
NIFF: Alleviating Forgetting in Generalized Few-Shot Object Detection
via Neural Instance Feature Forging

Karim Guirguis1,2† Johannes Meier1† George Eskandar3 Matthias Kayser1 Bin Yang3 Jürgen Beyerer2,4

Robert Bosch GmbH1 Karlsruhe Institute of Technology2 University of Stuttgart3 Fraunhofer IOSB4

Abstract

Privacy and memory are two recurring themes in a broad
conversation about the societal impact of AI. These con-
cerns arise from the need for huge amounts of data to train
deep neural networks. A promise of Generalized Few-shot
Object Detection (G-FSOD), a learning paradigm in AI, is
to alleviate the need for collecting abundant training sam-
ples of novel classes we wish to detect by leveraging prior
knowledge from old classes (i.e., base classes). G-FSOD
strives to learn these novel classes while alleviating catas-
trophic forgetting of the base classes. However, existing ap-
proaches assume that the base images are accessible, an
assumption that does not hold when sharing and storing
data is problematic. In this work, we propose the first data-
free knowledge distillation (DFKD) approach for G-FSOD
that leverages the statistics of the region of interest (RoI)
features from the base model to forge instance-level fea-
tures without accessing the base images. Our contribution
is three-fold: (1) we design a standalone lightweight gener-
ator with (2) class-wise heads (3) to generate and replay di-
verse instance-level base features to the RoI head while fine-
tuning on the novel data. This stands in contrast to standard
DFKD approaches in image classification, which invert the
entire network to generate base images. Moreover, we make
careful design choices in the novel finetuning pipeline to
regularize the model. We show that our approach can dra-
matically reduce the base memory requirements, all while
setting a new standard for G-FSOD on the challenging MS-
COCO and PASCAL-VOC benchmarks.

1. Introduction

Object detection (OD) is an integral element in mod-
ern computer vision perception systems (e.g., robotics and
self-driving cars). However, object detectors [1–8] require
abundant annotated data to train, which is labor and time
intensive. In some applications requiring rare class de-
tection, collecting much data is challenging. Striving to
learn in limited data scenarios, few-shot object detection
(FSOD) [9] is an uprising field. It mimics the human cog-
nitive ability by leveraging prior knowledge from previous

† Authors have equally contributed to this work.
Corresponding author: karim.guirguis@de.bosch.com

Figure 1. The base memory requirements for G-FSOD are dra-
matically reduced by our framework, while improving the overall
detection performance on MS-COCO (10-shot). We only store a
lightweight generator that synthesizes deep features for the RoI
head. BF denotes base-data free finetuning.

experiences with abundant base data, to rapidly learn novel
classes from limited samples. Despite the success of meta-
learning [10–15] and transfer learning [16–19] paradigms in
FSOD, most methods prioritize the detection performance
of the novel classes while ignoring the catastrophic forget-
ting of the base ones. This might lead to critical failure
cases in real-life operational perception systems.

To address the aforementioned concern, generalized few-
shot object detection (G-FSOD) has been introduced to
jointly detect the base and novel classes. One of the first ap-
proaches to address the G-FSOD task was TFA [16], which
finetunes the detector using a balanced set of base and novel
class samples while freezing the backbone and the region
proposal network (RPN). While this has reduced forgetting,
the performance on novel classes has dropped significantly.
Since then, a plethora of works have attempted to improve
the overall detection performance. DeFRCN [19] proposed
a gradient manipulation approach to modify the RPN and
RoI head gradients. Retentive R-CNN [22], a knowledge
distillation approach and CFA [23], a gradient manipula-
tion approach were proposed to explicitly tackle the catas-
trophic forgetting of base classes. However, all the above
approaches rely on the assumption that base data is avail-
able while learning the new classes. This made us raise
the following question: How to alleviate forgetting without
base data in case of a memory constraint or privacy con-
cerns restricting the storage and replay of old base data?

ar
X

iv
:2

30
3.

04
95

8v
1

 [
cs

.C
V

]
 9

 M
ar

 2
02

3

Classifier

RoI Head

Record statistics

Record statistics

Figure 2. Top: Standard DFKD approach via inverting the entire
model [20, 21]. Bottom: An overview of our proposed approach.
We abstractly show a few layers in both models. The main dif-
ferences are: (1) we synthesize features instead of images, (2) we
use a separate generator instead of inverting the model, and (3) we
record the class-wise statistics (instead of the full data statistics)
before and after the normalization layers in the RoI head.

Data-free knowledge distillation (DFKD) is a line of
work sharing a similar interest in transferring knowledge
without storing raw data. DeepDream [24] pioneered model
inversion (MI) work which inverted a pre-trained classi-
fier to generate synthetic images for knowledge distilla-
tion. Since then, various works [20, 21, 25] have followed
attempting to generate higher-fidelity images and even in
a class-incremental setting [21]. Despite its success in
image classification, applying DFKD in G-FSOD comes
with several challenges. First, most works revolve around
generating synthetic images via MI. In the context of OD
and G-FSOD, this entails generating images with bound-
ing boxes which inflicts higher computational and memory
overhead. Although a recent approach DIODE [25] has ap-
plied MI in OD, it cannot be extended to G-FSOD for the
following reason. Similar to all the previously mentioned
works in DFKD, DIODE needs the statistics of the Batch-
Norm(BN) [26] layers which are trained on the detection
datasets. However, the backbone in G-FSOD is pre-trained
on ImageNet and frozen (except the last ResBlock) during
the entire training (unfreezing would change the mature pa-
rameters and will reduce the overall performance). Hence,
the running means and variances in the BN do not represent
the true base data distribution.

Contribution: In this work, we propose Neural Instance
Feature Forging (NIFF), the first data-free knowledge distil-
lation method for G-FSOD. We aim to alleviate forgetting
without storing base data to respect privacy restrictions and
reduce the overall memory footprint, as shown in Fig. 1.

Our two key insights are as follows. First, we show that
the statistics of instance-level RoI head features sufficiently
represent the distribution of base classes. Second, we show
that a standalone lightweight generator can be trained in a
distillation fashion to match the gathered statistics and syn-
thesize class-wise base features to train a G-FSOD model.
This stands in contrast to MI approaches which optimize the
pre-trained model to synthesize high-fidelity images. Our
contributions are summarized as follows:

1. We forge instance-level features instead of synthesiz-
ing images (Fig. 2) as the feature space (1024× 7× 7)
is much smaller than the image space (3×600×1000).

2. Rather than inverting the whole model, instead we de-
sign a standalone lightweight generator in the feature
space to forge instance-level base features. The gen-
erator is able to better capture the feature distribution
than the complex MI.

3. We equip the generator with class-aware heads rather
than a class-agnostic one, and we train it to synthesize
features with a distribution that matches the class-wise
statistics of the pre-trained base RoI head, hence pro-
moting feature diversity. We demonstrate that class-
aware heads trained on class-aware statistics outper-
form a shared model trained on class-wise statistics.

4. We dramatically reduce the overall memory footprint
by two orders of magnitude while setting a new stan-
dard for the overall detection performance in G-FSOD
on MS-COCO [27] and PASCAL-VOC [28]. For in-
stance, the base images and annotations for MS-COCO
dataset (10-shot) are ∼ 150MB large, while our gener-
ator parameters only occupy ∼ 4MB.

2. Related Works
Few-Shot Object Detection. FSOD strategies can be di-

vided into meta-learning and transfer learning approaches.
The meta-learning methods gain knowledge by solving a
variety of unrelated tasks [10–15]. On the other hand, the
transfer learning approaches directly finetune on the novel
data. On a balanced training set of both base and novel
classes, TFA [16] finetunes just the box predictor. By
creating multi-scale positive samples as object pyramids,
MPSR [17] addresses the high scale variances by improving
the prediction at many scales. DeFRCN [19] highlights the
contradictory goals of the RPN and class-aware ROI head.
Accordingly, they remove the RPN gradients and downscale
the ROI head gradients flowing to the backbone. However,
the main goal of FSOD approaches is to boost the perfor-
mance on the novel classes.

