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Abstract

Radiography imaging protocols focus on particular body
regions, therefore producing images of great similarity
and yielding recurrent anatomical structures across pa-
tients. To exploit this structured information, we propose
the use of Space-aware Memory Queues for In-painting and
Detecting anomalies from radiography images (abbreviated
as SQUID). We show that SQUID can taxonomize the in-
grained anatomical structures into recurrent patterns; and
in the inference, it can identify anomalies (unseen/modified
patterns) in the image. SQUID surpasses 13 state-of-the-
art methods in unsupervised anomaly detection by at least 5
points on two chest X-ray benchmark datasets measured by
the Area Under the Curve (AUC). Additionally, we have cre-
ated a new dataset (DigitAnatomy), which synthesizes the
spatial correlation and consistent shape in chest anatomy.
We hope DigitAnatomy can prompt the development, eval-
uation, and interpretability of anomaly detection methods.

1. Introduction

Vision tasks in photographic imaging and radiogra-
phy imaging are different. For example, when identify-
ing objects in photographic images, we assume translation
invariance—a cat is a cat no matter if it appears on the left
or right of the image. In radiography imaging, on the other
hand, the relative location and orientation of a structure are
important characteristics that allow the identification of nor-
mal anatomy and pathological conditions [20,83]. Since ra-
diography imaging protocols assess patients in a fairly con-
sistent orientation, the generated images have great similar-
ity across various patients, equipment manufacturers, and
facility locations (see examples in Figure 1d). The consis-
tent and recurrent anatomy facilitates the analysis of numer-
ous critical problems and should be considered a significant
advantage for radiography imaging [85]. Several investiga-
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Figure 1. Anomaly detection in radiography images can be both
easier and harder than in photographic images. It is easier be-
cause radiography images are spatially structured due to consistent
imaging protocols. It is harder because anomalies in radiography
images are subtle and require medical expertise to annotate.

tions have demonstrated the value of this prior knowledge in
enhancing Deep Nets’ performance by adding location fea-
tures, modifying objective functions, and constraining co-
ordinates relative to landmarks in images [3, 47, 49, 69, 86].
Our work seeks to answer this critical question: Can we
exploit consistent anatomical patterns and their spatial in-
formation to strengthen Deep Nets’ detection of anomalies
from radiography images without manual annotation?

Unsupervised anomaly detection only uses healthy im-
ages for model training and requires no other annotations
such as disease diagnosis or localization [5]. As many as
80% of clinical errors occur when the radiologist misses the
abnormality in the first place [7]. The impact of anomaly
detection is to reduce that 80% by clearly pointing out to ra-
diologists that there exists a suspicious lesion and then hav-
ing them look at the scan in depth. Unlike previous anomaly
detection methods, we formulate the task as an in-painting
task to exploit the anatomical consistency in appearance,
position, and layout across radiography images. Specif-
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ically, we propose Space-aware Memory Queues for In-
painting and Detecting anomalies from radiography images
(abbreviated as SQUID). During training, our model can
dynamically maintain a visual pattern dictionary by taxono-
mizing recurrent anatomical patterns based on their spatial
locations. Due to the consistency in anatomy, the same body
region across healthy images is expected to express similar
visual patterns, which makes the total number of unique pat-
terns manageable. During inference, since anomaly patterns
do not exist in the dictionary, the generated radiography im-
age is expected to be unrealistic if an anomaly is present.
As a result, the model can identify the anomaly by discrim-
inating the quality of the in-painting task. The success of
anomaly detection has two basic assumptions [89]: first,
anomalies only occur rarely in the data; second, anomalies
differ from the normal patterns significantly.

We have conducted experiments on two large-scale, pub-
licly available radiography imaging datasets. Our SQUID
is significantly superior to predominant methods in unsuper-
vised anomaly detection by over 5 points on the ZhangLab
dataset [32]; remarkably, we have demonstrated a 10-point
improvement over 13 recent unsupervised anomaly detec-
tion methods on the Stanford CheXpert dataset [29]. In
addition, we have created a new dataset (DigitAnatomy)
to elucidate spatial correlation and consistent shape of
the chest anatomy in radiography (see Figure 1c). Digi-
tAnatomy is dedicated to easing the development, eval-
uation, and interpretability of anomaly detection methods.
The qualitative visualization clearly shows the superiority
of our SQUID over the current state-of-the-art methods.

In summary, our contributions include: (I) the best per-
forming unsupervised anomaly detection method for chest
radiography imaging; (II) a synthetic dataset to promote
anomaly detection research; (III) SQUID overcomes lim-
itations in dominant unsupervised anomaly detection meth-
ods [1, 17, 35, 61, 82] by inventing Space-aware Memory
Queue (§3.2), and Feature-level In-painting (§3.3).

2. Related Work

Anomaly detection in natural imaging. Anomaly detec-
tion is the task of identifying rare events that deviate from
the distribution of normal data [52]. Early attempts include
one-class SVM [64], dictionary learning [81], and sparse
coding [11]. Due to the lack of sufficient samples of anoma-
lies, later works typically formulate anomaly detection as an
unsupervised learning problem [13,26,27,37,38,42,57,67,
90]. These can be roughly categorized into reconstruction-
based and density-based methods. Reconstruction-based
methods train a model (e.g. Auto-Encoder) to recover the
original inputs [9, 66, 71, 77, 87, 88] and identify anomalies
by analyzing reconstruction errors. Density-based methods
predict anomalies by estimating the normal data distribu-
tion (e.g. via VAEs [35] or GANs [2, 61, 62]). However,

the learned distribution for normal images by these meth-
ods cannot explain the possible abnormalities. In this pa-
per, we address these limitations by maintaining a visual
pattern memory from homogeneous medical images. Sev-
eral other previous works investigated the use of image in-
painting for anomaly detection, i.e. parts of the input image
are masked out, and the model is trained to recover the miss-
ing parts in a self-supervised way [22, 40, 51, 56, 79]. There
are also plenty of works on detecting anomalies in video
sequences [15, 45, 46]. Bergmann et al. [6] and Salehi et
al. [59] proposed similar student-teacher networks, whereas
our method utilizes such a structure to distillate input-aware
features only, and the teacher network is completely dis-
abled during inference.

