
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