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Abstract

The main challenge in domain generalization (DG) is to
handle the distribution shift problem that lies between the
training and test data. Recent studies suggest that test-time
training (TTT), which adapts the learned model with test
data, might be a promising solution to the problem. Gen-
erally, a TTT strategy hinges its performance on two main
factors: selecting an appropriate auxiliary TTT task for up-
dating and identifying reliable parameters to update during
the test phase. Both previous arts and our experiments in-
dicate that TTT may not improve but be detrimental to the
learned model if those two factors are not properly consid-
ered. This work addresses those two factors by proposing
an Improved Test-Time Adaptation (ITTA) method. First, in-
stead of heuristically defining an auxiliary objective, we pro-
pose a learnable consistency loss for the TTT task, which con-
tains learnable parameters that can be adjusted toward bet-
ter alignment between our TTT task and the main prediction
task. Second, we introduce additional adaptive parameters
for the trained model, and we suggest only updating the adap-
tive parameters during the test phase. Through extensive ex-
periments, we show that the proposed two strategies are ben-
eficial for the learned model (see Figure 1), and ITTA could
achieve superior performance to the current state-of-the-art
methods on several DG benchmarks. Code is available at
https://github.com/liangchen527/ITTA.

1. Introduction

Recent years have witnessed the rapid development of
deep learning models, which often assume the training and
test data are from the same domain and follow the same
distribution. However, this assumption does not always hold
in real-world scenarios. Distribution shift among the source
and target domains is ubiquitous in related areas [35], such
as autonomous driving or object recognition tasks, resulting
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Figure 1. Performance improvements from the proposed two strate-
gies (i.e. introducing a learnable consistency loss and including
additional adaptive parameters to improve TTT) for the baseline
model (i.e. ResNet18 [30] with existing augmentation strategy [75]).
Experiments are conducted on the PACS dataset [37] with the leave-
one-out setting. Following [27], we use 60 sets of random seeds
and hyper-parameters for each target domain. The reported average
accuracy and error bars verify the effectiveness of our method.

in poor performances for delicately designed models and
hindering the further application of deep learning techniques.

Domain generalization (DG) [2,8,16,23,24,31,38–40,40,
44, 47, 51, 52, 69], designed to generalize a learned model to
unseen target domains, has attracted a great deal of attention
in the research community. The problem can be traced back
to a decade ago [7], and various approaches have been pro-
posed to push the DG boundary ever since. Those efforts in-
clude invariant representation learning [28,47,49,58], adver-
sarial learning [23,40,44,69], augmentation [9,41,42,66,75],
or meta-learning [2, 16, 38, 39]. Despite successes on certain
occasions, a recent study [27] shows that, under a rigorous
evaluation protocol, most of these arts are inferior to the
baseline empirical risk minimization (ERM) method [61].
This finding is not surprising, as most current arts strive to
decrease the distribution shift only through the training data
while overlooking the contributions from test samples.

Recently, the test-time training (TTT) technique [60] has
been gaining momentum for easing the distribution shift
problem. TTT lies its success in enabling dynamic tuning
of the pretrained model with the test samples via an auxil-
iary TTT task, which seems to be a promising effort when
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confronting data from different domains. However, TTT
is not guaranteed to improve the performance. Previous
arts [46, 63] indicate that selecting an appropriate auxiliary
TTT task is crucial, and an inappropriate one that does not
align with the main loss may deteriorate instead of improv-
ing the performance. Meanwhile, it is pointed out in [63]
that identifying reliable parameters to update is also essential
for generalization, which is in line with our experimental
findings in Sec. 5.3. Both of these two tasks are non-trivial,
and there are limited efforts made to address them.

This paper aims to improve the TTT strategy for better
DG. First, different from previous works that empirically
define auxiliary objectives and assume they are aligned with
the main task, our work does not make such assumptions.
Instead, we suggest learning an appropriate auxiliary loss
for test-time updating. Specifically, encouraged by recent
successes in multi-view consistency learning [13,26,29], we
propose to augment the consistency loss by adding learn-
able parameters based on the original implementation, where
the parameters can be adjusted to assure our TTT task can
be more aligned with the main task and are updated by en-
forcing the two tasks share the same optimization direction.
Second, considering that identifying reliable parameters to
update is an everlasting job given the growing size of current
deep models, we suggest introducing new adaptive param-
eters after each block during the test phase, and we only
tune the new parameters by the learned consistency loss
while leaving the original parameters unchanged. Through
extensive evaluations on the current benchmark [27], we
illustrate that the learnable consistency loss performs more
effectively than the self-supervised TTT tasks adopted in
previous arts [60, 63], and by tuning only the new adaptive
parameters, our method is superior to existing strategies that
update all the parameters or part of them.

This work aims to ease the distribution shift problem by
improving TTT, and the main contributions are three-fold:

• We introduce a learnable consistency loss for test-time
adaptation, which can be enforced to be more aligned
with the main loss by tuning its learnable parameters.

• We introduce new adaptive parameters for the trained
model and only update them during the test phase.

• We conduct experiments on various DG benchmarks
and illustrate that our ITTA performs competitively
against current arts under the rigorous setting [27] for
both the multi-source and single-source DG tasks.

2. Related Works
2.1. Domain Generalization.

Being able to generalize to new environments while de-
ploying is a challenging and practical requirement for cur-
rent deep models. Existing DG approaches can be roughly

categorized into three types. (1) Invariant representation
learning: The pioneering work [5] theoretically proves that
if the features remain invariant across different domains,
then they are general and transferable to different domains.
Guided by this finding, [47] uses maximum mean discrep-
ancy (MMD) to align the learned features, and [25] proposes
to use a multi-domain reconstruction auto-encoder to obtain
invariant features. More recently, [58] suggests maximiz-
ing the inner product of gradients from different domains
to enforce invariance, and a similar idea is proposed in [52]
where these gradients are expected to be similar to their
mean values. (2) Optimization algorithms: Among the
different optimization techniques adopted in DG, prevail-
ing approaches resort to adversarial learning [23, 40, 44, 69]
and meta-learning [2, 16, 38, 39]. Adversarial training is
often used to enforce the learned features to be agnostic
about the domain information. In [23], a domain-adversarial
neural network (DANN) is implemented by asking the main-
stream feature to maximize the domain classification loss.
This idea is also adopted in [44], where adversarial training
and an MMD constraint are employed to update an auto-
encoder. Meanwhile, the meta-learning technique is used
to simulate the distribution shifts between seen and unseen
environments [2, 16, 38, 39], and most of these works are
developed based on the MAML framework [20]. (3) Aug-
mentation: Most augmentation skills applied in the general-
ization tasks are operated in the feature level [34, 41, 48, 75]
except for [11,66,68] which mix images [68] or its phase [66]
to synthesize new data. To enable contrastive learning, we
incorporate an existing augmentation strategy [75] in our
framework. This method originated from AdaIN [32], which
synthesizes new domain information by mixing the statistics
of the features. Similar ideas can be found in [42, 48].

2.2. Test-Time Training and Adaptation

Test-Time Training (TTT) is first introduced in [60]. The
basic paradigm is to employ a test-time task besides the
main task during the training phase and update the pre-
trained model using the test data with only the test-time
objective before the final prediction step. The idea is empir-
ically proved effective [60] and further developed in other
related areas [3, 10,12,14, 21, 22, 43,56,63, 65, 73, 74]. Most
current works focus on finding auxiliary tasks for updat-
ing during the test phase, and the efforts derive from self-
supervion [3, 10, 21, 22, 43, 60], meta-learning [65, 73, 74],
information entropy [63], pseudo-labeling [12, 14], to name
a few. However, not all empirically selected test-time tasks
are effective. A recent study [46] indicates that only when
the auxiliary loss aligns with the main loss can TTT improve
the trained model. Inspired by that, we propose a learnable
consistency loss and enforce alignment between the two ob-
jectives. Results show that our strategy can be beneficial for
the trained model (see Figure 1).
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Figure 2. Training process of ITTA. We use x from the source
domain as input for the feature extractor fθ(·) to obtain the repre-
sentation z and its augmented version z′, where the augmentation
skill from [75] is applied. The classifier fϕ(·) and weight subnet-
work fw(·) are used to compute the main loss Lmain and learnable
consistency loss Lwcont. Please refer to our text for details.

Meanwhile, [63] suggests that auxiliary loss is not the
only factor that affects the performance. Selecting reliable
parameters to update is also crucial within the TTT frame-
work. Given the large size of current models, correctly iden-
tifying these parameters may require tremendous amounts
of effort. To this end, instead of heuristically selecting candi-
dates, we propose to include new adaptive parameters for up-
dating during the test phase. Experimental results show that
the proposed method can obtain comparable performances
against existing skills.

3. Methodology
In the task of DG, we are often given access to data from

S (S ≥ 1) source domains Ds = {D1, D2, ..., DS} and
expect a model to make good prediction on unseen target
domains Dt = {D1, D2, ..., DT } (T ≥ 1). Our method
aims to improve the test-time training (TTT) strategy for
better DG. The improvements are two-fold. First, we pro-
pose a learnable consistency loss for the TTT task, which
could be enforced to align with the main objective by tuning
its learnable weights. Second, we suggest including addi-
tional adaptive parameters and only updating these adaptive
parameters during the test phase.