Anomaly detection in medical imaging. Anomaly detec-
tion in the medical domain is usually approached on a per-
pathology basis. Supervised learning based methods [5, 44,
63] are commonly adopted to detect specific types of abnor-
malities, such as lesions [91], pathologies [33], tumors [4],
and nodules [84]. Recent unsupervised methods have been
proposed to detect anomalies in general [5, 25, 66], With
the help of GANs, anomaly detection can be achieved with
weak annotations. In AnoGAN [62], the discriminator was
heavily over-fitted to the normal image distribution to de-
tect the anomaly. Subsequently, f-AnoGAN [61] was pro-
posed to improve computational efficiency. Marimont et
al. [50] designed an auto-decoder network to fit the distribu-
tion of normal images. The spatial coordinates and anomaly
probabilities are mapped over a proxy for different tissue
types. Han et al. [21] proposed a two-step GAN-based
framework for detecting anomalies in MRI slices as well.
However, their method relies on a voxel-wise representa-
tion for the 3D MRI sequences, which is impossible in our
task. Most recently, a hybrid framework SALAD [82] was
proposed that combines GAN with self-supervised tech-
niques. Normal images are first augmented to carry the
forged anomaly through pixel corruption and pixel shuf-
fling. The fake abnormal images, along with the original
normal ones, are fed to the GAN for learning more ro-
bust feature representations. However, these approaches
demand strong prior knowledge and assumptions about the
anomaly type to make the augmentation effective. Differing
from photographic images, radiography imaging protocols
produce images with consistent anatomical patterns, which
are much more challenging to detect due to subtle imaging
clues and overlapping anatomic structures (Figure 1). Un-
like most existing works, we present a novel method that ex-
plicitly harnesses the radiography images’ properties, dra-
matically improving the performance in anomaly detection
from radiography images.

Memory networks. Incorporating memory modules into
neural networks has been demonstrated to be effective for
many tasks [8, 16, 31, 36, 39]. Adopting Memory Matrix
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Figure 2. SQUID. We divide an input image into N ×N non-overlapping patches and feed them into the encoder for feature extraction.
Two generators will be trained to reconstruct the original image. Along with the reconstruction, a dictionary of anatomical patterns will
be created and updated dynamically via a novel Memory Queue (§3.2); The teacher generator directly uses the features extracted by the
encoder; the student generator uses the features augmented by our in-painting block (§3.3). The teacher and student generators are coupled
through a knowledge distillation paradigm. We employ a discriminator to assess whether the image reconstructed by the student generator
is real or fake. Once trained, it can also be used to detect anomalies in test images (§3.4).

for unsupervised anomaly detection was first proposed in
MemAE [17]. In addition to auto-encoding (AE), an extra
Memory Matrix was introduced between the encoder and
the decoder to capture normal feature patterns during train-
ing. The matrix is jointly optimized along with the AE and
hence learns an essential basis to be able to assemble nor-
mal patterns. Based on this paradigm, Park et al. [53] in-
troduced a non-learnable memory module that can be up-
dated with inputs. Note that although our proposed Mem-
ory Queue also does not require any gradients, our method
differs significantly in its usage purpose and updating rules.
Considering the extra memory usage in existing methods,
Lv et al. [48] proposed a dynamic prototype unit that en-
codes normal dynamics on the fly, while consuming little
additional memory. In this paper, we overcome the limi-
tations of the Memory Matrix and propose an effective yet
efficient Memory Queue for unsupervised anomaly detec-
tion in radiography images.

3. SQUID

3.1. Overview

(1) Feature extraction. We divide the input image into
N ×N non-overlapping patches and feed them into an en-
coder for feature extraction. The extracted features will be
used for image reconstruction. Practically, the encoder can
be any backbone architectures [14,70]; we adopt basic Con-
volutions and Pooling layers in this work for simplicity.

(2) Image reconstruction. We introduce teacher and stu-
dent generators to reconstruct the original image. Along

with the reconstruction, a dictionary of anatomical pat-
terns will be created and updated dynamically as a Mem-
ory Queue (§3.2). Specifically, the teacher generator di-
rectly reconstructs the image using the features extracted
by the encoder (essentially an auto-encoder [58]). The stu-
dent generator, on the other hand, using the features aug-
mented by our in-painting block (§3.3). The teacher and
student generators are coupled through a knowledge distil-
lation paradigm [28] at all of the up-sampling levels. The
objective of the student generator is to reconstruct a normal
image from the augmented features, which will then be used
for anomaly discrimination (§3.4); while the teacher gener-
ator1 serves as a regularizer that prevents the student from
constantly generating the same normal image.