Generalized Few-Shot Object Detection. A growing
area of study within FSOD is G-FSOD, which focuses on
detecting both the base and novel classes. TFA [16] at-
tempts to prevent forgetting by optimizing a balanced set
of base and novel classes, whereas ONCE [29] tackles the

issue in an incremental class learning setting using a meta-
learning strategy. A transfer-learning-based strategy, Re-
tentive R-CNN [22], leverages the base-trained model in a
distillation-like fashion to alleviate forgetting. To reduce
the extra computational and memory costs, CFA [23] de-
veloped a new gradient update mechanism to alleviate for-
getting based on the angle between gradients for base and
novel samples. All of the approaches outlined above, how-
ever, are heavily reliant on the availability of annotated base
images during the novel training phase.

Data-Free Knowledge Distillation. DeepDream [24]
was the first among this line of work to show that discrim-
inative neural networks harbor information that enables the
generation of images. It synthesizes an image to provide a
high output response for specific classes at different model
layers. Later, DeepInversion [20] improved the dreamed
image quality by penalizing the distance between statis-
tics of the features, assuming a Gaussian distribution. Al-
waysBeDreaming (ABD) [21] minimizes the feature drift
over the previous task while finetuning the last classifica-
tion layer with a cross entropy loss. Recently, Chawla et
al. [25] proposed a non class incremental data-free knowl-
edge distillation approach for YOLOv3 based on MI along
with a bounding box sampling scheme. If extended to G-
FSOD, the backbone and BN layers would be unfrozen,
which would limit the model’s capacity to rapidly learn new
classes. Moreover, BN layers do not capture the true class-
wise distribution.

3. Methodology

We aim to design a G-FSOD pipeline that learns novel
classes from scant data while preserving privacy and mem-
ory constraints. In this section, we start by formally defin-
ing the G-FSOD problem. Then, we revisit the data-free
knowledge distillation via noise optimization. Finally, we
present our approach, NIFF, which consists of two stages:
(1) Feature generator training and (2) Novel training in a
distillation fashion via the trained generator.

3.1. Problem Formulation
Analogous to FSOD, G-FSOD divides the dataset D into

a base dataset Db and a novel dataset Dn, with abundant
instances of base classes Cb and a limited number of in-
stances of novel classes Cn (i.e., Cb ∩ Cn = ∅), respec-
tively. Each input image x ∈ X is associated with an an-
notation y ∈ Y comprising the class label ci and the cor-
responding bounding box coordinates bi for each instance
i. Formally, Db = { (x, y) | y = {(ci, bi)}, ci ∈ Cb}, and
Dn = { (x, y) | y = {(ci, bi)}, ci ∈ Cn}.

The training of a G-FSOD consists of two main stages.
Firstly, the base training stage strives to build a strong
knowledge prior by training on Db. Secondly, novel training
leverages the acquired knowledge to learn the novel classes

from Dn rapidly. Unlike FSOD, G-FSOD aims to main-
tain its ability to detect Cb while learning Cn by leveraging
base data samples. G-FSOD performance is measured by
the overall Average Precision (AP), which is calculated as
a weighted average of the base classes AP (bAP) and novel
classes AP (nAP):

AP =
|Cb| · bAP + |Cn| · nAP

|Cb|+ |Cn|
(1)

The goal of G-FSOD is to maximize the AP. However, we
raise the following arguments: (1) Since the base data sam-
ples utilized during novel training are fixed K-shots, they
do not represent the full base distribution, (2) It is not al-
ways possible to store base data samples due to privacy
and/or memory constraints. While recent attempts have
been made to tackle the former problem [22, 23], the latter
has not been investigated.

3.2. Revisiting Data-Free Knowledge Distillation

DFKD approaches aim to distill and transfer knowledge
from a teacher to a student network by synthesizing images
as an alternative to the old tasks’ data. The most common
approaches reviewed in Sec. 2 are based on a two-step noise
optimization paradigm. First, a noise vector is sampled
from a Gaussian distribution and iteratively optimized into a
synthesized image with stochastic gradient descent (SGD).
This is realized by minimizing the Kullback–Leibler (KL)
divergence between the gathered statistics and the statis-
tics yielded by the synthetic images under a Gaussian as-
sumption. The second stage employs standard data-driven
knowledge distillation approaches using the synthetic im-
ages from the first stage. The aim is to transfer knowledge
in a teacher-student fashion to alleviate forgetting.

To this point, we highlight two main challenges. Firstly,
how can we accomplish DFKD in G-FSOD using BN statis-
tics while the majority of the backbone and all BN layers
are frozen? Unfreezing such layers during finetuning on the
base and novel datasets would lead to parameters and batch
statistics that are presumably different from the pre-trained
ImageNet ones. As a result, the network will learn new pa-
rameters and statistics that differ from the more mature pre-
trained ones, devaluing the overall detection performance.
Moreover, the BN statistics do not depict the true class-wise
means and variances. Secondly, different from image clas-
sification, multiple instances per image and the RPN make
it challenging to invert the model prior to the RoI head. Oth-
erwise, generating bounding boxes would be needed for the
synthesized images incurring higher complexity and signif-
icantly more computational and memory overhead.

3.3. Stage I: Feature Generator Training

Our NIFF framework generates instance-level base fea-
tures to be replayed during novel class learning. In the first

Real
features

Figure 3. Stage I: Feature Generator Training. Left: A detailed overview of the RoI head to highlight where the features’ statistics are
gathered using the data watchers. Right: Illustration of the proposed generator training pipeline and the architectural details.

stage, we train a standalone feature generator by aligning
the class-wise means and variances at the RoI head. In the
second stage, we synthesize features from the generator dur-
ing novel training to alleviate forgetting and make careful
considerations in the training of the pipeline to regularize
the detector. In this section, we describe the first stage of
our approach addressing the generator design and training.

Gathering base statistics. Since the BN layers are
frozen in FSOD and G-FSOD models, an alternative way is
needed to gather meaningful statistics (running means and
variances) of the base RoI features. Differently from the
discussed DFKD methods, we choose to record the class-
wise statistics as opposed to class agnostic statistics. This
design choice allows more fine-grained control over the
number and type of the generated features. A class condi-
tional generation can compensate for the sparser and harder
classes in the base dataset. To this end, we introduce the
data watcher block which performs average pooling on the
spatial dimensions of the input feature maps and records the
class-wise mean µc and variance σ2

c vectors and the sam-
ple size nc. Formally, we update the statistics via combined
mean and corrected variance as follows:

µ̂c,t =
n̂c,t−1µ̂c,t−1 + nc,tµc,t

n̂c,t−1 + nc,t
, (2)

σ̂2
c,t =

(n̂c,t−1 − 1)σ̂2
c,t−1 + (nc,t − 1)σ2

c,t

n̂c,t−1 + nc,t − 1

+
n̂c,t−1nc,t(µc,t − µ̂c,t−1)

(n̂c,t−1 + nc,t)(n̂c,t−1 + nc,t − 1)
,

(3)

where t denotes the iteration step. (̂.) denotes a running es-
timate. To restrict the generator to forge more diverse fea-
tures, we opt to place the data watchers at various layers in
the RoI head (i.e., before the frozen BN layers and after the
activations), as shown in Fig. 3 (left). The more data watch-
ers we place, the more restricted the forged features are.

For this, we further place data watchers before and after the
softmax. The collected statistics should be able to depict a
strong prior distribution of the base RoI features. It is essen-
tial to highlight that once the statistics are collected for the
base task, the data is no longer seen or stored. This means
that the model enclosing the underlying task statistics can
be treated as a black box maintaining data privacy, allowing
to share the model with different parties without sharing or
storing the data. Note that relying solely on the running
averages of the RoI stats results in losing information, es-
pecially since we only use RoI pooled features (1024x7x7
fixed output), making it hard to reconstruct the training data.
NIFF requires even fewer stats than previous methods like
DIODE [25] (which uses backbone stats) and hence cannot
reconstruct an entire image.