3.1. A Learnable Consistency Loss for TTT

The TTT strategies have shown promising performances
when dealing with distribution shift problems [43, 63]. How-
ever, their successes are depended on the empirically selected
auxiliary TTT tasks, which may deteriorate the performances
if chosen improperly. Motivated by the recent successes in
multi-view consistency learning [13, 26, 29], we suggest
adopting a consistency loss in our TTT task. Note that the
naive consistency loss is still not guaranteed to be effective
as prior art [46] indicates that only when the auxiliary loss
aligns with the main loss, can TTT improves the perfor-
mance. To this end, we propose to augment the auxiliary
loss with learnable parameters that could be adjusted toward
a better alignment between the TTT and main tasks. In our
case, we make the adopted consistency loss learnable by
introducing a weight subnetwork that allows flexible ways

Algorithm 1 Pseudo code of the training phase of ITTA in a
PyTorch-like style.
# fθ, fϕ, fw: feature extractor, classifier, weight subnetwork
# α, 0: weight paramter, all zero tensor

# training process
for x, y in training loader: # load a minibatch with N samples

def forward process(x, y):
z, z′ = fθ.forward(x)
# computing losses
Lmain = CrossEntropyLoss(fϕ.forward(z), y)
Lmain+ = CrossEntropyLoss(fϕ.forward(z′), y)
Lwcont = MSELoss(fw.forward(z − z′), 0)

return Lmain, Lwcont

# SGD update: feature extractor and classifier
Lmain, Lwcont = forward process(x, y)
([fθ .params, fϕ.params]).zero grad()
(Lmain + αLwcont).backward()
update(

[
fθ.params, fϕ.params

]
)

# compute objectives for updating weight subnetwork
Lmain, Lwcont = forward process(x, y)
Lmain.backward()
ĝmain = fθ .params.grad.clone().normalize()
fθ .params.zero grad()
Lwcont.backward()
ĝwcont = fθ .params.grad.clone().normalize()

# SGD update: weight subnetwork
MSELoss(ĝmain, ĝwcont).backward()
fw .params.zero grad()
update(fw .params)

to measure the consistency between two views of the same
instance.

We first introduce the pipeline of our training framework.
Given the D dimensional representation z ∈ RD1 and its
corresponding augmented version z′ that are obtained from
a feature extractor (i.e. {z, z′} = fθ(x), where x is an input
image from Ds, and fθ(·) is the feature extractor parame-
terized by θ. In our implementation, we use the existing
augmentation method [75] to obtain z′ by modifying the
intermediate activation in fθ(x). We show in our supplemen-
tary material that our framework can also thrive with other
augmentation strategies), our learnable consistency loss is
given by,

Lwcont = ∥fw(z − z′)∥, (1)

where ∥ · ∥ denotes the L2 norm; fw(·) is the weight sub-
network parameterized by w. To make the training process
more stable and potentially achieve better performance, we
apply a dimension-wise nonlinear function to map each di-
mension of z − z′ before calculating the L2 norm. That is,
∀h ∈ RD, fw(h) is implemented by stacking layers of a
nonlinear function: ReLU(a ∗ h + b), where a ∈ RD and
b ∈ RD are the weight and bias from the nonlinear function,

1We omit the batch dimensions of the variables for simplicity.
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Figure 3. Test adaptation process of ITTA. Different from that in
the training stage, we include additional adaptive parameters fΘ
after each block of the feature extractor fθ . For each test sample
x, the intermediate representations zi and z′i obtained from f i

θ

are passed to f i
Θ before going to the next block f i+1

θ . We use the
learnable consistency loss Lwcont as the objective to update fΘ.
Please refer to our text for details.

and different layers of a, b form the parameter w in fw. In
effect, this creates a piecewise-linear mapping function for
h: depending on the value of h, the output could be 0, a
constant, or a scaling-and-shifted version of h. More studies
about the design of fw are provided in our supplementary
material. Compared to the naive consistency learning with-
out fw, our Lwcont can be more flexible with an adjustable
fw, which we show in the following is the key for learning
an appropriate loss in the improved TTT framework.

Combining Lwcont with the main loss Lmain which
applies the cross-entropy loss (CE) for both the origi-
nal and augmented inputs (i.e. Lmain = CE(fϕ(z), y) +
CE(fϕ(z′), y), where fϕ is the classifier parameterized by
ϕ, and y is the corresponding label), the objective for the
feature extractor and classifier can be formulated into,

min{θ,ϕ} Lmain + αLwcont, (2)

where α is the weight parameter that balances the contri-
butions from the two terms. A simple illustration of the
workflow is shown in Figure 2.

From Eq. (2), the expected gradients for the feature ex-
tractor from Lmain and Lwcont can be represented as,{

gmain = ∇θ(CE(fϕ(z), y) + CE(fϕ(z′), y)), (3)
gwcont = ∇θ∥fw(z − z′)∥. (4)

We observe that the direction of gwcont is also determined
by the weight subnetwork fw(·), which should be close with
gmain to ensure alignment between Lmain and Lwcont [46,
60]. To this end, we propose a straightforward solution
by enforcing equality between the normalized versions of
gmain and gwcont, and we use this term as the objective for
updating fw(·), which gives,

min
w

Lalign, s.t. Lalign = ∥ĝmain − ĝwcont∥, (5)

where ĝmain =
gmain−Egmain

σgmain
, and similar for ĝwcont.

In our implementation, we update {θ, ϕ} and w in an
alternative manner. Pseudo code of the training process are
shown in Algorithm 1.

Algorithm 2 Pseudo code of the test phase of ITTA in a
PyTorch-like style.
# fθ, fϕ: feature extractor, classifier
# fw, fΘ: weight subnetwork, additional adaptive blocks
# m, 0: total number of blocks in fθ , all zero tensor

# test process
for x in test loader: # load a test batch

def forward process(x):
z1, z′1 = f1

Θ.forward((f1
θ .forward(x))) # first blocks

for i in range(2, m+ 1): # the following m− 1 blocks
zi, z′i = f i

θ.forward(zi−1), f i
θ.forward(z′i−1)

zi, z′i = f i
Θ.forward(zi), f i

Θ.forward(z′i)

return zi, z′i

# test adaptation phase: SGD update additional adaptive parameters
z, z′ = forward process(x)
Lwcont = MSELoss(fw.forward(z − z′), 0)
fΘ.params.zero grad()
Lwcont.backward()
update(fΘ.params)

# final prediction
z, = forward process(x)
result = fϕ.forward(z)

3.2. Including Additional Adaptive Parameters

Selecting expressive and reliable parameters to update
during the test phase is also essential in the TTT frame-
work [63]. Some strategies decide to update all the parame-
ters from the feature extractor [3, 43], while others use only
the parameters from the specific layers for updating [63, 71].
Given the fact that the sizes of current deep models are often
very large and still growing, exhaustively trying different
combinations among the millions of candidates seems to be
an everlasting job. As there are no consensuses on which
parameter should be updated, we suggest another easy alter-
native in this work.

Specifically, assuming there are a total of m blocks in the
pretrained feature extractor fθ(·), and the i-th block can be
denoted as f i

θ(·). Then the intermediate representation zi

from f i
θ(·) can be formulated as,

zi = f i
θ(z

i−1), s.t. z1 = f1
θ (x). (6)

We propose to include additional adaptive block fΘ that is
parameterized by Θ after each block of fθ during the test-
time adaptation phase, which reformulates Eq. (6) into,

zi = f i
Θ(f

i
θ(z

i−1)), s.t. z1 = f1
Θ(f

1
θ (x)), (7)

where fΘ(·) does not change the dimension and sizes of the
intermediate representations. In our work, we use a structure
similar to fw to implement fΘ. Note zm is simplified as z in
this phase, and the same process is applied for obtaining z′.

Then, in the test-time adaptation phase, we suggest only
updating the new adaptive parameters via the learned con-
sistency loss. The optimization process can be written as,



Table 1. Multi sources domain generalization. Experiments are conducted on the DomainBed benchmark [27]. All methods are examined
for 60 trials in each unseen domain. Top5 accumulates the number of datasets where a method achieves the top 5 performances. The score
here accumulates the numbers of the dataset where a specific art obtains larger accuracy than ERM on account of the variance. Best results
are colored as red. Among the 22 methods compared, less than a quarter outperforms ERM in most datasets (Score ≥ 3).