(3) Anomaly discrimination. Following the adversarial
learning [61, 62], we employ a discriminator to assess
whether the generated image is real or fake. Only the stu-
dent generator will receive the gradient derived from the
discriminator. The two generators and the discriminator are
competing against each other until they converge to an equi-
librium. Once trained, the discriminator can be used to de-
tect anomalies in test images (§3.4).

3.2. Inventing Memory Queue as Dictionary

Motivation. The Memory Matrix was introduced by Gong
et al. [17] and has since been widely adopted in unsuper-
vised anomaly detection [18, 45, 78]. To forge a “normal”
appearance, features are augmented by weighted averaging

1We disabled the backpropagation between the teacher and encoder by
stop-gradient [23] and showed its empirical benefit in Table 2.
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Figure 3. Space-aware memory. For unique encoding of location
information, we restrict each patch to be only accessible by a non-
overlapping region in the memory.

the similar patterns in Memory Matrix. This augmentation
is, however, applied to the features extracted from the whole
image, discarding the spatial information in images. There-
fore, the Memory Matrix in its current form cannot perceive
the anatomical consistency as in radiography images.
Space-aware memory. To harness the spatial information,
we pass the divided small patches, instead of the whole
image, into the model. These patches are associated with
unique location identifiers of the original image. We seek to
build the relationship between the patch location and mem-
ory region, by restricting the search space in Memory Ma-
trix to the patch-corresponded non-overlapping segments
only. That is, a patch at a particular location can only ac-
cess a corresponding segment in the whole Memory Matrix
(illustrated in Figure 3). We refer to this new strategy as
“space-aware memory” because it enables explicit encod-
ing of the spatial information into Memory Matrix. Space-
aware memory can also accelerate the augmentation speed
compared with [17] as it no longer goes through the entire
Memory Matrix to assemble similar features.
Memory queue. In learning-based Memory Matrix [17],
“normal patterns” are forged by combining learned basis
in the matrix. However, there is always a distribution dis-
crepancy between the basic combinations and the actual im-
age features. This disparity makes it hard for the subse-
quent image generation. To address this issue, we propose
a Memory Queue to store real image features during model
training, therefore presenting an identical distribution to the
image features. Specifically, it directly copies previously
seen features into a queue structure during training2. Once
trained, Memory Queue can be used as a dictionary of nor-
mal anatomical patterns. In Figure 4, we show t-SNE vi-
sualizations to validate that the learned basis in Memory
Matrix (blue dots) distributes differently from the actual im-
age features of the training set (gray dots). In contrast, the
stored image features in our Memory Queue (red dots) are

2In practice, copying features into the queue at every training iteration
demands considerable computational time. Supposing N patterns in the
queue and M training iterations, the sampling strategy in [17] demands
an O(NM) time complexity. We implement it more efficiently: at each
iteration, the current batch of features will be copied into the queue for
only once (Figure 5c), yielding a linear complexity of O(M + cM) with
the copy-and-paste operation in a constant time c. We follow the first-in-
first-out (FIFO) paradigm to update the queue continuously.

Figure 4. t-SNE visualizations of patterns in Memory Matrix,
Memory Queue, and patch features of the training samples [73].
Patterns in the Memory Matrix are far away from the distribution
of patch features, while patterns in the Memory Queue (as copies
of previously seen features) share a similar distribution.

in an identical distribution to the actual ones.
Gumbel shrinkage. Controlling the number of activated
patterns in the memory has proven to be advantageous for
anomaly detection [17,19]. However, setting a hard shrink-
age threshold fails to adapt to cases where no suitable en-
tries can be found in the memory. One natural workaround
is to activate the top-k similar patterns in the memory. How-
ever, this strategy restricts the gradient flow to only the top-
k memory entries, while the rest inactivated ones could not
receive any gradients and be updated as expected. To ex-
tend gradients to all patterns in the memory, inspired by
Jang [30], we present a Gumbel Shrinkage schema:

w′ = sg(hs(w,topk(w))− φ(w)) + φ(w), (1)

where w denotes the similarity between the image features
and entries in Memory, sg(·) the stop-gradient operation,
hs(·, t) the hard shrinkage operator with threshold t, and
φ(·) the Softmax function. In the forward pass, Gumbel
Shrinkage ensures the combination of the top-k most sim-
ilar entries in the memory; During the back-propagation,
Gumbel Shrinkage essentially functions as Softmax. We ap-
ply Gumbel Shrinkage to both Memory Queue and Memory
Matrix in our framework.

3.3. Formulating Anomaly Detection as In-painting

Motivation. Image in-painting [41, 54] was initially pro-
posed to recover corrupted image regions with neighbor-
ing context. Following the above intuition, we propose to
achieve anomaly detection via in-painting anomalous radio-
graphy patterns into healthy ones. When in-painting pix-
els in the image space, recovered regions have been usu-
ally seen to associate with boundary artifacts, particularly
when using Deep Nets [43]. These undesired artifacts are
responsible for numerous false positives when formulating
anomaly detection as a pixel-level in-painting task [66, 87].
To alleviate this issue, we achieve the in-painting task at
the feature level instead. Latent features are better invariant
to pixel-level noise, rotation, and translation, therefore are
more suitable for subsequent anomaly detection.
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Figure 5. Three-step workflow of our in-painting block. (a) Each non-overlapping patch feature F is queried to a unique region in
Memory Queue, and the most similar items are assembled to N . (b) Each center patch feature F and its eight neighbors N are used as
query and key/value, respectively, to a Transformer layer for in-painting. (c) Each Memory Queue region copies its corresponding patch
features F into the memory by maintaining a pointer. Note that this step is only performed during training.