Generator architecture. Next, we leverage the gath-
ered means and variances of the RoI features to train the
proposed feature generator with SGD. As shown in Fig. 3
(right), our proposed light-weight generator architecture
consists of a linear layer to map the input noise vector
z ∈ R100 into R392 which are then reshaped to R8×7×7

and fed to 5 sequential convolutional blocks. Each block
comprises of Conv2D layers with 8 channels and kernel
size 3. Finally, we append a number of |Cb| 1 × 1 con-
volutional blocks in parallel to enable generating class-wise
instance features fc ∈ R1024×7×7. After sampling noise
z ∼ N (0, I) we generate synthetic features for class c via
fc = G(c, z), where G is our generator model.

Generator training by aligning class-wise statistics.
The generator is trained to forge instance-level base fea-
tures by aligning the acquired statistics in the RoI head at
the same layers. The statistics alignment forces the gener-
ator to produce diverse base features. To force the genera-
tor to produce class-specific features fc from the different
heads, we align the class-wise statistics obtained by passing
fc to the RoI head with the class-wise statistics gathered

(Teacher)

Real novel
features

Synthetic base
features

(Student)

Figure 4. Stage II: Improved Novel Training Pipeline. Dur-
ing novel training, we perform knowledge distillation via the the
trained base feature generator at the RoI head.

by the data watchers. This is opposed to aligning the class-
agnostic full dataset statistics. To further steer each sepa-
rate head to produce different fc, we add a cross-entropy
loss between the corresponding target class-label yi,c and
the probability pi,c at the final softmax layer.

In summary, the generator is trained using two main ob-
jectives: (1) Align the RoI head statistics with the gathered
base ones via KL divergence under a Gaussian assumption,
and (2) Maximize the class probability via cross-entropy
loss. The generator loss function LGen is denoted by:

LGen =λKL
1

|Cb| ∗ d

|Cb|∑

c=1

d∑

i=1

log
σ̃c,i

σc,i

− 1

2

[
1 −

σ2
c,i + (µ̃c,i − µc,i)

2

σ̃2
c,i

]

− 1

|Cb| ∗ N

|Cb|∗N∑

i=1

1

|Cb|

|Cb|∑

c=1

yi,c log(pi,c). (4)

where λKL is a weighting factor. This loss is averaged over
all Data Watchers (omitted for better readability). yi is a
one-hot ground-truth vector. d is the pooled feature dimen-
sion. µc and σ2

c are the gathered feature statistics, while µ̃c

and σ̃2
c are the fake features statistics. N is the total num-

ber of generated features per class. During training, we set
N = 600. To avoid memory overflow during training, we
feed N features for each class sequentially, accumulate the
gradients and backpropagate once at the end.

3.4. Stage II: Improved Novel Training Pipeline

The final step of NIFF is to finetune on novel data
while performing knowledge distillation at the RoI head
in a teacher-student fashion. As depicted in Fig. 4, along
with the real novel features we additionally feed forged base
instance-level features via the trained generator network. To
match the finetuning K-shot setting, we set N = K features
per class, which means that all base classes are encountered
throughout each iteration. This presents an important ad-
vantage in comparison to the data-dependent approaches
like [22, 23] which finetune with base images that contain
a few classes only in each iteration. Another advantage is

that our approach is generative: this means we can sample
from z to produce diverse features, whereas in [22, 23] a
fixed number of shots for each base class is presented dur-
ing training limiting the seen distribution.

The distillation is performed as follows: First, we em-
ploy a weighted feature distillation using L2-norm to pe-
nalize the difference between class-wise pooled RoI fea-
tures of the teacher F T ∈ R(|Cb|∗K)×d and student
FS ∈ R(|Cb|∗K)×d, where d is the pooled feature dimen-
sion. Since we generate class-wise features, we weight
the difference between the features with the weight vec-
tor W c

Cls ∈ Rd of the entire classification weight matrix
WCls ∈ R|Cb|×d for the corresponding class c. We also
weight the regression feature differences in the same way
with the corresponding weight matrix W c

Reg ∈ R4×d from
the regression weight tensor WReg ∈ R(4∗|Cb|)×d. Sec-
ondly, we align the class-wise regression logits by penal-
izing the drift between the predicted offsets of the teacher
regT

c ∈ R4 and student regS
c ∈ R4. The distillation loss

can be written as:

LKD = λF
1

|Cb| ∗K

|Cb|∗K∑

i=1

∥(F T
i − FS

i) ∗W ci
Cls∥22

+λF
1

4 ∗ |Cb| ∗K

|Cb|∗K∑

i=1

4∑

j=1

∥(F T
i − FS

i) ∗W ci,j
Reg ∥22

+
1

|Cb| ∗K

|Cb|∗K∑

i=1

∥regT
i − regS

i ∥1,

(5)

where λF is a weighting factor for the feature distillation.
Thirdly, similar to [21], we employ a cross-entropy loss dur-
ing finetuning to maximize the forged features confidence:

Lconf = − 1

|Cb| ∗K

|Cb|∗K∑

i=1

1

|C|

|C|∑

c=1

yi,c log(pi,c). (6)

The overall novel training loss LN can be denoted by:
LN = LCls + LReg + LKD + Lconf, (7)

where LCls and LReg denote the cross-entropy and smooth
L1 losses, respectively [3].

Additional regularization. To this point, we find that by
replaying the generated base features, the proposed model
is almost on par with the state-of-the-art in the overall AP.
During novel training, we find that there are important de-
sign choices in the training pipeline which can boost the
overall detection performance. We opt to perform the re-
cently proposed constraint finetuning approach (CFA) [23].
With the forged base features available, we are able to lever-
age the backpropagated base gradients to apply CFA. Addi-
tionally, we investigate various pixel-level and parameter-
level regularization techniques. For the former, we utilize
random color jittering (i.e., brightness, contrast, and satura-
tion), random flipping, and random cropping. All augmen-
tations are applied with a probability paug = 0.5.

For parameter-level regularization, we find that employ-
ing the elastic weight consolidation (EWC) [30] approach,
which was originally designed for image classification, can
alleviate forgetting. EWC weights the importance of the
parameters by computing the diagonal of the Fisher infor-
mation matrix (FIM). We compute the FIM by squaring
the backpropagated gradients during the last epoch in the
base training. During the novel training, EWC penalizes
the change of important parameters dictated by FIM to al-
low for a more effective knowledge transfer. However, the
FIM occupies a large memory space as it saves a weight for
each model parameter. To mitigate this undesirable effect,
we average each layer’s weights in the FIM, reducing the
memory from ∼ 200MB to 6.8KB. Thus, each layer’s im-
portance is represented by a single scalar value. We denote
this approximation of EWC by mean EWC (mEWC). We
show in the supplementary that mEWC is on par with EWC
when applied to our model.

4. Experiments
We evaluate our proposed approach using the

well-established G-FSOD benchmarks, including MS-
COCO [27] and PASCAL-VOC [28] datasets. We employ
the same data splits as in earlier works [16,19,23] to ensure
a fair comparison. Implementation details are provided in
the Supplementary material.

Datasets. Firstly, the MS-COCO dataset contains 80
classes, of which 60 are base categories disjoint with
PASCAL-VOC, and the remaining 20 are unique classes.
We use 5k validation set during testing, while the rest
is used for training. We report the outcomes of K =
5, 10, 30−shot settings. Secondly, the PASCAL-VOC
dataset has three distinct splits, each with 20 classes. Fur-
ther, the classes are randomly divided into 15 and 5, respec-
tively, base and novel classes. For base and novel training,
data is drawn from the VOC 2007 and VOC 2012 train/val
sets. The VOC 2007 test set is used for testing. The out-
comes of K = 1, 2, 3, 5, 10-shot settings are reported.

Evaluation metrics. Following prior G-FSOD
works [22, 23], we report the overall (AP), base (bAP), and
novel (nAP) metrics. We also compute the Average Recall
(AR) for the base (bAR) and novel (nAR) classes. Finally,
we report the ensemble-inference results (w/E), leveraging
the base model parameters during inference [22, 23].