PACS VLCS OfficeHome TerraInc DomainNet Avg. Top5↑ Score↑
MMD [40] 81.3 ± 0.8 74.9 ± 0.5 59.9 ± 0.4 42.0 ± 1.0 7.9 ± 6.2 53.2 1 2
RSC [33] 80.5 ± 0.2 75.4 ± 0.3 58.4 ± 0.6 39.4 ± 1.3 27.9 ± 2.0 56.3 0 1
IRM [1] 80.9 ± 0.5 75.1 ± 0.1 58.0 ± 0.1 38.4 ± 0.9 30.4 ± 1.0 56.6 0 1
ARM [72] 80.6 ± 0.5 75.9 ± 0.3 59.6 ± 0.3 37.4 ± 1.9 29.9 ± 0.1 56.7 0 0
DANN [23] 79.2 ± 0.3 76.3 ± 0.2 59.5 ± 0.5 37.9 ± 0.9 31.5 ± 0.1 56.9 1 1
GroupGRO [55] 80.7 ± 0.4 75.4 ± 1.0 60.6 ± 0.3 41.5 ± 2.0 27.5 ± 0.1 57.1 0 1
CDANN [44] 80.3 ± 0.5 76.0 ± 0.5 59.3 ± 0.4 38.6 ± 2.3 31.8 ± 0.2 57.2 0 0
VREx [36] 80.2 ± 0.5 75.3 ± 0.6 59.5 ± 0.1 43.2 ± 0.3 28.1 ± 1.0 57.3 1 1
CAD [53] 81.9 ± 0.3 75.2 ± 0.6 60.5 ± 0.3 40.5 ± 0.4 31.0 ± 0.8 57.8 1 2
CondCAD [53] 80.8 ± 0.5 76.1 ± 0.3 61.0 ± 0.4 39.7 ± 0.4 31.9 ± 0.7 57.9 0 1
MTL [6] 80.1 ± 0.8 75.2 ± 0.3 59.9 ± 0.5 40.4 ± 1.0 35.0 ± 0.0 58.1 0 0
ERM [61] 79.8 ± 0.4 75.8 ± 0.2 60.6 ± 0.2 38.8 ± 1.0 35.3 ± 0.1 58.1 1 -
MixStyle [75] 82.6 ± 0.4 75.2 ± 0.7 59.6 ± 0.8 40.9 ± 1.1 33.9 ± 0.1 58.4 1 1
MLDG [38] 81.3 ± 0.2 75.2 ± 0.3 60.9 ± 0.2 40.1 ± 0.9 35.4 ± 0.0 58.6 1 1
Mixup [68] 79.2 ± 0.9 76.2 ± 0.3 61.7 ± 0.5 42.1 ± 0.7 34.0 ± 0.0 58.6 2 2
Fishr [52] 81.3 ± 0.3 76.2 ± 0.3 60.9 ± 0.3 42.6 ± 1.0 34.2 ± 0.3 59.0 2 2
SagNet [48] 81.7 ± 0.6 75.4 ± 0.8 62.5 ± 0.3 40.6 ± 1.5 35.3 ± 0.1 59.1 1 2
SelfReg [34] 81.8 ± 0.3 76.4 ± 0.7 62.4 ± 0.1 41.3 ± 0.3 34.7 ± 0.2 59.3 2 3
Fish [58] 82.0 ± 0.3 76.9 ± 0.2 62.0 ± 0.6 40.2 ± 0.6 35.5 ± 0.0 59.3 3 4
CORAL [59] 81.7 ± 0.0 75.5 ± 0.4 62.4 ± 0.4 41.4 ± 1.8 36.1 ± 0.2 59.4 2 3
SD [51] 81.9 ± 0.3 75.5 ± 0.4 62.9 ± 0.2 42.0 ± 1.0 36.3 ± 0.2 59.7 4 4
Ours 83.8 ± 0.3 76.9 ± 0.6 62.0 ± 0.2 43.2 ± 0.5 34.9 ± 0.1 60.2 4 4

min
Θ

∥fw(z − z′)∥, s.t. {z, z′} = fΘ(fθ(x)). (8)

Note that different from the training phase, x in this stage is
from the target domain Dt, and we use the online setting in
[60] for updating. A simple illustration of the test adaptation
pipeline is shown in Figure 3.

For the final step, we use the original representation ob-
tained from the pretrained feature extractor and the adapted
adaptive parameters for prediction. Pseudo code of the test
stage are shown in Algorithm 2.

4. Experiments
4.1. Settings

Datasets. We evalute ITTA on five benchmark datasets:
PACS [37] which consists of 9,991 images from 7 cate-
gories. This dataset is probably the most widely-used DG
benchmark owing to its large distributional shift across 4 do-
mains including art painting, cartoon, photo, and sketch;
VLCS [18] contains 10,729 images of 5 classes from 4
different datasets (i.e. domains) including PASCAL VOC
2007 [17], LabelMe [54], Caltech [19], and Sun [64] where
each dataset is considered a domain in DG; OfficeHome [62]
is composed of 15,588 images from 65 classes in office and

home environments, and those images can be categorized
into 4 domains (i.e. artistic, clipart, product, and real world);
TerraInc [4] has 24,788 images from 10 classes. Those
images are wild animals taken from 4 different locations
(i.e. domains) including L100, L38, L43, and L46; Domain-
Net [50] which contains 586,575 images from 345 classes,
and the images in it can be depicted in 6 styles (i.e. clipart,
infograph, painting, quickdraw, real, and sketch).

Implementation details. For all the experiments, we use
the ImageNet [15] pretrained ResNet18 [30] backbone that
with 4 blocks as the feature extractor fθ, which could en-
large the gaps in DG compared to larger models [70]. Corre-
spondingly, we also include 4 blocks of additional adaptive
parameters (i.e. fΘ), and each block is implemented with 5
layers of learnable parameters with weight initialized as all
ones and bias initialized as all zeros. For the weight subnet-
work fw, we use 10 layers of learnable parameters with the
initialization skill similar to that of fΘ. The classifier fϕ is
an MLP layer provided by the Domainbed benchmark [27].
For the weight parameter α in Eq. (2), we set it to be 1 for
all experiments (please refer to our supplementary material
for analysis). The random seeds, learning rates, batch size,
and augmentation skills are all dynamically set for all the
compared arts according to [27].



Table 2. Single source domain generalization. Experiments are conducted on the PACS dataset [37]. Here A, C, P, and S are the art, cartoon,
photo, and sketch domains in PACS. A→C represents models trained on the art domain and tested on the cartoon domain, and similar for
others. All methods are examined for 60 trials in each unseen domain. Best results are colored as red.

A→C A→P A→S C→A C→P C→S P→A P→C P→S S→A S→C S→P Avg.
RSC 66.3±1.3 88.2±0.6 57.2±3.1 65.8±1.5 82.4±0.6 68.7±2.5 60.5±2.0 41.3±6.0 53.1±2.8 53.8±1.6 65.9±0.7 48.4±1.9 62.6
Fish 67.1±0.5 89.2±1.8 57.0±0.2 66.7±1.0 85.6±0.4 64.5±3.6 55.1±2.1 33.9±2.3 51.2±4.2 59.1±3.2 67.1±0.9 58.4±1.2 62.9
CDANN 66.5±1.7 92.2±0.6 65.0±0.9 70.6±0.1 82.9±1.4 67.7±3.0 60.6±0.3 42.2±6.4 46.9±9.9 51.4±2.3 60.7±1.2 51.9±0.4 63.2
SelfReg 63.9±1.9 90.1±1.0 56.8±2.2 70.2±2.3 85.4±0.3 70.2±2.2 60.9±2.6 38.8±4.0 50.5±3.2 54.5±4.7 66.2±1.2 51.7±4.1 63.3
DANN 67.5±1.6 91.2±1.3 67.5±1.3 70.6±1.0 81.4±0.4 66.6±1.1 54.1±2.3 33.5±2.7 52.8±2.3 53.8±1.7 64.4±0.7 58.9±0.8 63.5
CAD 67.1±1.5 89.6±0.4 60.2±0.2 67.7±3.1 83.7±1.4 70.2±2.6 60.6±2.6 38.3±3.7 53.8±3.2 50.7±1.6 65.8±1.3 54.4±1.7 63.5
GroupGRO 66.5±1.2 90.5±1.5 58.9±2.5 70.8±0.9 85.7±1.2 69.7±1.8 62.3±2.1 41.1±2.7 48.2±4.1 54.8±0.5 65.2±1.6 53.9±1.4 64.0
MTL 67.3±1.0 90.1±1.0 58.9±0.7 70.2±1.8 84.2±2.2 71.9±0.7 58.3±2.7 38.5±2.7 52.8±1.5 55.4±3.1 66.1±1.3 55.2±2.6 64.1
IRM 67.5±1.8 93.0±0.5 62.9±4.7 67.6±1.3 83.8±0.4 68.9±0.8 63.7±1.8 39.9±3.7 49.0±5.4 54.9±1.4 63.1±2.1 54.9±1.4 64.1
ARM 66.0±2.4 91.2±0.7 58.7±6.9 70.6±0.8 84.2±1.0 69.1±0.9 59.2±1.8 42.1±5.6 52.1±3.0 60.0±0.6 62.9±3.3 53.8±2.0 64.2
Mixup 65.5±0.8 87.8±0.3 57.2±1.0 71.4±1.1 83.1±1.8 68.0±3.0 59.6±1.7 37.2±2.7 56.5±3.8 55.0±2.2 66.2±1.5 62.7±4.2 64.2
CORAL 66.8±0.5 90.3±0.7 61.5±1.9 67.9±2.1 85.4±0.3 70.4±1.3 55.9±2.9 40.4±4.9 49.8±8.5 55.8±2.1 67.6±0.9 58.9±3.8 64.2
SD 67.1±1.3 91.7±1.2 63.7±4.1 70.3±0.9 84.4±0.7 69.4±2.3 57.5±2.5 42.6±0.8 47.7±1.7 55.9±2.4 65.7±0.8 55.8±2.1 64.3
MMD 67.1±1.4 88.0±0.8 63.6±1.6 70.0±1.1 83.6±0.2 70.2±1.0 58.8±2.6 40.3±1.0 52.3±2.4 57.4±1.9 68.7±0.9 52.7±3.7 64.4
MLDG 67.3±2.0 90.8±0.5 64.4±0.9 70.8±1.0 84.2±0.3 69.7±1.8 61.6±1.0 41.3±5.1 50.4±0.2 49.9±2.5 66.8±0.4 58.7±3.4 64.7
CondCAD 66.9±1.4 92.3±0.7 60.8±4.5 71.0±0.6 84.7±1.1 72.6±0.5 61.2±1.5 40.7±3.6 55.7±1.6 52.3±1.7 64.2±0.4 55.3±1.2 64.8
ERM 67.3±0.7 91.7±0.9 60.1±4.7 70.4±0.6 82.3±2.7 68.1±0.9 59.6±1.8 44.7±2.8 56.5±2.7 52.8±2.3 68.1±0.7 58.4±0.9 65.0
VREx 67.1±1.5 91.0±1.0 62.6±3.5 71.1±2.4 84.1±0.9 71.7±1.3 62.4±3.1 37.7±3.3 53.6±2.3 60.6±1.6 66.7±0.8 57.5±1.4 65.5
Fishr 67.9±1.9 92.7±0.3 62.4±4.7 71.2±0.5 83.4±0.6 70.2±1.1 60.0±2.3 42.7±3.2 57.1±3.9 55.7±3.7 68.4±1.0 62.0±3.1 66.1
SagNet 67.6±1.4 92.3±0.5 59.5±1.7 71.8±0.3 82.8±0.6 69.9±1.8 62.5±2.5 45.2±2.5 64.1±2.0 55.8±1.1 65.7±1.4 55.9±3.5 66.1
MixStyle 68.5±2.0 91.2±1.6 65.1±0.7 73.2±1.3 85.0±0.8 71.7±1.5 63.6±1.7 46.3±1.1 51.6±3.7 54.2±1.5 67.0±3.4 58.3±1.4 66.3
Ours 68.9±0.6 92.4±0.1 62.5±0.6 75.3±0.4 85.9±0.3 70.2±1.4 66.5±1.1 52.2±2.7 63.8±1.1 57.6±3.7 68.0±1.3 57.9±2.0 68.4