In-painting block. We integrate our Memory Queue in-
side a novel in-painting block to perform feature-space
in-painting. The block starts with a Memory Queue
that augments w × h non-overlapping patch features
F{(1,1),··· ,(w,h)} into their most similar “normal” patterns
N{(1,1),··· ,(w,h)} (Figure 5a). Since N is assembled by fea-
tures extracted from previous training data, N is not sub-
ject to the current input image. To recap the characteristics
of the input image, we aggregate both patch features F and
their augmented featuresN using a transformer block [74].
In details, for each patch Fi,j , its spatially adjacent eight
augmented ones N{(i−1,j−1),··· ,(i+1,j+1)} are used as con-
ditions to refine Fi,j (Figure 5b). The query token of the
transformer block is flattened F(i,j) ∈ R1×∗ and key/value
tokens are N{(i−1,j−1),··· ,(i+1,j+1)} ∈ R8×∗. At the start
and the end of our in-painting block, we apply an extra pair
of point-wise convolutions (1×1 convolutional kernel) [24].

Masked shortcut. We employ a shortcut within the in-
painting block to better aggregate features and ease opti-
mization. Our empirical study shows that a direct residual
connection downgrades the effectiveness of the in-painting
block (Appendix B). Inspired by Xiang et al. [76], we uti-
lize a random binary mask to gate shortcut features during
training (Figure 5b). As such, given the input patch features
F , the output of the in-painting block is obtained by:

F ′ = (1− δ) · F + δ · inpaint(F), (2)

where inpaint(·) is the designed in-painting block, δ ∼
Bernoulli(ρ) is a binary variable with ρ the gating probabil-
ity. After obtaining F ′ at each training step, the originally
F are then copied to update the memory (Figure 5c). Dur-
ing inference, we disable the shortcut completely such that
F ′ = inpaint(F) for deterministic predictions.

3.4. Anomaly Discrimination

Our discriminator can detect anomalies by assessing the
quality of the reconstructions—normal if realistic; abnor-
mal otherwise. It is because the generator was trained on

normal images, so Memory Queues only store normal pat-
terns. During inference, since abnormal patterns were never
present in Memory Queues, the reconstructed image is ex-
pected to appear unrealistic.

Our in-painting block focuses on augmenting any patch
feature (either normal or abnormal) into similar “normal”
features. The student generator then reconstructs a “nor-
mal” image based on the “normal” features. The teacher
generator is used to prevent the student from generating
the same image regardless of inputs. Once trained, the se-
mantic (rather than pixel-level) difference between the input
and the student generator’s reconstructed image is expected
to be small if normal and big otherwise. We, therefore,
delegate the optimized discriminator network for alerting
anomalies perceptually. For better clarification, we notate
the encoder, teacher generator, student generator, and dis-
criminator as E, Gt, Gs, and D. An anomaly score A can
be computed through: A = φ(D(Gs(E(I)))−µ

σ ), where φ(·)
is the Sigmoid function, µ and σ are the mean and standard
deviation of anomaly scores calculated on training samples.

3.5. Loss Function

SQUID is optimized by five loss functions. The mean
square error (MSE) between input and reconstructed im-
ages is used for both teacher and student generators. Con-
cretely, Lt = (I −Gt(E(I)))2 and Ls = (I −Gs(E(I)))2

for the teacher and student generators, respectively, where
I denotes the input image. Following the knowledge dis-
tillation paradigm, we apply a distance constraint between
the teacher and student generators to all levels of features:
Ldist =

∑l
i=1(F it − F is )2, where l is the level of features

used for knowledge distillation, Ft and Fs are the interme-
diate features in the teacher and student generators, respec-
tively. In addition, we employ an adversarial loss (similar
to DCGAN [55]) to improve the quality of the image gen-
erated by the student generator. Specifically, the following
equation is minimized: Lgen = log(1−D(Gs(E(I)))). The
discriminator seeks to maximize the average of the proba-
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Figure 6. Reconstruction results on DigitAnatomy. Our
feature-level in-painting is more robust to amplified noise and
pixel variance than the existing pixel-level in-painting methods.
More visualization can be found in Appendix D.

bility for real images and the inverted probability for fake
images: Ldis = log(D(I)) + log(1 − D(Gs(E(I)))). In
summary, SQUID is trained to minimize the generative loss
terms (λtLt + λsLs + λdistLdist + λgenLgen) and to maximize
the discriminative loss term (λdisLdis).

4. Experiments
4.1. New Benchmark

DigitAnatomy. We have created a synthetic dataset to ver-
ify our main idea, wherein the human anatomy is translated
into Arabic digits one to nine in an in-grid placement (see
examples in Figure 1 and Figure 6). The images containing
digits in the correct order are considered “normal”; other-
wise, they are considered “abnormal”. The types of sim-
ulated abnormalities include missing, misordered, flipped,
and zero digit(s). DigitAnatomy is particularly advanta-
geous for radiography imaging for three reasons. First, it
simulates two unique properties of radiography images, i.e.
spatial correlation and consistent shape. Second, annotat-
ing radiography images demands specialized expertise, but
digits are easier for problem debugging. Third, the ground
truth of the simulated anomaly is readily accessible in Digi-
tAnatomy, whereas it is hard to collect sufficient examples
for each abnormal type in radiography images. The pseu-
docode for creating DigitAnatomy is in Appendix C.

4.2. Public Benchmarks

ZhangLab Chest X-ray [32]. This dataset contains healthy
and pneumonia (as anomaly) images, officially split into
training and testing sets. The training set consists of 1,349

Table 1. Benchmark results on the test sets of the two datasets.