4.1. Ablation Studies

In order to showcase the importance of our novel contri-
butions and design choices, we ablate different parts of the
pipeline on the MS-COCO dataset under the 10-shot setting.

Generator design choices. In Tab. 1, we validate
our generator design choices without any regularization
(namely: standalone generator, class-wise statistics, sep-
arate heads and number of channels per layer). First, we

Model Configuration 10-Shot Inference
AP bAP nAP AR Memory [MB]

Inverted RoI head 28.9 32.6 17.7 27.1 0

Gen. w/ shared head 29.3 33.1 17.8 27.3 1.6w/o classwise stats

Gen. w/ shared head 28.5 32.1 17.7 26.4 1.6w/ classwise stats

Gen. w/ separate heads 29.0 32.8 17.5 27.4 3.7w/o classwise stats

Gen. w/ separate heads 30.7 35.0 17.8 28.6 3.7w/ classwise stats (Ours)

Ours w/o cross-entropy term 30.0 34.1 17.6 28.6 3.7

Ours w/ (dim = 64) 30.7 35.0 17.8 28.8 28.7
Ours w/ (dim = 32) 30.5 34.8 17.9 28.6 14.0
Ours w/ (dim = 16) 30.7 34.9 17.9 28.7 7.1
Ours w/ (dim = 8) 30.7 35.0 17.8 28.6 3.7

Table 1. Impact of various generator design choices on MS-COCO
(10-shot) without the added regularization. By memory, we mean
the overhead storage needed other than the detection model.

invert the RoI head to produce instance-level features by
minimizing a KL-loss with respect to the gathered base data
statistics. Note that this can be considered as a straightfor-
ward extension of the standard MI approach ABD [21] to
G-FSOD, albeit this model produces features not images.
Next, we train a standalone generator with a shared head
for all classes while minimizing the full base-data statis-
tics. Although the generator adds a negligible memory over-
head, it outperforms the inverted model, which supports
our claim that a separate generator is easier to optimize.
However, when trained with class-wise statistics the per-
formance slightly drops. We then replace the shared head
with separate class-aware heads and and minimize the full
base statistics. We notice that this setting is on par with the
generator w/ shared head in row 2. Only when we com-
bine the separate heads with the class-wise statistics can we
achieve the best overall performance, as the model can now
better consider the inter-class variance. Solely extending
the model by class-wise statistics or by class-wise heads re-
duces the overall performance. Afterwards, we experiment
with the complete version of the generator but we remove
the cross-entropy loss from Eq. (4) and observe a slight drop
in the overall AP. In the lower part of the table, we study the
trade-off between AP and memory by changing the number
of channels per generator layer. Interestingly, we find that
the model with 64 channels and the model with 8 channels
perform similarly, so we choose the minimalist design to
reduce the memory footprint.

Impact of generated features sampling. In Tab. 3, we
study the impact of sampling techniques when generating
features during novel finetuning (no regularization is per-
formed). We start by generating only 1 feature per class,
then we experiment with a higher number of features to ver-
ify its effect on the overall AP. We observe that once we
reach 10 features per class which matches the novel fine-

Methods / Shots w/E w/B 5 shot 10 shot 30 shot
AP bAP nAP AP bAP nAP AP bAP nAP

FRCN-ft-full [16] ✗ ✓ 18.0 22.0 6.0 18.1 21.0 9.2 18.6 20.6 12.5
TFA w/ fc [16] ✗ ✓ 27.5 33.9 8.4 27.9 33.9 10.0 29.7 35.1 13.4

TFA w/ cos [16] ✗ ✓ 28.1 34.7 8.3 28.7 35.0 10.0 30.3 35.8 13.7
MPSR [17] ✗ ✓ - - - 15.3 17.1 9.7 17.1 18.1 14.1

DeFRCN [19] ✗ ✓ 28.7 33.1 15.3 30.6 34.6 18.6 31.6 34.7 22.5
ONCE [29] ✗ ✓ 13.7 17.9 1.0 13.7 17.9 1.2 - - -

Meta R-CNN [10] ✗ ✓ 3.6 3.5 3.8 5.4 5.2 6.1 7.8 7.1 9.9
FSRW [31] ✗ ✓ - - - - - 5.6 - - 9.1

FsDetView [12] ✗ ✓ 5.9 5.7 6.6 6.7 6.4 7.6 10.0 9.3 12.0
CFA w/ fc [23] ✗ ✓ 30.1 37.1 9.0 30.8 37.6 10.5 31.9 37.7 14.7

CFA w/ cos [23] ✗ ✓ 29.7 36.3 9.8 30.3 36.6 11.3 31.7 37.0 15.6
CFA-DeFRCN [23] ✗ ✓ 30.1 35.0 15.6 31.4 35.5 19.1 32.0 35.0 23.0

DeFRCN ✗ ✗ 23.7 26.3 15.6 18.2 18.5 17.4 16.3 16.3 21.4
NIFF-DeFRCN ✗ ✗ 31.3 36.3 15.7 32.2 36.6 19.1 33.1 37.2 21.0

Retentive R-CNN [22] ✓ ✓ 31.5 39.2 8.3 32.1 39.2 10.5 32.9 39.3 13.8
CFA w/ fc [23] ✓ ✓ 31.8 39.5 8.8 32.2 39.5 10.4 33.2 39.5 14.3

CFA w/ cos [23] ✓ ✓ 32.0 39.5 9.6 32.4 39.4 11.3 33.4 39.5 15.1
CFA-DeFRCN [23] ✓ ✓ 33.0 38.9 15.6 34.0 39.0 18.9 34.9 39.0 22.6

NIFF-DeFRCN ✓ ✗ 33.1 38.9 15.9 34.0 39.0 18.8 34.5 39.0 20.9

Table 2. G-FSOD results on MS-COCO for 5, 10, 30-shot settings. w/E denotes the ensemble-based evaluation protocol. w/B indicates
whether the base data is available during novel finetuning. The best and second-best results for each evaluation protocol are color coded.

Feature(s) per class 10-Shot Inference
AP bAP nAP AR bAR nAR

1 29.9 34.0 17.6 28.4 31.0 20.7
5 30.6 34.9 17.7 28.8 31.5 20.8
10 30.7 35.0 17.8 28.8 31.5 20.8
30 30.8 35.1 17.8 28.8 31.5 20.8

10 (fixed) 25.9 28.9 16.9 25.5 27.1 20.6

10 (10 sampled cls) 30.5 34.8 17.7 28.7 31.4 20.6

Table 3. Effect of the number of generated features per class
and fixed samples on the forgetting and the detection performance
without any added regularization.

tuning setting (N = K = 10-shot), the best overall results
are achieved. Further increases yield almost similar results
so we opt to set N = K consistently throughout our experi-
ments on MS-COCO and PASCAL-VOC. Next, in row (5),
we generate 10 features per class by sampling only once at
the start of the training and fix them throughout the novel
training. We notice that the performance drops significantly
due to the limited diversity of generated base features, em-
phasizing the importance of sampling the features in each it-
eration. In the final row, we randomly sample a random sub-
set of the base classes Cs < |Cb|, but still generate N = 10
features for each. We choose Cs = 10. Compared to gen-
erating features for all the base classes (row 3), we notice a
slight drop in performance, highlighting the importance of
a class-balanced sampling scheme. Hence, we opt to gener-
ate N = K features per class for all the base classes in each
iteration to achieve the best overall AP.