Training and evaluation details. For all the compared
methods, we conduct 60 trials on each source domain, and
each with 5,000 iteration steps. During the training stage, we
split the examples from training domains to 8:2 (train:val)
where the training and validation samples are dynamically
selected among different training trials. During test, we
select the model that performs the best in the validation
samples and test it on the target domains. The strategy is
referred to as the “training-domain validate set” model selec-
tion method in [27]. For each domain in different datasets,
the final performance is the average accuracy from the 60
trials.

4.2. Multi-Source Generalization

In these experiments, all five benchmark datasets afore-
mentioned are used for evaluation, and the leave-one-out
strategy is adopted for training (i.e. with S = |Ds∪Dt|2 −1,
and T = 1). Results are shown in Table 1. We note that
ERM method obtains favorable performance against existing
arts. In fact, as a strong baseline, ERM is superior to half
of the methods in the term of average accuracy, and only 5
arts (i.e. SelfReg [34], Fish [58], CORAL [59], SD [51], and
ours) among the compared 22 methods outperforms ERM
in most datasets (i.e. with Score ≥ 3). In comparison, the
proposed ITTA is more effective than all other models on
average. In particular, ITTA achieves the best performances
in 3 out of the 5 benchmarks (i.e. PACS, VLCS, and TerraInc
datasets) and 4 in the top 5. Note that although our method
does not obtain the best performances in the OfficeHome and
DomainNet benchmarks, it still outperforms more than half

2We use | · | to denote the number of domains in the environment.

of the existing models. The results validate the effectiveness
of our method when tested in the multi-source setting. We
present results of average accuracy in each domain from
different datasets in the supplementary material. Please refer
to it for details.

4.3. Single-Source Generalization

In these experiments, we adopt the widely-used
PACS [37] benchmark for evaluation, and the models are
trained on one domain while tested on the remaining three
(i.e. with S = 1, and T = 3). Although some approaches,
such as MLDG [38] and Fishr [52], may require more than
one domain information for their trainings, we can simu-
late multi-domain information using only the source domain,
and thus the experimental settings are still feasible for them.
Compared to the multi-source generalization task, the single-
source generalization is considered more difficult due to the
limited domain information during the training phase. Evalu-
ation results are presented in Table 2. We note that the ERM
method outperforms most state-of-the-art models, and only
5 models, including VREx [36], Fishr [52], SagNet [48],
MixStyle [75], and the proposed ITTA, can obtain better re-
sults than ERM in the term of average accuracy. Meanwhile,
our method achieves the best performances when trained in
5 out of the 12 source domain, and it obtains the best perfor-
mance on average, leading more than 2% than the second
best (i.e. MixStyle [75]) and 3% the ERM method.

In line with the findings in [27], we notice that the naive
ERM method [61] can indeed perform favorably against
most existing models under rigorous evaluation protocol.
As a matter of fact, the proposed method is the only one
that consistently outperforms ERM in both the multi-source



Table 3. Evaluations of different TTT-based models in the unseen
domain from PACS [37]. The reported accuracies (%) and standard
deviations are computed from 60 trials in each target domain.

Model Target domain Avg.Art Cartoon Photo Sketch
Baseline 79.9±0.5 75.4±1.1 94.4±0.5 75.8±1.2 81.4±0.5
TTT [60] 81.5±0.8 77.6±0.6 94.3±0.2 78.4±0.7 83.0±0.2
MT3 [3] 82.0±1.0 76.5±1.0 94.1±0.2 77.7±1.3 82.6±0.6
TENT [63] 80.2±0.9 77.2±0.8 94.4±0.2 77.4±0.1 82.3±0.5
Ours 84.7±0.4 78.0±0.4 94.5±0.4 78.2±0.3 83.8±0.3

and single-source settings. These results indicate that DG
remains challenging for current efforts that aim to ease the
distribution shift only through training data, and using the
proposed improved TTT strategy may be a promising direc-
tion for solving DG.

5. Analysis

All experiments in this section are conducted on the
widely-used PACS benchmark [37] with the leave-one-out
strategy. The experimental settings are the same as that illus-
trated in Sec. 4.1. Please refer to our supplementary material
for more analysis.

5.1. Compared with Other TTT-Based Models

Using test-time adaptation to ease the distribution shift
problem has been explored in previous works, such as the
original TTT method [60] and MT3 [3]. Their differences lie
in that TTT uses a rotation estimation task for the test-time
objective, and MT3 adopts a contrastive loss for the task and
implements the overall framework using MAML [20]. There
is also a recently proposed TENT [63] that aims to minimize
the entropy of the final results by tuning the parameters from
the batch normalization (BN) layers. To analyze the overall
effectiveness of our method, we compare ITTA with these
arts using the same baseline (i.e. ResNet18 [30] backbone
with the existing augmentation skill [75]).

Results are shown in Table 3. We observe that all the com-
pared TTT-based methods can improve the baseline model
in almost all target domains except for the “Photo” domain,
which might be due to the ImageNet pretraining [67]. This
phenomenon demonstrates that the TTT strategy may be a
promising effort for easing the distribution shift problem.
Meanwhile, we observe that the proposed ITTA is superior
to all other approaches in most target domains and leads
in the term of average accuracy. The main reason is that
compared to the empirically designed TTT tasks adopted in
previous works, the proposed learnable consistency loss is
enforced to be more aligned with the main loss, thus more
suitable for the test-time adaptation task [46]. Meanwhile,
compared to the strategies that update the original param-
eters from the trained model, the adaptation of the newly
included parameters is also more effective for the overall

(a) Input (b) Ours w/o fw (c) Ours (d) Main

Figure 4. Grad-CAM [57] visualizations from different loss terms.
We use images with varying class labels from the four target do-
mains of PACS [37] as inputs (i.e. art, cartoon, photo, and sketch
domains from top to bottom). Ours w/o fw is the naive consis-
tency loss with fw disabled in Eq. (1). The proposed learnable
consistency loss can align well with the main classification task.

TTT framework. In the following, we provide more analysis
to support these claims.

5.2. Effectiveness of the Learnable Consistency Loss

To examine the effectiveness of our learnable consistency
loss, we conduct ablation studies by comparing our method
with the following variants. (1) Ours w/o fw: we disable fw
when computing the learnable consistency loss in Eq. (1),
which uses the naive consistency loss for the auxiliary TTT
task. (2) Ours w/ Ent.: after training the model using the
baseline settings (i.e. ResNet18 with the augmentation strat-
egy [75]), we use the entropy minimization task in [63]
for the TTT task. (3) Ours w/ Rot.: we use the rotation
estimation task in [60] for the TTT task. To ensure fair com-
parisons, we use the same baseline settings and include the
same additional adaptive parameters for all the variants.

Results are shown in the 4th to 6th rows Table 4. We
find that the results from the naive consistency loss (i.e.
Ours w/o fw) are slightly better than that from the other two
specially-designed objectives (i.e. Ours w/ Ent. and Ours w/
Rot.) on average. Besides the possibility of deteriorating the
performance [46], our results indicate that empirically select-
ing a TTT task may also be far from optimal. Meanwhile,
we observe that when enabling fw, the proposed learnable
consistency loss is superior to that without fw in all target do-



Table 4. Comparison between different TTT tasks and parameter selecting strategies in the unseen domain from the PACS benchmark [37].
Here the “Ent.”, “Rot.”, and “Lwcont” denotes the entropy minimization task in [63], the rotation estimation task in [60], and the proposed
learnable consistency objective, the “All”, “BN”, and “Ada.” are the strategies that update all the parameters, parameters from the batch
normalization layer, and the proposed strategy that updates only the new additional adaptive parameters. The reported accuracies (%) and
standard deviations are computed from 60 trials in each target domain.