ZhangLab Ref & Year AUC (%) Acc (%) F1 (%)
Auto-Encoder - 59.9 63.4 77.2
VAE [35] Arxiv’13 61.8 64.0 77.4
Ganomaly [1] ACCV’18 78.0 70.0 79.0
f-AnoGAN [61] MIA’19 75.5 74.0 81.0
MemAE [17] ICCV’19 77.8±1.4 56.5±1.1 82.6±0.9
MNAD [53] CVPR’20 77.3±0.9 73.6±0.7 79.3±1.1
SALAD [82] TMI’21 82.7±0.8 75.9±0.9 82.1±0.3
CutPaste [40] CVPR’21 73.6±3.9 64.0±6.5 72.3±8.9
PANDA [56] CVPR’21 65.7±1.3 65.4±1.9 66.3±1.2
M-KD [59] CVPR’21 74.1±2.6 69.1±0.2 62.3±8.4
IF 2D [50] MICCAI’21 81.0±2.8 76.4±0.2 82.2±2.7
PaDiM [12] ICPR’21 71.4±3.4 72.9±2.4 80.7±1.2
IGD [10] AAAI’22 73.4±1.9 74.0±2.2 80.9±1.3
SQUID - 87.6±1.5 80.3±1.3 84.7±0.8

CheXpert Ref & Year AUC (%) Acc (%) F1 (%)
Ganomaly [1] ACCV’18 68.9±1.4 65.7±0.2 65.1±1.9
f-AnoGAN [61] MIA’19 65.8±3.3 63.7±1.8 59.4±3.8
MemAE [17] ICCV’19 54.3±4.0 55.6±1.4 53.3±7.0
CutPaste [40] CVPR’21 65.5±2.2 62.7±2.0 60.3±4.6
PANDA [56] CVPR’21 68.6±0.9 66.4±2.8 65.3±1.5
M-KD [59] CVPR’21 69.8±1.6 66.0±2.5 63.6±5.7
SQUID - 78.1±5.1 71.9±3.8 75.9±5.7

normal and 3,883 abnormal images; the testing set has 234
normal and 390 abnormal images. We randomly separate
200 images (100 normal and 100 abnormal) from the train-
ing set as the validation set for hyper-parameter tuning. We
resized all the images to 128× 128.

Stanford CheXpert [29]. We conducted evaluations on the
front-view PA images in the CheXpert dataset, which ac-
count for a total of 12 different anomalies. In all front-view
PA images, there are 5,249 normal and 23,671 abnormal
images for training; 250 normal and 250 abnormal images
(with at least 10 images per disease type) from the train-
ing set were used for testing. We used the same hyper-
parameters found in the ZhangLab experiments.

4.3. Baselines and Metrics

We considered a total number of 13 major baselines for
direct comparison: Auto-Encoder, VAE [35]—the classic
UAD methods; Ganomaly [1], f-AnoGAN [61], IF [50],
SALAD [82]—the current state of the arts for medical
imaging; and MemAE [17], CutPaste [40], M-KD [60],
PANDA [56], PaDiM [12], IGD [10]—the most recent
UAD methods. We evaluated performance using standard
metrics: Receiver Operating Characteristic (ROC) curve,
Area Under the ROC Curve (AUC), Accuracy (Acc), and
F1-score (F1). Unless explicitly specified, we trained all
models from scratch for at least three times independently.

4.4. Implementation Details

We utilized common data augmentation strategies such
as random translation within the [−0.05,+0.05] range and
a random scaling of [0.95, 1.05]. The Adam [34] optimizer
was used with a batch size of 16 and a weight decay of 1e-
5. The learning rate was initially set to 1e-4 for both the
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(a) ZhangLab Chest X-ray (b) Stanford CheXpert

Figure 7. ROC curves comparison on the two datasets.

generator and the discriminator and then decayed to 2e-5 in
1000 epochs following the cosine annealing scheduler. The
discriminator is trained at every iteration, while the gener-
ator is trained every two iterations. We set loss weights as
λt = 0.01, λs = 10, λdist = 0.001, λgen = 0.005, and
λdis = 0.005. We divide the input images in 2 × 2 non-
overlapping patches, fix the shortcut mask probability at
ρ = 95%, and activate only the top 5 similar patterns in the
Gumbel Shrinkage. The impact of these hyper-parameters
is studied in §5.3. The architectures of our generators and
discriminator are detailed in Appendix A.

5. Results
5.1. Interpreting SQUID on DigitAnatomy

Figure 6 presents qualitative results on DigitAnatomy
to examine the capability of image reconstruction and to in-
terpret the mistakes made by existing methods [1, 17, 61].
We deliberately inject anomalies (e.g. novel, misordered,
missing digits) into normal images (highlighted in light
blue) and test if the model can reconstruct their normal
counterparts. To raise the task difficulty, we also assess
the reconstruction quality from a blank image (as an ex-
treme case). In general, the images reconstructed by our
SQUID carry more meaningful and indicative information
than other baseline methods. It is mainly attributed to our
space-aware memory, with which the resulting dictionary
is associated with unique patterns as well as their spatial
information. Once an anomaly arises (e.g. missing digit),
the in-painting block will augment the abnormal feature to
its normal counterpart by assembling top-k most similar
patterns from the dictionary. Other methods, however, do
not possess this ability, so they reconstruct defective im-
ages. For instance, GAN-based methods (f-AnoGAN and
Ganomly) tend to reconstruct an exemplar image averaged
from the training examples. MemAE performs relatively
better due to its Memory Matrix, but it does not work well
for the anomaly of missing digits and completely fails on
the extreme anomaly attack.