4.2. Main Comparisons
We compare our method (NIFF) against state-of-the art

G-FSOD [22, 23] and FSOD [16, 17, 19] models on MS-

Methods / Shots w/B 5-Shot 10-Shot 30-Shot
AP bAP nAP AP bAP nAP AP bAP nAP

DeFRCN [19] ✓ 28.7 33.1 15.3 30.6 34.6 18.6 31.6 34.7 22.5
DeFRCN ✗ 23.7 26.3 15.6 18.2 18.5 17.4 16.3 16.3 21.4
DeFRCN w/ DA ✗ 22.6 25.0 15.3 26.4 29.2 17.9 24.2 25.0 21.8
DeFRCN w/ LOD ✗ 29.0 34.1 13.4 27.0 30.7 16.1 29.8 33.2 19.7
DeFRCN w/ MAS ✗ 31.0 36.8 13.5 31.5 36.8 15.3 32.6 36.6 20.4
DeFRCN w/ EWC ✗ 31.1 37.1 13.4 31.8 36.9 16.6 33.0 37.3 20.1
DeFRCN ✓F 24.2 27.6 13.6 25.8 28.9 16.6 26.6 29.0 19.7
DeFRCN + CFA ✓F 26.0 29.9 13.7 27.7 31.4 16.6 28.6 31.5 19.9
DeFRCN w/ KD ✓F 25.3 28.8 14.3 27.0 30.2 17.4 27.9 30.3 20.5
DeFRCN w/ KD + CFA ✓F 28.4 33.3 14.1 30.5 34.9 17.1 31.3 35.0 20.3
NIFF-DeFRCN ✗ 31.3 36.3 15.7 32.2 36.6 19.1 33.1 37.2 21.0

Table 4. G-FSOD results for various baselines on top of De-
FRCN [19] on MS-COCO for 5, 10, 30-shot settings. ✓F denotes
finetuning with offline saved base RoI features. w/B indicates
whether the base data is available during novel finetuning. KD
denotes the proposed knowledge distillation approach.

COCO and PASCAL-VOC benchmarks. We opt to apply
our approach on top of the recent state-of-the-art transfer
learning based approach DeFRCN [19]. We denote our
model by NIFF-DeFRCN.

Results on MS-COCO. In Tab. 2, we show the results
on MS-COCO. (w/B) denotes whether base data is used.
To show the impact of removing the base data on G-FSOD,
we reevaluate our baseline DeFRCN [19] without any base
data. We notice that both the base and novel performance
drop across all shots. This shows the importance of the base
data in the knowledge transfer to new tasks. By applying
NIFF, we show that we are consistently able to boost the
base performance across all settings yielding higher overall
AP performance. Moreover, we evaluate our model using
the ensemble evaluation protocol in Retentive R-CNN [22]
and outperform the other approaches despite the absence of
base data (with an 0.4AP less in 30-shot setting). It is essen-

Methods / Shots w/E w/B All Set 1 All Set 2 All Set 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN-ft-full [16] ✗ ✓ 55.4 57.1 56.8 60.1 60.9 50.1 53.7 53.6 55.9 55.5 58.5 59.1 58.7 61.8 60.8
TFA w/ fc [16] ✗ ✓ 69.3 66.9 70.3 73.4 73.2 64.7 66.3 67.7 68.3 68.7 67.8 68.9 70.8 72.3 72.2

TFA w/ cos [16] ✗ ✓ 69.7 68.2 70.5 73.4 72.8 65.5 65.0 67.7 68.0 68.6 67.9 68.6 71.0 72.5 72.4
MPSR [17] ✗ ✓ 56.8 60.4 62.8 66.1 69.0 53.1 57.6 62.8 64.2 66.3 55.2 59.8 62.7 66.9 67.7

DeFRCN [19] ✗ ✓ 73.1 73.2 73.7 75.1 74.4 68.6 69.8 71.0 72.5 71.5 72.5 73.5 72.7 74.1 73.9
Meta R-CNN [10] ✗ ✓ 17.5 30.5 36.2 49.3 55.6 19.4 33.2 34.8 44.4 53.9 20.3 31.0 41.2 48.0 55.1

FSRW [31] ✗ ✓ 53.5 50.2 55.3 56.0 59.5 55.1 54.2 55.2 57.5 58.9 54.2 53.5 54.7 58.6 57.6
FsDetView [12] ✗ ✓ 36.4 40.3 40.1 50.0 55.3 36.3 43.7 41.6 45.8 54.1 37.0 39.5 40.7 50.7 54.8
CFA w/ fc [23] ✗ ✓ 69.5 68.2 69.8 73.5 74.3 66.0 66.9 69.2 70.1 71.1 67.7 69.0 70.9 72.6 73.5

CFA w/ cos [23] ✗ ✓ 69.1 69.8 71.9 73.6 73.9 64.8 66.5 68.3 69.5 70.5 67.7 69.7 71.9 73.0 73.5
CFA-DeFRCN [23] ✗ ✓ 73.8 74.6 74.5 76.0 74.4 69.3 71.4 72.0 73.3 72.0 72.9 73.9 73.0 74.1 74.6

DeFRCN ✗ ✗ 61.1 48.5 35.9 32.8 20.7 64.7 59.7 58.2 56.9 48.4 56.3 51.2 46.9 38.8 23.9
NIFF-DeFRCN ✗ ✗ 75.6 76.5 76.7 77.4 76.9 70.0 71.4 73.9 74.4 74.0 74.4 75.8 76.2 76.6 76.7

Retentive R-CNN [22] ✓ ✓ 71.3 72.3 72.1 74.0 74.6 66.8 68.4 70.2 70.7 71.5 69.0 70.9 72.3 73.9 74.1
CFA w/ fc [23] ✓ ✓ 70.3 69.5 71.0 74.4 74.9 67.0 68.0 70.2 70.8 71.5 69.1 70.1 71.6 73.3 74.7

CFA w/ cos [23] ✓ ✓ 71.4 71.8 73.3 74.9 75.0 66.8 68.4 70.4 71.1 71.9 69.7 71.2 72.6 74.0 74.7
CFA-DeFRCN [23] ✓ ✓ 75.0 76.0 76.8 77.3 77.3 70.4 72.7 73.7 74.7 74.2 74.7 75.5 75.0 76.2 76.6

NIFF-DeFRCN ✓ ✗ 75.9 76.9 77.3 77.9 77.5 70.6 71.6 74.5 75.1 74.5 74.7 76.0 76.1 76.8 76.7

Table 5. G-FSOD (AP50) results on PASCAL-VOC for 1, 2, 3, 5, 10-shot settings for all three splits are reported.

tial to note that this evaluation protocol requires keeping the
base model parameters [22,23], increasing the overall mem-
ory footprint and inference time. Note that our approach
NIFF-DeFRCN (w/o E and w/o B) outperforms Retentive
R-CNN (w/E and w/B) in the overall AP.

Comparison against regularization-based continual
learning and G-FSOD baselines. In Tab. 4, we com-
pare our method with base-data-free and GFSOD base-
lines on top of DeFRCN [19]. The data-free baselines are
drawn from regularization-based continual learning works,
namely: pixel-level data augmentations (DA), EWC [30]
and memory aware synapses (MAS) [32] with the com-
puted FIM, and lifelong object detection (LOD) [33]. Since
CFA [23] cannot be conducted in a data-free setting, we
train DeFRCN and save base RoI features to later apply
CFA during novel training. We also add two baselines: the
proposed KD method on top of DeFRCN using saved base
RoI features with and without CFA. The proposed method
is able to consistently outperform both data-free and data-
reliant baselines. We argue that the diversity of the forged
features is what allows our method to surpass data-reliant
baselines. Moreover, it is important to note that the stored
features require 114.8MB, which is significantly more than
the memory required by our generator (3.7MB) and stats
(12.4MB). Similarly, EWC and MAS are memory intensive
as the FIM requires around 200MB.

Results on PASCAL-VOC. We report the overall per-
formance on PASCAL-VOC (AP50) in Tab. 5. We show
that adopting NIFF achieves state-of-the-art results with and
without the ensemble evaluation protocol. Due to the lim-
ited space, we report the novel performance (nAP50) re-
sults on PASCAL-VOC. Further ablation experiments on
MS-COCO and experiments with multiple runs on both
datasets in the Supplementary materials. Although the
performance on novel classes is not our primary objec-
tive, NIFF-DeFRCN achieves competitive results on both
datasets are shown in the majority of cases.