Model TTT tasks Param selectings Target domain Avg.Ent. Rot. Lwcont All BN Ada. Art Cartoon Photo Sketch
Ours − − ✓ − − ✓ 84.7±0.4 78.0±0.4 94.5±0.4 78.2±0.3 83.8±0.3
Ours w/o fw − − − − − ✓ 83.1±0.4 74.6±0.6 94.0±0.5 78.0±0.8 82.5±0.1
Ours w/ Ent. ✓ − − − − ✓ 79.9±2.4 77.3±0.3 94.8±0.8 77.6±0.4 82.4±0.8
Ours w/ Rot. − ✓ − − − ✓ 81.1±1.0 75.2±0.5 94.9±0.3 77.3±0.6 82.1±0.3
Ours w/o TTT − − ✓ − − − 83.3±0.5 76.0±0.5 94.4±0.5 76.7±1.4 82.8±0.3
Ours w/ All − − ✓ ✓ − − 83.0±0.7 77.0±1.4 94.5±0.7 77.4±0.9 83.0±0.2
Ours w/ BN − − ✓ − ✓ − 81.8±0.5 75.6±0.3 94.4±0.3 77.9±1.1 82.4±0.5

mains, and it leads in the term of average accuracy among the
variants compared, illustrating its advantage against other
adopted TTT tasks. These results are not surprising. By
comparing the Grad-CAM [57] visualizations from the main
classification task with the learnable and naive consistency
losses in Figure 4, we find that the proposed learnable objec-
tive can well align with the main loss when fw is enabled
as the hot zones activated by these two tasks are similar,
which guarantees the improvement for the test-time adapta-
tion [46, 60]. Please refer to our supplementary material for
more visualizations.

5.3. Effectiveness of the Adaptive Parameters

We compare ITTA with three variants to demonstrate the
effectiveness of the proposed additional adaptive parameters.
(1) Ours w/o TTT: we do not update any parameters during
the test phase. This variant is used to verify whether TTT
can improve the pretrained model. (2) Ours w/ ALL: similar
to the updating strategy in the original TTT method [60], we
update all the parameters from the feature extractor during
the test phase. (3) Ours w/ BN: following the suggestion
from TENT [63], only parameters from the BN layers of
the feature extractor are updated. Note the same pretrained
model is shared for all variants in these experiments, and the
objectives during the test adaptation phase are to minimize
the same learned consistency loss.

We list the results in the last three rows in Table 4. We
observe that when only updating parameters from the BN
layers, the performance is inferior to the strategy without
test-time adaptation, and updating all the parameters does not
ensure improvements in all target domains. The observations
are in line with the findings in [63] that selecting reliable
parameters to update is essential in the TTT system and may
also interact with the choice of the TTT task. In comparison,
when including additional adaptive parameters for updating,
the pretrained model can be boosted in all environments.
The results validate that our adaptive parameters are more

effective than that selected with existing strategies [60, 63]
when applied with the proposed learnable test-time objective.

5.4. Limitation

Although the proposed learned loss can bring satisfaction
improvements, we are aware that the lunch is not free. When
the weight subnetwork fw is disabled, updating the joint loss
in Eq. (2) only costs 1 forward and 1 backward. However,
in order to update fw, we have to compute the second-order
derivative in Eq. (5), which will require 1 more forward
and 3 more backward processes, bringing extra burden to
the system. Our future efforts aim to simplify the overall
optimization process and reduce the cost for ITTA.

6. Conclusion
In this paper, we aim to improve the current TTT strategy

for alleviating the distribution shift problem in DG. First,
given that the auxiliary TTT task plays a vital role in the over-
all framework, and an empirically selecting one that does not
align with the main task may potentially deteriorate instead
of improving the performance, we propose a learnable con-
sistency loss that can be enforced to be more aligned with the
main loss by adjusting its learnable parameters. This strategy
is ensured to improve the model and shows favorable perfor-
mance against some specially-designed objectives. Second,
considering that selecting reliable and effective parameters
to update during the test phase is also essential while exhaus-
tively trying different combinations may require tremendous
effort, we propose a new alternative by including new ad-
ditional adaptive parameters for adaptation during the test
phase. This alternative is shown to outperform some pre-
vious parameter selecting strategies via our experimental
findings. By conducting extensive experiments under a rig-
orous evaluation protocol, we show that our method can
achieve superior performance against existing arts in both
the multi-source and single-source DG tasks.
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Appendix
In this supplementary material, we provide,
1. Resource usage for ITTA in Section 7.
2. Grad-CAM visualizations of different loss terms in

Section 8.
3. Parameter analysis of ITTA in Section 9;
4. Using a different augmentation skill for ITTA in Sec-

tion 10.
5. Using different updating steps or a strategy for ITTA

during the test phase in Section 11.
6. Using different network structures for the learnable

consistency loss and adaptive parameters in Section 12.
7. Comparisons with other related methods in Section 13.
8. Detailed experimental results in the DomainBed bench-

mark in Section 14.

7. Resource Usage Comparisons Between
ITTA and the Baseline Model

Requiring extra resources for our ITTA is a common lim-
itation for existing test-time-based arts. To further evaluate
our method, in this section, we compare FLOPS, model size,
and inference time in Table 5. We compare only with ERM
as most existing methods utilize the same network during in-
ferences. We note that compare to the baseline model, ITTA
requires extra Flops and processing time, this is because the
adaptation process uses extra forward and backward steps
during the test phase. While the parameters between the
two models are similar because the newly included adaptive
blocks are much smaller in size compared to the original
model.

Table 5. Resource comparisons during testing. Here inc. and exc.
columns in ITTA indicate to include and exclude the TTA phase.

Model Flops (G) Params (M) Time (s)
Baseline 1.82 11.18 0.004
ITTA (inc. | exc.) 6.12 | 1.83 14.95 | 14.94 0.021 | 0.005

8. Grad-CAM Visualizations of Different Self-
Supervised Objectives

In Section 5 of the manuscript, we provide Grad-CAM
[57] visualizations of our learnable consistency and the main
losses to illustrate their alignment. To further show the
differences between several TTT tasks [60, 63], we present
more visual examples in this section. Results are shown in
Figure 5. We observe that the entropy minimization [63]
and rotation estimation [60] objectives do not activate the
same regions as the main loss. As shown in the first row, for
the class label of giraffe, both the main loss and our learned
loss can correctly locate the two giraffes in the image, while
the rotation estimation task can only locate one target, the
same observation can be found when the learned weights



are disabled in our loss term. Meanwhile, although the
two objects can be found for the entropy minimization task,
the corresponding hot region does not align with that of
the main loss. Similar phenomena can be observed in other
samples. These visual examples demonstrate that our learned
objective can better align with the main task than the TTT
tasks adopted in previous works [60, 63], explaining why
using the proposed learnable consistency loss can better
improve TTT.

9. Parameter Analysis

In this section, we analyze the hyper-parameter used in
ITTA. We use the weight parameter α to balance the contri-
butions from the main loss and weighted consistency loss
(i.e. Lmain + αLwcont in Eq. (2) of our manuscript). To
analyze the sensitivity of ITTA regarding different values of
α, we conduct ablation studies in the PACS benchmark [37].
Results are listed in Table 6. We observe that the proposed
ITTA can obtain favorable performances when α is in the
range of 0.1 to 10, and it performs the best on average when
setting as 1. We thus fix the parameter as 1 in all experi-
ments.

10. A Different Augmentation Skill for ITTA

In our manuscript, we use the existing augmentation strat-
egy from [75] to obtain the augmented feature. In this sec-
tion, we replace this implementation with that from [41] to
further verify if our ITTA can still thrive with another aug-
mentation skill. Different from [75] that mixes the statics of
the feature to synthesize new information, [41] uses an affine
transformation to create new features, where the weight for
the transformation is sampled from a normal distribution
with the mean value of one and standard value of zero, and
the bias for the transformation is sampled from a normal
distribution with the mean and standard values both zero.
Experiments are conducted on the PACS benchmark [37]
with the leave-one-out strategy.

We compare ITTA with several different variants. (1)
Ours w/o fw & TTT: this variant is the baseline model which
uses the naive consistency loss for training and does not
include TTT during the test phase. (2) Ours w/o fw: we
disable the fw in our consistency loss, which uses the naive
consistency loss for the test-time updating. (3) Ours w/o
TTT: we do not update any parameters during the test phase.
This variant is used to verify whether TTT can improve the
pretrained model when replacing the augmentation strategy.
We also compare these variants with the ERM method to
show their effectivenesses.

Results are listed in Table 7. We observe that ERM per-
forms favorably against the baseline model, indicating that
this augmentation strategy may not be beneficial for the
training process. Meanwhile, we observe that when fw is

disabled, the performances seem to decrease in 3 out of 4
target domains, and the average accuracy is also inferior to
the baseline (i.e. Ours w/o fw & TTT). This result is in line
with the finding in [46] that an inappropriate TTT task may
deteriorate the performance. In comparison, we note that
the performances are both improved when fw is enabled (i.e.
Ours w/o TTT and Ours), which once again demonstrates
that the proposed learnable consistency loss can improve the
trained model. Moreover, we can also observe that when
combining fw and TTT, our model is superior to other vari-
ants and the ERM method. These results demonstrate that
the proposed two strategies can improve the current TTT
framework despite a less effective augmentation strategy.

11. Different Updating Steps or Strategies for
ITTA

In the manuscript, we use one TTT step for ITTA before
during the testing step. In this section, we conduct experi-
ments to evaluate the performances of ITTA with different
TTT steps. Experiments are conducted on the PACS bench-
mark [37] with the leave-one-out strategy, and each target
domain is examined with 60 sets of random seeds and hyper-
parameter settings. Results are listed in Table 8. We observe
that the average accuracies of using more TTT steps are not
improved greatly while the computational times are propor-
tional to the TTT steps. To this end, we use one TTT step
for ITTA as a compromise between accuracy and efficiency.

We use the online setting from TTT [60] for all arts,
which assumes test samples arrive sequentially and updates
the adaptive blocks based on the states optimized from a
previous sample. In this section, we also test ITTA in an
episodic manner (i.e. Epi) [12]. Results in Table 8 suggest
that while the episodic updating strategy performs slightly
worse than the current scheme, and it still outperforms the
baseline.