Figure 8. Reconstruction results of SQUID on the two datasets,
associated with the corresponding anomaly scores (defined in
§3.4). A larger score indicates a higher probability of being ab-
normal. More visualization can be found in Appendix D.

5.2. Benchmarking SQUID on Chest Radiography

Our SQUID was mainly evaluated on two large-scale
benchmarks: ZhangLab Chest X-ray and Stanford CheX-
pert and compared with a wide range of state-of-the-art
counterparts. According to Table 1, SQUID achieves the
most promising result on all metrics for both datasets.
Specifically, SQUID outperforms the runner-up counter-
parts by at least 5% in AUC, 5% in Accuracy. The high-
est F1 scores SQUID achieved, along with the ROC curves
shown in Figure 7, demonstrate that our method yields the
best trade-off between sensitivity and specificity. Over-
all, the significant improvements observed with SQUID
proved the effectiveness of our proposed techniques in this
work. In Figure 8, we visualize the reconstruction results of
SQUID on exemplary normal and abnormal images in the
two datasets. For normal cases, SQUID can easily find a
similar match in Memory Queue, achieving the reconstruc-
tion smoothly. For abnormal cases, the contradiction will
arise by imposing forged normal patterns into the abnormal
features. In this way, the generated images will vary sig-
nificantly from the input, which will then be captured by
the discriminator. We plot the heatmap of the discriminator
(using Grad-CAM [65]) to indicate the most likely regions
to appear anomalous. As a result, the reconstructed healthy
images yield much lower anomaly scores than the diseased
ones, validating the effectiveness of SQUID.

Limitation. We found SQUID in its current form, is not
able to localize anomalies at the pixel level precisely. It
is understandable because our SQUID is an unsupervised
method, requiring zero manual annotation for normal/ab-
normal images, unlike [60, 68, 72, 75, 80]. Those methods
that compute pixel-level residuals for anomaly detection
suffer from amplified noise in the input and reconstructed
output. Our in-painting strategy, however, is performed at
the feature level and is more robust to pixel-level variance.

5.3. Ablating Key Properties in SQUID

Component study. We examine the impact of components
in SQUID by taking each one of them out of the entire
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Table 2. Performance benefits from all the components in SQUID.

Method AUC (%) Acc (%) F1 (%)
w/o Space-aware Memory 77.6±0.5 75.5±0.5 82.5±0.6
w/o In-painting Block 80.9±2.1 75.8±1.5 81.6±1.3
w/o Gumbel Shrinkage 81.1±0.9 77.6±0.9 81.3±0.8
w/o Knowledge Distillation 81.2±0.8 75.2±0.7 81.3±0.8
w/o Stop Gradient 81.7±4.3 76.7±2.8 82.5±1.6
w/o Memory Queue 82.5±1.1 78.6±0.9 81.7±1.1
w/o Masked Shortcuts 82.5±1.3 76.4±0.8 82.3±1.1
w/o Decoder Memory 82.9±1.2 77.4±1.1 81.2±0.5
Full SQUID 87.6±1.5 80.3±1.3 84.7±0.8

Figure 9. Hyper-parameter ablations.

framework. Table 2 shows that each component accounts
for at least 5% performance gain. The space-aware mem-
ory (+10.0%) and in-painting block (+6.7%) are the top
2 most significant contributors, which underline our mo-
tivation and justification of the method development (§3.2
and §3.3). Although replacing Memory Queue with Mem-
ory Matrix could maintain a decent result (only dropped
5.1%), our Memory Queue presents a more trustworthy re-
covery of “normal” patterns in the image than Memory Ma-
trix (MemAE [17]), evidenced by Figure 6.

Hyper-parameter robustness. After selecting the best
hyper-parameters on the validation set, we here report the
inference results on the testing set to study the robustness
of different hyper-parameters in Figure 9. When input im-
ages are divided into a single patch, space-aware settings
are not triggered, therefore yielding the worst performance.
Although the spatial structures are relatively stable in most
chest radiography, certain deviations can still be observed.
Therefore, with small patches, object parts in one patch
can easily appear in adjacent patches and be misdetected
as anomalies. The number of topK activations in Gumbel
softmax also impacts the performances. According to the
AUC vs. the number of patterns in each Memory Queue re-
gion, we found that a small number of items is sufficient to
support normal pattern querying in local regions. The best
result is achieved by merely 200 items per region. When
the item number exceeds 500 per region, AUC scores begin
to drop continuously. AUC vs. the mask probability ρ was

100 90 80 70 60 50
Disease-free sample ratio (%)

45

65

85

AU
C 

(%
)
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Figure 10. Results of mixing normal/abnormal training samples.

further plotted to verify that enabling a limited number of
feature skips (ρ = 95%) yields the best AUC score. The
effectiveness of the in-painting will severely deteriorate if
more features are allowed to be skipped (ρ < 90%).
Disease-free training requirement? Unsupervised meth-
ods for medical anomaly detection are uncommon because
the so-called UAD methods are not “unsupervised”—they
must be trained on disease-free images only (e.g. [5]). In
practice, cleaning up disease-free images relies on man-
ual annotation (essentially, image-level healthy/diseased la-
bels). With disease-free sample ratio in the training set
ranging from 100% to 50%, we have compared the ro-
bustness of SQUID with three competitive baselines (Cut-
Paste [40], PANDA [56] and M-KD [60]). Figure 10 re-
marks that our proposed memory queue can tolerate the
disease/healthy training ratio up to 50% by automatically
omitting minority anatomical patterns. In contrast, CutPaste
drops significantly as the percentage of normal images de-
creases; PANDA and M-KD can maintain the performance
due to the use of pre-trained features. Interestingly, M-KD
with mixed data even outperforms its vanilla training set-
ting, although with considerable fluctuations.