4.3. Memory & Computation Analysis

For 10-shot MS-COCO, the overall memory required is
(Model = 195.16MB, Base Images = 148.8MB, Novel Im-
ages= 48.6MB). The Generator has 3.7MB, the stats have
12.42MB, so the proposed model saves 33.8% of the initial
requirements. Computationally, DeFRCN and the generator
require 133.46G and 943.94K FLOPS, respectively, imply-
ing that the computational overhead is negligible. DeFRCN
G-FSOD training requires 104.5 mins, where our generator
training and data generation additionally require 112 mins
and 27 mins, respectively.

5. Conclusion
We propose NIFF, a data-free G-FSOD framework,

which alleviates forgetting on the base images all without
using any base data. Our main contribution is the design
of a standalone generator that forges base instance-level
features instead of images by aligning class-wise statistics
in the RoI head. The generator has a negligible memory
footprint (∼ 4MB) which is two orders of magnitude lower
than using base images for finetuning. Replaying the forged
features during novel finetuning, along with careful design
choices in the training pipeline, results in state-of-the-art
overall AP performance. In the future, we plan to apply our
approach on the recent state-of-the-art transformer-based
FSOD models. Furthermore, we encourage future works to
extend G-FSOD in meta-learning paradigms as their base
performance drops significantly. Finally, we hope that our
proposed approach of using a standalone generator in the
feature space sheds light on works in areas other than ob-
ject detection.

Acknowledgment This research was supported by the Ger-
man Federal Ministry for Economic Affairs and Climate Ac-
tion (BMWK) within the project FabOS under grant number
01MK20010I. The authors would like to thank Mohamed Sayed
from UCL for the helpful and informative discussions.

References
[1] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 580–587,
2014. 1

[2] Ross Girshick. Fast R-CNN. In IEEE International
Conference on Computer Vision, pages 1440–1448, 2015.
1

[3] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. In Advances in Neural Information
Processing Systems, pages 91–99, 2015. 1, 5

[4] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-
ing into high quality object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6154–6162, 2018. 1

[5] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. SSD: Single shot multibox detector. In European
Conference on Computer Vision, pages 21–37, 2016. 1

[6] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 779–788, 2016. 1

[7] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster,
stronger. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 7263–7271, 2017. 1

[8] Tsung-Yi Lin, Priyal Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. Focal loss for dense object detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
42(2):318–327, 2018. 1

[9] Simone Antonelli, Danilo Avola, Luigi Cinque, Donato
Crisostomi, Gian Luca Foresti, Fabio Galasso, Marco Raoul
Marini, Alessio Mecca, and Daniele Pannone. Few-shot ob-
ject detection: A survey. ACM Comput. Surv., 54(11s), sep
2022. 1

[10] Xiaopeng Yan, Ziliang Chen, Anni Xu, Xiaoxi Wang, Xi-
aodan Liang, and Liang Lin. Meta R-CNN: Towards gen-
eral solver for instance-level low-shot learning. In IEEE
International Conference on Computer Vision, pages 9577–
9586, 2019. 1, 2, 7, 8

[11] Qi Fan, Wei Zhuo, and Yu-Wing Tai. Few-shot object detec-
tion with attention-rpn and multi-relation detector. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4012–4021, 2020. 1, 2

[12] Yang Xiao and Renaud Marlet. Few-shot object detection
and viewpoint estimation for objects in the wild. In European
Conference on Computer Vision, pages 192–210, 2020. 1, 2,
7, 8

[13] Bohao Li, Boyu Yang, Chang Liu, Feng Liu, Rongrong Ji,
and Qixiang Ye. Beyond Max-Margin: Class margin equi-
librium for few-shot object detection. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 7359–
7368, 2021. 1, 2

[14] Tung-I Chen, Yueh-Cheng Liu, Hung-Ting Su, Yu-Cheng
Chang, Yu-Hsiang Lin, Jia-Fong Yeh, Wen-Chin Chen, and
Winston Hsu. Dual-awareness attention for few-shot object
detection. IEEE Transactions on Multimedia, pages 1–1,
2021. 1, 2

[15] Gongjie Zhang, Zhipeng Luo, Kaiwen Cui, and Shijian Lu.
Meta-DETR: Few-shot object detection via unified image-
level meta-learning. CoRR, abs/2103.11731, 2021. 1, 2

[16] Xin Wang, Thomas E. Huang, Trevor Darrell, Joseph E.
Gonzalez, and Fisher Yu. Frustratingly simple few-shot
object detection. In International Conference on Machine
Learning, pages 9919–9928, 2020. 1, 2, 6, 7, 8

[17] Jiaxi Wu, Songtao Liu, Di Huang, and Yunhong Wang.
Multi-scale positive sample refinement for few-shot object
detection. In European Conference on Computer Vision,
pages 456–472, 2020. 1, 2, 7, 8

[18] Bo Sun, Banghuai Li, Shengcai Cai, Ye Yuan, and Chi
Zhang. FSCE: few-shot object detection via contrastive pro-
posal encoding. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 7352–7362, 2021. 1

[19] Limeng Qiao, Yuxuan Zhao, Zhiyuan Li, Xi Qiu, Jianan Wu,
and Chi Zhang. DeFRCN: Decoupled faster R-CNN for few-
shot object detection. In IEEE International Conference on
Computer Vision, 2021. 1, 2, 6, 7, 8

[20] Hongxu Yin, Pavlo Molchanov, Jose M. Alvarez, Zhizhong
Li, Arun Mallya, Derek Hoiem, Niraj K. Jha, and Jan Kautz.
Dreaming to distill: Data-free knowledge transfer via deep-
inversion. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8712–8721,
2020. 2, 3

[21] James Smith, Yen-Chang Hsu, Jonathan Balloch, Yilin Shen,
Hongxia Jin, and Zsolt Kira. Always be dreaming: A new
approach for data-free class-incremental learning. In 2021
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9354–9364, 2021. 2, 3, 5, 6

[22] Zhibo Fan, Yuchen Ma, Zeming Li, and Jian Sun. General-
ized few-shot object detection without forgetting. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4527–4536, 2021. 1, 3, 5, 6, 7, 8

[23] Karim Guirguis, Ahmed Hendawy, George Eskandar, Mo-
hamed Abdelsamad, Matthias Kayser, and Jürgen Beyerer.
Cfa: Constraint-based finetuning approach for generalized
few-shot object detection. In 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 4038–4048, 2022. 1, 3, 5, 6, 7, 8

[24] A. Mordvintsev, Christopher Olah, and Mike Tyka. Incep-
tionism: Going deeper into neural networks. 2015. 2, 3

[25] Akshay Chawla, Hongxu Yin, Pavlo Molchanov, and Jose
Alvarez. Data-free knowledge distillation for object detec-
tion. In 2021 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 3288–3297, 2021. 2, 3, 4

[26] Sergey Ioffe and Christian Szegedy. Batch Normaliza-
tion: Accelerating deep network training by reducing inter-
nal covariate shift. In International Conference on Machine
Learning, pages 448–456, 2015. 2

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
European Conference on Computer Vision, pages 740–755.
Springer, 2014. 2, 6

[28] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (VOC) challenge. International Journal of Computer
Vision, 88(2):303–338, 2010. 2, 6

[29] Juan-Manuel Perez-Rua, Xiatian Zhu, Timothy M.
Hospedales, and Tao Xiang. Incremental few-shot ob-
ject detection. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 13843–13852, 2020. 2, 7

[30] James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-
maran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. Proceedings of the National
Academy of Sciences, 114, 2016. 6, 8

[31] Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng,
and Trevor Darrell. Few-shot object detection via feature
reweighting. In IEEE International Conference on Computer
Vision, pages 8419–8428, 2018. 7, 8

[32] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,
Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In ECCV, pages
144–161, 2018. 8

[33] Wang Zhou, Shiyu Chang, Norma E. Sosa, Hendrik F.
Hamann, and David D. Cox. Lifelong object detection. vol-
ume abs/2009.01129, 2020. 8

[Supplementary] NIFF: Alleviating Forgetting in Generalized Few-Shot Object
Detection via Neural Instance Feature Forging

A. Implementation Details
A.1. Generator Training

Using the base trained RoI head parameters and the gath-
ered statistics in the data watchers, we train the generator for
2k iterations. We optimize the generator using SGD with a
batch size of 600 features, momentum of 0.9, and weight
decay of 5e−5. The learning rate is set to 0.001. The scal-
ing factor for the KL divergence loss is set to λKL = 5.