12. Different Network Structures for the
Learnable Consistency Loss and Adaptive
Parameters

In our implementation, we use 10 layers of learnable pa-
rameters for fw, and we use 5 layers of learnable parameters
for fΘ after each block. In this section, we evaluate our
ITTA with different network structures for these two mod-
ules. Specifically, we compare the original implementation
with the variants that use 1, 5, and 15 layers for fw and 1,
10, and 15 layers for fΘ to evaluate the performances of dif-
ferent structures. Similarly, we conduct experiments on the
PACS benchmark [37] with the leave-one-out strategy, and
each target domain is examined with 60 sets of random seeds
and hyper-parameter settings. Evaluation results are listed
in Table 9. We observe that their differences in the average
accuracy are rather subtle on account of the variances. To



(a) Input (b) Entropy (c) Rotation (d) Ours w/o fw (e) Ours (f) Main

Figure 5. Grad-CAM [57] visualizations from different loss terms. We use images with varying class labels (i.e. giraffe, elephant, house, and
horse from top to bottom) from the four target domains of PACS [37] as inputs (i.e. art, cartoon, photo, and sketch domains from top to
bottom). “Entropy” and “Rotation” here denote the entropy minimization and rotation estimation tasks in [63] and [60]. Ours w/o fw is the
learnable consistency loss in Eq. (1) in the manuscript (i.e. ∥fw(z − z′)∥) when fw is disabled. The proposed learnable consistency loss can
align well with the main classification task.

Table 6. Sensitivity analysis of ITTA regarding different values of α in the unseen domain from PACS [37]. The reported accuracies (%) and
standard deviations are computed from 60 trials in each target domain.

Values Target domain Avg.Art Cartoon Photo Sketch
α = 0.1 83.9 ± 0.7 76.2 ± 1.1 94.8 ± 0.2 78.8 ± 0.8 83.4 ± 0.2
α = 1 (Ours) 84.7 ± 0.4 78.0 ± 0.4 94.5 ± 0.4 78.2 ± 0.3 83.8 ± 0.3
α = 10 83.9 ± 0.5 77.4 ± 0.6 94.2 ± 0.7 77.3 ± 0.8 83.2 ± 0.3
α = 100 81.5 ± 1.2 77.0 ± 0.6 92.6 ± 0.7 78.9 ± 2.1 82.5 ± 0.9

this end, we use the original implementation with 10 layers
of learnable parameters for fw and 5 layers of learnable pa-
rameters for fΘ, which performs relatively better than other
variants.

Since the adaptive blocks fΘ are attached after each layer
of the network, one may wonder how the varying locations
of the adaptive blocks affect the performance of ITTA. To
answer this question, we further conduct experiments by
adding the adaptive blocks after different layers of the orig-

inal network. Denoting as Loc = lan given the n layers in
the original network, we note that the model performs less
effectively when the adaptive block is placed after the 1st
layer of the network, and using all four adaptive blocks (i.e.
ours) is more effective than other alternatives.

13. Comparisons with Other Related Methods
Apart from the proposed ITTA, some other works also

propose to include learnable parameters in their auxiliary



Table 7. Performances of our method with another augmentation strategy from [41] in the unseen domain from PACS [37]. The reported
accuracies (%) and standard deviations are computed from 60 trials in each target domain.

Model Target domain Avg.Art Cartoon Photo Sketch
ERM 78.0 ± 1.3 73.4 ± 0.8 94.1 ± 0.4 73.6 ± 2.2 79.8 ± 0.4
Ours w/o fw & TTT 74.9 ± 0.4 74.1 ± 0.8 90.6 ± 0.3 79.7 ± 0.7 79.8 ± 0.4
Ours w/o fw 77.1 ± 1.0 73.6 ± 1.1 89.9 ± 0.4 78.4 ± 0.8 79.7 ± 0.2
Ours w/o TTT 77.5 ± 0.3 73.2 ± 0.6 92.4 ± 0.4 78.0 ± 1.0 80.3 ± 0.3
Ours (w/ fw & TTT) 79.2 ± 0.8 74.9 ± 1.1 92.2 ± 0.3 76.9 ± 0.7 80.8 ± 0.4

Table 8. Evaluations of ITTA in the unseen domain from PACS [37] with different TTT steps and updating strategies during the testing
phase. The reported accuracies (%) and standard deviations are computed from 60 trials in each target domain. The time consumption (TC)
is computed using one image with the size of 224 × 224. Epi. denotes updating ITTA in an episodic manner.

Steps Target domain Avg. TCArt Cartoon Photo Sketch
1 step (Ours) 84.7 ± 0.4 78.0 ± 0.4 94.5 ± 0.4 78.2 ± 0.3 83.8 ± 0.3 2.4 ms
2 step 84.2 ± 0.9 77.5 ± 0.6 94.4 ± 0.4 79.1 ± 1.0 83.8 ± 0.1 4.2 ms
3 step 84.5 ± 1.2 77.6 ± 0.6 94.0 ± 0.6 79.3 ± 0.1 83.9 ± 0.3 6.1 ms
Epi. 83.6 ± 0.7 77.9 ± 0.5 95.2 ± 0.1 76.6 ± 0.5 83.3 ± 0.4

losses. Examples include MetaReg [2] and Feature-Critic
[45] which both suggest using meta-learning to produce
more general models. The main difference between these
arts and ITTA is that parameters in the auxiliary loss from
[2,45] are gradually refined by episode training, and they are
updated via a gradient alignment step in ITTA (see Sec. 3.1
in the manuscript), which is much simpler. In this sec-
tion, we compare ITTA with these two arts in the PACS
dataset [37] using the same settings aforementioned. Be-
cause MetaReg [2] does not release codes, we thus directly
cite the data from their paper in the comparison. Different
from others, the results in [2] are averaged by 5 trials accord-
ing to their paper, which is much less than our experimental
settings. Meanwhile, we also compare with TTT++ [46]
which suggests storing the momentum of the features from
the source domain and enforcing the similarity between mo-
mentums of features from the source and target domains. We
use the same setting in Section 5.1 from the manuscript to
evaluate TTT++. Results are listed in Table 10. We observe
that our method consistently outperforms that from [2,45,46]
for both the cases with and without TTT, indicating that the
proposed learnable consistency loss and updating method
is not only simpler but also more effective than the losses
in [2, 45].

14. Detailed Results in the DomainBed Bench-
mark [27]

this section presents the average accuracy in each domain
from different datasets. As shown in Table 11, 12, 13, 14,

and 15, these results are detailed illustrations of the results
in Table 2 in our manuscript. For all the experiments, we
use the “training-domain validate set” as the model selection
method. A total of 22 methods are examined for 60 trials in
each unseen domain, and all methods are trained with the
leave-one-out strategy using the ResNet18 [30] backbones.



Table 9. Performances of our method with different network structures for the consistency loss (i.e. fw) and adaptive parameters (i.e. fΘ) in
the unseen domain from PACS [37]. Here ‘Loc=lan’ locates the adaptive block after the n-th layer of the model (‘la4’ is the last layer). The
reported accuracies (%) and standard deviations are computed from 60 trials in each target domain.

Structures Target domain Avg.Art Cartoon Photo Sketch

Structures of fw

1 layer 83.5 ± 1.2 76.0 ± 1.0 95.3 ± 0.2 78.7 ± 1.5 83.4 ± 0.4
5 layers 83.7 ± 0.6 76.8 ± 0.9 94.6 ± 0.3 78.8 ± 0.3 83.5 ± 0.3

10 layers (Ours) 84.7 ± 0.4 78.0 ± 0.4 94.5 ± 0.4 78.2 ± 0.3 83.8 ± 0.3
15 layers 84.1 ± 0.4 75.8 ± 0.2 94.3 ± 0.3 79.5 ± 0.4 83.4 ± 0.2

Structures of fΘ

1 layer 84.0 ± 0.6 77.4 ± 0.5 94.4 ± 0.5 78.3 ± 0.4 83.5 ± 0.3
5 layers (Ours) 84.7 ± 0.4 78.0 ± 0.4 94.5 ± 0.4 78.2 ± 0.3 83.8 ± 0.3

10 layers 84.8 ± 0.3 76.0 ± 0.6 94.1 ± 0.5 78.3 ± 0.1 83.3 ± 0.3
15 layers 83.9 ± 0.8 76.0 ± 0.5 93.8 ± 0.4 78.7 ± 1.4 83.1 ± 0.6

Locations of fΘ

Loc=la1 83.4 ± 0.7 76.8 ± 0.3 94.4 ± 0.3 77.8 ± 0.3 83.1 ± 0.3
Loc=la2 83.4 ± 0.6 77.7 ± 0.6 94.2 ± 0.5 78.0 ± 0.5 83.3 ± 0.3
Loc=la3 84.0 ± 0.4 77.5 ± 0.3 94.4 ± 0.1 77.8 ± 0.1 83.4 ± 0.2
Loc=la4 84.1 ± 0.7 77.8 ± 0.5 94.8 ± 0.2 76.9 ± 1.5 83.4 ± 0.4

Table 10. Compare with learnable losses in [2, 45] in the unseen domain from PACS [37]. The reported accuracies (%) and standard
deviations are computed from 60 trials in each target domain except for [2] where the numbers are directly cited from their paper.