6. Conclusion
We present SQUID for unsupervised anomaly detec-

tion from radiography images. Qualitatively, we show that
SQUID can taxonomize the ingrained anatomical structures
into recurrent patterns; and in the inference, SQUID can
identify anomalies accurately. Quantitatively, SQUID is
superior to predominant methods by over 5 points AUC on
the ZhangLab dataset and 10 points AUC on the Stanford
CheXpert dataset. The outstanding results are attributable
to our observation: Radiography imaging protocols focus
on particular body regions, therefore producing images of
great similarity and yielding recurrent anatomical struc-
tures across patients. We synthesized the DigitAnatomy
dataset to resemble key attributes of chest anatomy in radio-
graphy images for prompting future method development.
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A. Architectures of SQUID

Our SQUID consists of an encoder, a student (main)
generator, a teacher generator, and a discriminator. All of
the network architectures are built with plain convolution,
batch normalization, and ReLU activation layers only. The
architecture details of the encoder are shown in Table 3. For
an input radiography image (sized of 128×128), we first di-
vide it into 2×2 non-overlapping patches (sized of 64×64).
The encoder then extracts the patch features.

As mentioned in §3.1, the student and teacher generators
were constructed identically. The only difference is that ad-
ditional Memory Matrices are placed in the student gener-
ator. The architecture details of the student generator are
shown in Table 4. Skip connections from the encoder are
only enabled at such levels that Memory Matrices are used.
After the last Memory Matrix, the non-overlapping patches
are put back as a whole for further reconstruction.

As shown in Table 5, the discriminator was constructed
in a more lightweight style. Note that the images are dis-
criminated at their full resolution (i.e. 128×128) rather than
in patches.

Table 3. Encoder structure in SQUID.

Level #Channels Resolution
Input 1 (2× 2)× (64× 64)
1 32 (2× 2)× (32× 32)
2 64 (2× 2)× (16× 16)
3 128 (2× 2)× (8× 8)
4 256 (2× 2)× (4× 4)

Table 4. Student and teacher generator structures in SQUID. S&M
denotes the usage of skip connections and Memory Matrix. Note
that there is no Memory Matrix placed in the teacher generator.

Level #Channels w/ S&M Resolution
4 256 X (2× 2)× (4× 4)
3 128 X (2× 2)× (8× 8)
2 64 32× 32
1 32 64× 64
Output 1 128× 128

Table 5. Discriminator structure in SQUID.

Level #Channels Resolution
Input 1 128× 128
1 16 64× 64
2 32 32× 32
3 64 16× 16
4 128 8× 8
5 128 4× 4
Output 1 1× 1

B. Additional Results
B.1. Extensive Ablation Studies

In this section, we ablate three components in SQUID to
fully validate their necessity and effectiveness.

Table 6. The extensive results indicate that all proposed techniques
in SQUID are essential for a high overall performance.

Method AUC (%) Acc (%) F1 (%)
Convolution Layers 76.9±3.3 74.2±3.3 80.7±2.7
Transformer Layers (∆) ↑10.7 ↑6.1 ↑4.0
Soft Masked Shortcut 79.7±3.4 76.1±2.7 80.7±2.3
Hard Masked Shortcut (∆) ↑7.9 ↑4.2 ↑4.0
Pixel-level In-painting 79.1±0.4 74.4±1.6 81.3±0.9
Feature-level In-painting (∆) ↑8.5 ↑5.9 ↑3.4
Full SQUID 87.6±1.5 80.3±1.3 84.7±0.8

(1) Convolutional vs. Transformer Layers: In our pro-
posed in-painting block, a transformer layer is used to ag-
gregate the encoder extracted patch features, and the Mem-
ory Queue augmented “normal” features. However, one
may wonder if a simple convolution layer can also suf-
fice. We conducted experiments by replacing the trans-
former layer with a convolutional layer while preserving
other structures.
(2) Soft vs. Hard Masked Shortcuts: In our proposed
masked shortcut, skipped and in-painted features are aggre-
gated using a binary gating mask. The intuitive question
is whether such “hard” gating is necessary and a weighted
“soft” addition can also achieve comparable results. To this
end, instead of following Eq. 2, we conducted experiments
by aggregating the patch features F through:

F ′ = (1− ρ) · F + ρ · inpaint(F), (3)

where ρ was set to 95%, same as the best setting in SQUID.
(3) Pixel-level vs. Feature-level In-painting: As dis-
cussed in §3.3, raw images usually contain larger noise
and artifacts than features, so we proposed to achieve the
in-painting at the feature level rather than at the image
level [41, 54, 87]. To validate our claim, we have con-
ducted experiments on carrying out the in-painting at the
pixel level. Instead of using a transformer layer to in-paint
the extracted patch features, we randomly zeroed out parts
of the input patches with 25% probability and let SQUID
in-paint the distorted input images. All other settings and
objective functions remain unchanged.
Summary: The results of the above three additional abla-
tive experiments are presented in Table 6. Without using
the transformer layer, masked shortcut, and feature-level
in-painting as proposed, the AUC, Acc, and F1 scores de-
creased by at least 8%, 4%, and 3%, respectively, compared
with the full SQUID setting.