A.2. Novel Training

During novel training, the model is also optimized using
SGD with batch size of 16 and learning rate of 0.005 and
0.01 for MS-COCO and PASCAL-VOC, respectively. We
set the warmup iterations to 200. Step decays are performed
at 2500, 4000, and 6400 for MS-COCO 5, 10,and 30-shot
settings, respectively. As for PASCAL-VOC, we perform
the decay for the first three shot settings at 1000 and 1500
for the 5 and 10-shot settings. To perform the distillation,
we unfreeze the RoI head and down scale its learning rate
by a factor of 0.015. We set the scaling factors as follows:
λF = 0.1 and 0.01 for the mEWC penalty term.

B. Further Ablations

Data Watcher Config. 10-Shot Inference
AP bAP nAP AR bAR nAR

(1) After Act. 32.0 36.7 18.0 29.9 32.7 21.5
(2) Before FBN 32.2 36.9 18.1 30.1 33.0 21.1
(3) Both 32.2 36.6 19.1 29.6 32.1 22.3

Table 1. Where to place the data watchers to record useful statistics
for better feature generation with respect to the frozen BatchNorm
layers and the activations that follow. Results on MS-COCO 10-
shot.

Which statistics matter? In Tab. 1, we study which
statistics are needed to capture the base data distribution.
To this end, we place data watchers in different places and
train different generators accordingly. Then we finetune on
the novel data in each setup and report the final detection
results. The different locations for placing data watchers
are: (1) after the activations (Act.) following the frozen-

Model Configuration 10-Shot Inference
AP bAP nAP AR bAR nAR

0 DeFRCN 30.6 34.6 18.6 29.1 32.0 20.5
A DeFRCN (Base-Free) 18.2 18.5 17.4 17.5 16.2 21.3
B + Generator 30.7 35.0 17.8 28.6 31.3 20.9
C + CFA 32.0 36.4 18.5 29.6 32.4 21.3
D + DA 32.2 36.8 18.4 29.9 32.6 21.7
E + mEWC (NIFF) 32.2 36.6 19.1 29.6 32.1 22.3

Table 2. Incremental component analysis on MS-COCO (10-shot).

BN (FBN), (2) before the FBN layers, (3) both locations.
As we can observe, locations (2) and (3) yield empirically
better results than (1). Although the AP of (2) and (3) is the
same, we choose (3) as its nAP is slightly higher.

Component analysis. In Tab. 2, we start by reporting
the results of the state-of-the-art model in transfer-learning
namely, DeFRCN [19] (Config 0)). In Config A, we train
a DeFRCN model on novel data without using the base
classes. We consider this as our baseline, to which we grad-
ually introduce our contributions in an incremental fashion.
Note that without using base data, DeFRCN performance
drops dramatically on the base classes (by 40.5%). In Con-
fig B, we train our standalone lightweight generator and
finetune DeFRCN on novel data while replaying synthetic
base features from the generator. We show that we are able
to almost recover the overall performance of DeFRCN in
Config 0, all without using any base data. Next, in Config
C, we apply CFA [23] on the gradients which are backprop-
agated on the RoI head. In Config D and E, we add the
chosen pixel-level data augmentation (DA) and parameter-
level (mEWC) regularization techniques, which allow us to
achieve state-of-the-art results in the overall performance.

B.1. Generator Architecture

In Tab. 3, we investigate the impact various architectural
design choices on the overall detection performance. The
utilized generator throughout this work comprises five con-
volutional layers (L = 5) with kernel size (K = 3) and
an input noise dimension (z = 100). To study the effect of
each of these design choices, we change only one factor and
leave the rest unchanged. Firstly, increasing the number of
layers contribute to higher overall performance where the
base performance is noticeably improved. However, past

1

ar
X

iv
:2

30
3.

04
95

8v
1

 [
cs

.C
V

]
 9

 M
ar

 2
02

3

Model Configuration 10-Shot Inference
AP bAP nAP AR

Number of Layers (L=3) 27.6 31.3 16.4 27.6
Number of Layers (L=5) 30.7 35.0 17.7 28.8
Number of Layers (L=7) 31.2 35.7 17.7 29.3
Number of Layers (L=10) 31.1 35.6 17.5 29.2

Kernel Size (K=1) 30.2 34.7 17.7 28.3
Kernel Size (K=3) 30.7 35.0 17.7 28.8
Kernel Size (K=5) 30.5 34.8 17.6 28.7
Kernel Size (K=7) 30.6 34.8 17.8 28.6

Noise Dimension (z=50) 30.5 34.9 17.6 28.5
Noise Dimension (z=100) 30.7 35.0 17.7 28.8
Noise Dimension (z=1000) 30.7 35.0 17.7 28.8

Table 3. Impact of various generator architectural design choices
on MS-COCO (10-shot). We finetune DeFRCN without base data
using the generator without any regularization techniques.

L = 7 the performance starts to slightly drop. Secondly,
we show that increasing the kernel size do not result in any
performance gain. Finally, increasing the noise dimension
past z = 100 yields no change in the performance implying
that the generator is able to generate diverse high-quality
features without requiring high-dimensional noise vectors.

B.2. mEWC VS EWC

Configuration 10-Shot Inference
AP bAP nAP AR

EWC (λEWC = 1.0) 33.0 38.1 17.6 30.3
EWC (λEWC = 0.1) 32.9 38.2 17.1 30.6
EWC (λEWC = 0.01) 32.2 37.7 15.9 29.8
EWC (λEWC = 0.001) 31.8 36.7 17.3 29.7

mEWC (λEWC = 1.0) 33.0 38.5 16.5 30.5
mEWC (λEWC = 0.1) 33.0 38.4 16.6 30.5
mEWC (λEWC = 0.01) 32.2 36.6 19.1 29.8
mEWC (λEWC = 0.001) 30.3 33.9 19.3 28.8

Table 4. A comparison between the EWC with the full Fisher
matrix VS the utilized mEWC with mean Fisher matrix on NIFF-
DEFRCN on MS-COCO (10-shot). Further, a study on the impact
of scaling EWC/mEWC regularization term.

In Tab. 4, we show the difference between the vanilla
EWC [30] with the full Fisher matrix and the utilized mean
EWC (mEWC) using a mean Fisher matrix per parame-
ter. Moreover, we show the effect of various scaling factors
λEWC when applying the EWC/mEWC penalty term dur-
ing novel training. The lower the scaling factor, the more
changes in parameters are allowed. Firstly, we observe that
EWC can better maintain the base performance along dif-
ferent scaling factors at the price of the novel performance.
Secondly, as we reduce the scaling factor for mEWC, the
base performance drops compared to EWC. However, we
achieve the same AP as EWC at λEWC = 0.01 with a lower

bAP and a higher nAP. Hence, we use this setting across
our experiments. The user can decide on the bAP and nAP
trade-off according to the application. Finally, we observe
that in mEWC, the nAP improves with lower λEWC, how-
ever, at the cost of lower bAP.

B.3. Novel Training Loss Components

Model Configuration 10-Shot Inference
AP bAP nAP AR

DeFRCN w/G. 30.7 35.0 17.7 28.8

w/o Lconf 28.9 32.6 17.7 26.4
Lconf using KL 30.7 35.0 17.7 28.2

w/o Weighted feature terms 29.8 33.9 17.6 28.0
w/o L1 Reg. term 30.5 34.8 17.8 28.6

Table 5. Impact of various finetuning loss components on MS-
COCO (10-shot). We finetune DeFRCN without base data using
the generator without any regularization techniques.