Model Target domain Avg.Art Cartoon Photo Sketch
MetaReg [2] 83.7 ± 0.2 77.2 ± 0.3 95.5 ± 0.2 70.3 ± 0.3 81.7
Feture-Critic [45] 78.4 ± 1.6 75.4 ± 1.2 92.6 ± 0.5 73.3 ± 1.4 80.0 ± 0.3
TTT++ [46] 84.3 ± 0.1 78.4 ± 0.5 93.8 ± 1.3 73.2 ± 3.2 82.4 ± 1.1
Ours w/o TTT 83.3 ± 0.5 76.0 ± 0.5 94.4 ± 0.5 76.7 ± 1.4 82.8 ± 0.3
Ours 84.7 ± 0.4 78.0 ± 0.4 94.5 ± 0.4 78.2 ± 0.3 83.8 ± 0.3

Table 11. Average accuracies on the PACS [37] datasets using the default hyper-parameter settings in DomainBed [27].

art cartoon photo sketch Average
ERM [61] 78.0 ± 1.3 73.4 ± 0.8 94.1 ± 0.4 73.6 ± 2.2 79.8 ± 0.4
IRM [1] 76.9 ± 2.6 75.1 ± 0.7 94.3 ± 0.4 77.4 ± 0.4 80.9 ± 0.5
GroupGRO [55] 77.7 ± 2.6 76.4 ± 0.3 94.0 ± 0.3 74.8 ± 1.3 80.7 ± 0.4
Mixup [68] 79.3 ± 1.1 74.2 ± 0.3 94.9 ± 0.3 68.3 ± 2.7 79.2 ± 0.9
MLDG [38] 78.4 ± 0.7 75.1 ± 0.5 94.8 ± 0.4 76.7 ± 0.8 81.3 ± 0.2
CORAL [59] 81.5 ± 0.5 75.4 ± 0.7 95.2 ± 0.5 74.8 ± 0.4 81.7 ± 0.0
MMD [40] 81.3 ± 0.6 75.5 ± 1.0 94.0 ± 0.5 74.3 ± 1.5 81.3 ± 0.8
DANN [23] 79.0 ± 0.6 72.5 ± 0.7 94.4 ± 0.5 70.8 ± 3.0 79.2 ± 0.3
CDANN [44] 80.4 ± 0.8 73.7 ± 0.3 93.1 ± 0.6 74.2 ± 1.7 80.3 ± 0.5
MTL [6] 78.7 ± 0.6 73.4 ± 1.0 94.1 ± 0.6 74.4 ± 3.0 80.1 ± 0.8
SagNet [48] 82.9 ± 0.4 73.2 ± 1.1 94.6 ± 0.5 76.1 ± 1.8 81.7 ± 0.6
ARM [72] 79.4 ± 0.6 75.0 ± 0.7 94.3 ± 0.6 73.8 ± 0.6 80.6 ± 0.5
VREx [36] 74.4 ± 0.7 75.0 ± 0.4 93.3 ± 0.3 78.1 ± 0.9 80.2 ± 0.5
RSC [33] 78.5 ± 1.1 73.3 ± 0.9 93.6 ± 0.6 76.5 ± 1.4 80.5 ± 0.2
SelfReg [34] 82.5 ± 0.8 74.4 ± 1.5 95.4 ± 0.5 74.9 ± 1.3 81.8 ± 0.3
MixStyle [75] 82.6 ± 1.2 76.3 ± 0.4 94.2 ± 0.3 77.5 ± 1.3 82.6 ± 0.4
Fish [58] 80.9 ± 1.0 75.9 ± 0.4 95.0 ± 0.4 76.2 ± 1.0 82.0 ± 0.3
SD [51] 83.2 ± 0.6 74.6 ± 0.3 94.6 ± 0.1 75.1 ± 1.6 81.9 ± 0.3
CAD [53] 83.9 ± 0.8 74.2 ± 0.4 94.6 ± 0.4 75.0 ± 1.2 81.9 ± 0.3
CondCAD [53] 79.7 ± 1.0 74.2 ± 0.9 94.6 ± 0.4 74.8 ± 1.4 80.8 ± 0.5
Fishr [52] 81.2 ± 0.4 75.8 ± 0.8 94.3 ± 0.3 73.8 ± 0.6 81.3 ± 0.3
Ours 84.7 ± 0.4 78.0 ± 0.4 94.5 ± 0.4 78.2 ± 0.3 83.8 ± 0.3



Table 12. Average accuracies on the VLCS [18] datasets using the default hyper-parameter settings in DomainBed [27].

Caltech LabelMe Sun VOC Average
ERM [61] 97.7 ± 0.3 62.1 ± 0.9 70.3 ± 0.9 73.2 ± 0.7 75.8 ± 0.2
IRM [1] 96.1 ± 0.8 62.5 ± 0.3 69.9 ± 0.7 72.0 ± 1.4 75.1 ± 0.1
GroupGRO [55] 96.7 ± 0.6 61.7 ± 1.5 70.2 ± 1.8 72.9 ± 0.6 75.4 ± 1.0
Mixup [68] 95.6 ± 1.5 62.7 ± 0.4 71.3 ± 0.3 75.4 ± 0.2 76.2 ± 0.3
MLDG [38] 95.8 ± 0.5 63.3 ± 0.8 68.5 ± 0.5 73.1 ± 0.8 75.2 ± 0.3
CORAL [59] 96.5 ± 0.3 62.8 ± 0.1 69.1 ± 0.6 73.8 ± 1.0 75.5 ± 0.4
MMD [40] 96.0 ± 0.8 64.3 ± 0.6 68.5 ± 0.6 70.8 ± 0.1 74.9 ± 0.5
DANN [23] 97.2 ± 0.1 63.3 ± 0.6 70.2 ± 0.9 74.4 ± 0.2 76.3 ± 0.2
CDANN [44] 95.4 ± 1.2 62.6 ± 0.6 69.9 ± 1.3 76.2 ± 0.5 76.0 ± 0.5
MTL [6] 94.4 ± 2.3 65.0 ± 0.6 69.6 ± 0.6 71.7 ± 1.3 75.2 ± 0.3
SagNet [48] 94.9 ± 0.7 61.9 ± 0.7 69.6 ± 1.3 75.2 ± 0.6 75.4 ± 0.8
ARM [72] 96.9 ± 0.5 61.9 ± 0.4 71.6 ± 0.1 73.3 ± 0.4 75.9 ± 0.3
VREx [36] 96.2 ± 0.0 62.5 ± 1.3 69.3 ± 0.9 73.1 ± 1.2 75.3 ± 0.6
RSC [33] 96.2 ± 0.0 63.6 ± 1.3 69.8 ± 1.0 72.0 ± 0.4 75.4 ± 0.3
SelfReg [34] 95.8 ± 0.6 63.4 ± 1.1 71.1 ± 0.6 75.3 ± 0.6 76.4 ± 0.7
MixStyle [75] 97.3 ± 0.3 61.6 ± 0.1 70.4 ± 0.7 71.3 ± 1.9 75.2 ± 0.7
Fish [58] 97.4 ± 0.2 63.4 ± 0.1 71.5 ± 0.4 75.2 ± 0.7 76.9 ± 0.2
SD [51] 96.5 ± 0.4 62.2 ± 0.0 69.7 ± 0.9 73.6 ± 0.4 75.5 ± 0.4
CAD [53] 94.5 ± 0.9 63.5 ± 0.6 70.4 ± 1.2 72.4 ± 1.3 75.2 ± 0.6
CondCAD [53] 96.5 ± 0.8 62.6 ± 0.4 69.1 ± 0.2 76.0 ± 0.2 76.1 ± 0.3
Fishr [52] 97.2 ± 0.6 63.3 ± 0.7 70.4 ± 0.6 74.0 ± 0.8 76.2 ± 0.3
Ours 96.9 ± 1.2 63.7 ± 1.1 72.0 ± 0.3 74.9 ± 0.8 76.9 ± 0.6

Table 13. Average accuracies on the OfficeHome [62] datasets using the default hyper-parameter settings in DomainBed [27].

art clipart product real Average
ERM [61] 52.2 ± 0.2 48.7 ± 0.5 69.9 ± 0.5 71.7 ± 0.5 60.6 ± 0.2
IRM [1] 49.7 ± 0.2 46.8 ± 0.5 67.5 ± 0.4 68.1 ± 0.6 58.0 ± 0.1
GroupGRO [55] 52.6 ± 1.1 48.2 ± 0.9 69.9 ± 0.4 71.5 ± 0.8 60.6 ± 0.3
Mixup [68] 54.0 ± 0.7 49.3 ± 0.7 70.7 ± 0.7 72.6 ± 0.3 61.7 ± 0.5
MLDG [38] 53.1 ± 0.3 48.4 ± 0.3 70.5 ± 0.7 71.7 ± 0.4 60.9 ± 0.2
CORAL [59] 55.1 ± 0.7 49.7 ± 0.9 71.8 ± 0.2 73.1 ± 0.5 62.4 ± 0.4
MMD [40] 50.9 ± 1.0 48.7 ± 0.3 69.3 ± 0.7 70.7 ± 1.3 59.9 ± 0.4
DANN [23] 51.8 ± 0.5 47.1 ± 0.1 69.1 ± 0.7 70.2 ± 0.7 59.5 ± 0.5
CDANN [44] 51.4 ± 0.5 46.9 ± 0.6 68.4 ± 0.5 70.4 ± 0.4 59.3 ± 0.4
MTL [6] 51.6 ± 1.5 47.7 ± 0.5 69.1 ± 0.3 71.0 ± 0.6 59.9 ± 0.5
SagNet [48] 55.3 ± 0.4 49.6 ± 0.2 72.1 ± 0.4 73.2 ± 0.4 62.5 ± 0.3
ARM [72] 51.3 ± 0.9 48.5 ± 0.4 68.0 ± 0.3 70.6 ± 0.1 59.6 ± 0.3
VREx [36] 51.1 ± 0.3 47.4 ± 0.6 69.0 ± 0.4 70.5 ± 0.4 59.5 ± 0.1
RSC [33] 49.0 ± 0.1 46.2 ± 1.5 67.8 ± 0.7 70.6 ± 0.3 58.4 ± 0.6
SelfReg [34] 55.1 ± 0.8 49.2 ± 0.6 72.2 ± 0.3 73.0 ± 0.3 62.4 ± 0.1
MixStyle [75] 50.8 ± 0.6 51.4 ± 1.1 67.6 ± 1.3 68.8 ± 0.5 59.6 ± 0.8
Fish [58] 54.6 ± 1.0 49.6 ± 1.0 71.3 ± 0.6 72.4 ± 0.2 62.0 ± 0.6
SD [51] 55.0 ± 0.4 51.3 ± 0.5 72.5 ± 0.2 72.7 ± 0.3 62.9 ± 0.2
CAD [53] 52.1 ± 0.6 48.3 ± 0.5 69.7 ± 0.3 71.9 ± 0.4 60.5 ± 0.3
CondCAD [53] 53.3 ± 0.6 48.4 ± 0.2 69.8 ± 0.9 72.6 ± 0.1 61.0 ± 0.4
Fishr [52] 52.6 ± 0.9 48.6 ± 0.3 69.9 ± 0.6 72.4 ± 0.4 60.9 ± 0.3
Ours 54.4 ± 0.2 52.3 ± 0.8 69.5 ± 0.3 71.7 ± 0.2 62.0 ± 0.2



Table 14. Average accuracies on the TerraInc [4] datasets using the default hyper-parameter settings in DomainBed [27].