B.2. Patch-MemAE

MemAE [17] with Memory Matrix is the primary base-
line that we considered in this work. To further verify
the effectiveness of our proposed space-aware setting, we
trained additional MemAE models on patches segmented
from different spatial location of input images. These mul-
tiple space-specific models were trained separately with
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Table 7. We apply space-specific strategy to one of the strongest
counterparts (MemAE [17]). In addition, the ensemble of spatial-
aware models demands a higher degree of computational costs
(4× more than ours), while our work proposed to encode this spa-
tial information into the feature dictionary, ultimately requiring
only one model—its efficiency is pronounced.

Method AUC (%) Acc (%) F1 (%)
MemAE [17] 77.8±1.4 56.5±1.1 82.6±0.9
Patch-MemAE (∆) ↑0.5 ↑18.5 ↓1.3
Full SQUID 87.6±1.5 80.3±1.3 84.7±0.8

their unique space-specific patches and were then evaluated
through an ensemble style to compare with our SQUID.
The results are reported in Table 7.

The results of the this experiment indicate that although
improvements can be observed on AUC and Acc, such
space-specific ensemble upgrade still performs inferior than
SQUID. Moreover, we found such ensemble of models de-
mands a much higher degree of computational costs (4×
more than ours), while in our work, we proposed to en-
code this spatial information into the feature dictionary, ul-
timately requiring only one model. Both effectiveness and
efficiency are pronounced.

C. Creating DigitAnatomy

The pseudocode of creating our new benchmark dataset
(DigitAnatomy in §4.1) is provided in Algorithm 1. In
practice, we have implemented the algorithm into an off-
the-shelf data loader that can be amended to many other
different datasets (e.g. SVHN, CIFAR, ImageNet).

D. Visualization Results

D.1. Visualizations on DigitAnatomy

More reconstruction results of SQUID and the compared
methods [1, 17, 61] are shown in Figure 11. Our obser-
vations from these additional results are aligned with the
ones discussed in §5.1. SQUID can capture every appear-
ing anomaly (highlighted in light blue) in the images and
augment them back to the normal closest forms. On the con-
trary, although MemAE restores the normal digits the best,
it is limited in detecting a few anomaly types (e.g. misor-
dered and missing digits). Ganomaly is not able to perfectly
recover the normal digits and also cannot generate mean-
ingful reconstructions on the abnormal ones. f-AnoGAN,
on the other hand, memorizes and generates an exemplary
normal pattern that fails to respond to different inputs.

D.2. Visualizations on Chest Radiography

Figure 12 and Figure 13 show more reconstruction re-
sults of our SQUID on the ZhangLab Chest X-ray and Stan-
ford CheXpert datasets. We observed that our method is ca-

Algorithm 1 Creating DigitAnatomy

# a function to pick random digit instances
def pick_random(class, single_digits):

# random pick an image with size: [28, 28]
pick_digit = random.choice(single_digits[class])
return pick_digit

# load MNIST digits with shape: [10, 1000, 28, 28]
single_digits = load_MNIST()

# all possible conditions
conditions = [’normal’, ’missing’,\

’misorder’, ’flipped’, ’novel’]

output = torch.zeros(3, 28, 3, 28)

# loop over digit 1-9 in order
for idx in range(1,10):

# randomly pick a condition
condition = random.choice(conditions)

if condition == ’normal’:
digit = pick_random(idx, single_digits)

# anatomy of missing digit
elif condition == ’missing’:

digit = torch.zeros(28,28)
# anatomy of disorder digit
elif condition == ’misorder’:

ridx = randrom.randint(1,10)
digit = pick_random(ridx, single_digits)

# anatomy of flipped digit
elif condition == ’flipped’:

digit = pick_random(idx, single_digits)
digit = digit[::-1,::-1]

# anatomy of novel digit
elif condition == ’novel’:

digit = pick_random(0, single_digits)

output[idx // 3, :, idx % 3, :] = digit

# combine all patches together
output = output.view(28 * 3, 28 * 3)

pable of translating the input image to its “normal” counter-
part and assigning larger anomaly scores to abnormal cases.

When inputting normal images, SQUID will try to re-
construct the inputs as well as possible. Due to the usage of
memory modules, our framework could hardly degenerate
to function as an identity mapping from inputs to outputs.
Therefore, the reconstruction of normal inputs cannot per-
fectly recover every single detail.

When inputting abnormal images, SQUID will make
larger impacts by combining previously seen normal fea-
tures together into such abnormal ones. Since the generator
is not trained on such hybrid features, the reconstruction re-
sults could demonstrate more obvious artifacts and blurs.

After our framework converges, the optimized discrimi-
nator can perceptually capture such inconsistencies between
reconstructed normal and abnormal images and achieve
anomaly detection.
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Figure 11. Comparisons of reconstruction results on DigitAnatomy of our SQUID, f-AnoGAN [61], Ganomaly [1], and MemAE [17].
Anomalies are highlighted in light blue.
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Figure 12. Reconstruction results of SQUID on the ZhangLab Chest X-ray dataset. The corresponding Grad-CAM heatmaps along with
anomaly scores are shown as well.

Figure 13. Reconstruction results of SQUID on the Stanford CheXpert dataset. Different disease types are separated into different rows.
The corresponding Grad-CAM heatmaps along with anomaly scores are shown as well.
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