L100 L38 L43 L46 Average
ERM [61] 42.1 ± 2.5 30.1 ± 1.2 48.9 ± 0.6 34.0 ± 1.1 38.8 ± 1.0
IRM [1] 41.8 ± 1.8 29.0 ± 3.6 49.6 ± 2.1 33.1 ± 1.5 38.4 ± 0.9
GroupGRO [55] 45.3 ± 4.6 36.1 ± 4.4 51.0 ± 0.8 33.7 ± 0.9 41.5 ± 2.0
Mixup [68] 49.4 ± 2.0 35.9 ± 1.8 53.0 ± 0.7 30.0 ± 0.9 42.1 ± 0.7
MLDG [38] 39.6 ± 2.3 33.2 ± 2.7 52.4 ± 0.5 35.1 ± 1.5 40.1 ± 0.9
CORAL [59] 46.7 ± 3.2 36.9 ± 4.3 49.5 ± 1.9 32.5 ± 0.7 41.4 ± 1.8
MMD [40] 49.1 ± 1.2 36.4 ± 4.8 50.4 ± 2.1 32.3 ± 1.5 42.0 ± 1.0
DANN [23] 44.3 ± 3.6 28.0 ± 1.5 47.9 ± 1.0 31.3 ± 0.6 37.9 ± 0.9
CDANN [44] 36.9 ± 6.4 32.7 ± 6.2 51.1 ± 1.3 33.5 ± 0.5 38.6 ± 2.3
MTL [6] 45.2 ± 2.6 31.0 ± 1.6 50.6 ± 1.1 34.9 ± 0.4 40.4 ± 1.0
SagNet [48] 36.3 ± 4.7 40.3 ± 2.0 52.5 ± 0.6 33.3 ± 1.3 40.6 ± 1.5
ARM [72] 41.5 ± 4.5 27.7 ± 2.4 50.9 ± 1.0 29.6 ± 1.5 37.4 ± 1.9
VREx [36] 48.0 ± 1.7 41.1 ± 1.5 51.8 ± 1.5 32.0 ± 1.2 43.2 ± 0.3
RSC [33] 42.8 ± 2.4 32.2 ± 3.8 49.6 ± 0.9 32.9 ± 1.2 39.4 ± 1.3
SelfReg [34] 46.1 ± 1.5 34.5 ± 1.6 49.8 ± 0.3 34.7 ± 1.5 41.3 ± 0.3
MixStyle [75] 50.6 ± 1.9 28.0 ± 4.5 52.1 ± 0.7 33.0 ± 0.2 40.9 ± 1.1
Fish [58] 46.3 ± 3.0 29.0 ± 1.1 52.7 ± 1.2 32.8 ± 1.0 40.2 ± 0.6
SD [51] 45.5 ± 1.9 33.2 ± 3.1 52.9 ± 0.7 36.4 ± 0.8 42.0 ± 1.0
CAD [53] 43.1 ± 2.6 31.1 ± 1.9 53.1 ± 1.6 34.7 ± 1.3 40.5 ± 0.4
CondCAD [53] 44.4 ± 2.9 32.9 ± 2.5 50.5 ± 1.3 30.8 ± 0.5 39.7 ± 0.4
Fishr [52] 49.9 ± 3.3 36.6 ± 0.9 49.8 ± 0.2 34.2 ± 1.3 42.6 ± 1.0
Ours 51.7 ± 2.4 37.6 ± 0.6 49.9 ± 0.6 33.6 ± 0.6 43.2 ± 0.5

Table 15. Average accuracies on the DomainNet [50] datasets using the default hyper-parameter settings in DomainBed [27].

clip info paint quick real sketch Average
ERM [61] 50.4 ± 0.2 14.0 ± 0.2 40.3 ± 0.5 11.7 ± 0.2 52.0 ± 0.2 43.2 ± 0.3 35.3 ± 0.1
IRM [1] 43.2 ± 0.9 12.6 ± 0.3 35.0 ± 1.4 9.9 ± 0.4 43.4 ± 3.0 38.4 ± 0.4 30.4 ± 1.0
GroupGRO [55] 38.2 ± 0.5 13.0 ± 0.3 28.7 ± 0.3 8.2 ± 0.1 43.4 ± 0.5 33.7 ± 0.0 27.5 ± 0.1
Mixup [68] 48.9 ± 0.3 13.6 ± 0.3 39.5 ± 0.5 10.9 ± 0.4 49.9 ± 0.2 41.2 ± 0.2 34.0 ± 0.0
MLDG [38] 51.1 ± 0.3 14.1 ± 0.3 40.7 ± 0.3 11.7 ± 0.1 52.3 ± 0.3 42.7 ± 0.2 35.4 ± 0.0
CORAL [59] 51.2 ± 0.2 15.4 ± 0.2 42.0 ± 0.2 12.7 ± 0.1 52.0 ± 0.3 43.4 ± 0.0 36.1 ± 0.2
MMD [40] 16.6 ± 13.3 0.3 ± 0.0 12.8 ± 10.4 0.3 ± 0.0 17.1 ± 13.7 0.4 ± 0.0 7.9 ± 6.2
DANN [23] 45.0 ± 0.2 12.8 ± 0.2 36.0 ± 0.2 10.4 ± 0.3 46.7 ± 0.3 38.0 ± 0.3 31.5 ± 0.1
CDANN [44] 45.3 ± 0.2 12.6 ± 0.2 36.6 ± 0.2 10.3 ± 0.4 47.5 ± 0.1 38.9 ± 0.4 31.8 ± 0.2
MTL [6] 50.6 ± 0.2 14.0 ± 0.4 39.6 ± 0.3 12.0 ± 0.3 52.1 ± 0.1 41.5 ± 0.0 35.0 ± 0.0
SagNet [48] 51.0 ± 0.1 14.6 ± 0.1 40.2 ± 0.2 12.1 ± 0.2 51.5 ± 0.3 42.4 ± 0.1 35.3 ± 0.1
ARM [72] 43.0 ± 0.2 11.7 ± 0.2 34.6 ± 0.1 9.8 ± 0.4 43.2 ± 0.3 37.0 ± 0.3 29.9 ± 0.1
VREx [36] 39.2 ± 1.6 11.9 ± 0.4 31.2 ± 1.3 10.2 ± 0.4 41.5 ± 1.8 34.8 ± 0.8 28.1 ± 1.0
RSC [33] 39.5 ± 3.7 11.4 ± 0.8 30.5 ± 3.1 10.2 ± 0.8 41.0 ± 1.4 34.7 ± 2.6 27.9 ± 2.0
SelfReg [34] 47.9 ± 0.3 15.1 ± 0.3 41.2 ± 0.2 11.7 ± 0.3 48.8 ± 0.0 43.8 ± 0.3 34.7 ± 0.2
MixStyle [75] 49.1 ± 0.4 13.4 ± 0.0 39.3 ± 0.0 11.4 ± 0.4 47.7 ± 0.3 42.7 ± 0.1 33.9 ± 0.1
Fish [58] 51.5 ± 0.3 14.5 ± 0.2 40.4 ± 0.3 11.7 ± 0.5 52.6 ± 0.2 42.1 ± 0.1 35.5 ± 0.0
SD [51] 51.3 ± 0.3 15.5 ± 0.1 41.5 ± 0.3 12.6 ± 0.2 52.9 ± 0.2 44.0 ± 0.4 36.3 ± 0.2
CAD [53] 45.4 ± 1.0 12.1 ± 0.5 34.9 ± 1.1 10.2 ± 0.6 45.1 ± 1.6 38.5 ± 0.6 31.0 ± 0.8
CondCAD [53] 46.1 ± 1.0 13.3 ± 0.4 36.1 ± 1.4 10.7 ± 0.2 46.8 ± 1.3 38.7 ± 0.7 31.9 ± 0.7
Fishr [52] 47.8 ± 0.7 14.6 ± 0.2 40.0 ± 0.3 11.9 ± 0.2 49.2 ± 0.7 41.7 ± 0.1 34.2 ± 0.3
Ours 50.7 ± 0.7 13.9 ± 0.4 39.4 ± 0.5 11.9 ± 0.2 50.2 ± 0.3 43.5 ± 0.1 34.9 ± 0.1
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