In Tab. 5, we study the impact of various finetuning loss
components. In the first row, we start with finetuning De-
FRCN with the proposed generator and the novel training
loss proposed in the main paper LN without any regulariza-
tion (i.e., CFA, data augmentations, and mEWC). Upon re-
moving the cross-entropy confidence loss Lconf (row2), we
notice that the base performance drop by 2.4 points caus-
ing the overall AP and the AR to drop. This denotes that
the confidence loss helps generating base base features with
higher probabilities at the final softmax layer. If we replace
the cross-entropy loss with KL divergence (row3) between
the teacher and student logits, we get the same results but
with a slight drop in the AR. As for the distillation terms,
we show that by removing the weighted feature distillation
terms (row 4), the base and overall performance drops. Fi-
nally, if the proposed L1 regression distillation term is re-
moved (row 5), we notice a slight decrease in the base and
overall performance. Motivated by this ablation, we opt to
perform novel training with the overall loss containing the
confidence and feature distillation loss terms.

C. Generator Training Analysis

In Fig. 1a, we show a TSNE visualization of the real and
fake generated instance-level features for 10 random MS-
COCO base classes. We generate 30 features per class to
better visualize the generated feature distribution. We show
that the forged features are consistently near the real base
features (with some overlaps) confirming that the generator
is able to depict near-real base feature distribution. Further-
more, we show the features generated using class-agnostic
statistics in Fig. 1b. In contrast to the features generated via
the class-wise stats, the fake samples are farther away from
the real ones.

Real

Fake

TSNE component 1

T
S

N
E

 c
om

po
ne

nt
 2

(a) A TSNE visualization of the generated fake
features via class-wise stats and real base features
for 10 random classes with 30 features per class
to better illustrate the forged features distribution.

Real

Fake

TSNE component 1

T
S

N
E

 c
om

po
ne

nt
 2

(b) A TSNE visualization of the generated fake
features via class-agnostic stats and real base fea-
tures for 10 random classes with 30 features per
class.

V
ar

ia
nc

e

Variance

Training steps

C
la

ss
 p

ro
ba

bi
li

ty
 [

%
]

Mean probabilities
Lowest class prob.

(c) A highlight of the fake class probabilities
along with the features variance. We show the
lowest class probability and the mean probabili-
ties across all base classes (MS-COCO).

Figure 1. A TSNE visualization of some generated features via class-wise (a) and class-agnostic (b) stats. The fake class probabilities as
well as the features’ variance during generator training is illustrated in (c).

Methods / Shots w/E w/B Novel Set 1 Novel Set 2 Novel Set 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN-ft-full [16] ✗ ✓ 15.2 20.3 29.0 25.5 28.7 13.4 20.6 28.6 32.4 38.8 19.6 20.8 28.7 42.2 42.1
TFA w/ fc [16] ✗ ✓ 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2

TFA w/ cos [16] ✗ ✓ 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
MPSR [17] ✗ ✓ 42.8 43.6 48.4 55.3 61.2 29.8 28.1 41.6 43.2 47.0 35.9 40.0 43.7 48.9 51.3

DeFRCN [19] ✗ ✓ 57.0 58.6 64.3 67.8 67.0 35.8 42.7 51.0 54.4 52.9 52.5 56.6 55.8 60.7 62.5
Meta R-CNN∗ [10] ✗ ✓ 16.8 20.1 20.3 38.2 43.7 7.7 12.0 14.9 21.9 31.1 9.2 13.9 26.2 29.2 36.2

FSRW [31] ✗ ✓ 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 39.2 19.2 21.7 25.7 40.6 41.3
MetaDet [?] ✗ ✓ 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1

FsDetView∗ [12] ✗ ✓ 25.4 20.4 37.4 36.1 42.3 22.9 21.7 22.6 25.6 29.2 32.4 19.0 29.8 33.2 39.8
CFA w/ fc [23] ✗ ✓ 40.0 35.5 40.9 54.1 56.9 22.2 27.1 35.2 38.5 40.9 29.7 35.1 39.5 47.2 51.3

CFA w/ cos [23] ✗ ✓ 41.2 43.6 49.5 56.5 57.3 21.3 27.4 35.3 39.1 42.1 31.7 39.1 44.6 49.9 52.6
CFA-DeFRCN [23] ✗ ✓ 58.2 63.3 65.8 68.9 67.1 37.1 45.5 51.3 55.2 53.8 54.7 57.8 56.9 60.0 63.3

DeFRCN ✗ ✗ 53.3 47.4 58.7 58.8 59.6 33.0 37.0 49.5 53.8 48.5 47.1 45.8 52.7 52.8 52.6
NIFF-DeFRCN ✗ ✗ 62.8 67.2 68.0 70.3 68.8 38.4 42.9 54.0 56.4 54.0 56.4 62.1 61.2 64.1 63.9

Retentive R-CNN [22] ✓ ✓ 42.4 45.8 45.9 53.7 56.1 21.7 27.8 35.2 37.0 40.3 30.2 37.6 43.0 49.7 50.1
CFA w/ fc [23] ✓ ✓ 39.0 34.9 41.4 54.8 57.0 21.8 26.1 35.3 37.1 40.1 29.9 34.3 40.1 47.0 52.6

CFA w/ cos [23] ✓ ✓ 42.4 43.9 50.3 56.6 57.3 21.0 27.5 35.3 38.6 41.4 32.3 38.0 44.5 49.8 52.7
CFA-DeFRCN [23] ✓ ✓ 59.0 63.5 66.4 68.4 68.3 37.0 45.8 50.0 54.2 52.5 54.8 58.5 56.5 61.3 63.5

NIFF-DeFRCN ✓ ✗ 63.5 67.2 68.3 71.1 69.3 37.8 41.9 53.4 56.0 53.5 55.3 60.5 61.1 63.7 63.9

Table 6. PASCAL-VOC G-FSOD (nAP50) results for 1, 2, 3, 5, 10-shot settings for all three splits are reported. Similar to [22, 23], w/E
denotes the ensemble-based inference paradigm. The best and second-best results are color coded. w/B indicates whether the base data is
available during novel finetuning. ’-’ represents unrecorded results in prior works. ’*’ represents results reported in [23].

In Fig. 1c, we highlight the quality and diversity of the
generated features with respect to the feature variance. We
show the mean class probability (black) across all classes
for the generated features and the lowest class probability
(green). It can be seen that the generator can learn diverse
features with a high variance while maintaining high class
probabilities with 95% mean class probability and around
75% for the lowest class probability.

D. PASCAL-VOC Novel Results

We report the novel performance on PASCAL-VOC
(nAP50) in Tab. 6. We show that adopting NIFF achieves
state-of-the-art results with and without the ensemble eval-
uation protocol. As previously mentioned, although that the
performance on novel classes is not our primary objective,
NIFF-DeFRCN achieves the state-of-the-art on PASCAL-
VOC in all cases but the 2-shot setting in split 2 .

E. Multiple Runs

We run NIFF-DeFRCN using 10 and 30 different seeds
for MS-COCO and PASCAL-VOC, respectively. Then, we
compare with the baselines [16,19,23]. The aim is to inves-
tigate the performance robustness over multiple runs.

MS-COCO. In Tab. 7, we show the results for MS-
COCO dataset. We notice that despite the absence of base
data, NIFF-DeFRCN consistently achieves a higher AP and
bAP over all shot settings.

PASCAL-VOC. In Tab. 8 and Tab. 9, we demonstrate
the AP50 and nAP50 results, respectively, for PASCAL-
VOC dataset. Similar to MS-COCO, we observe that NIFF-
DeFRCN consistently achieves a higher AP50 while deliv-
ering competitive results on the nAP50 over various shots.

Methods / Shots 5 shot 10 shot 30 shot
AP bAP nAP AP bAP nAP AP bAP nAP

TFA w/ fc [16] 25.6±0.5 31.8±0.5 6.9±0.7 26.2±0.5 32.0±0.5 9.1±0.5 28.4±0.3 33.8±0.3 12.0±0.4
TFA w/ cos [16] 25.9±0.6 32.3±0.6 7.0±0.7 26.6±0.5 32.4±0.6 9.1±0.5 28.7±0.4 34.2±0.4 12.1±0.4
CFA w/ fc [23] 29.1±0.3 36.2±0.3 7.7±0.6 29.9±0.3 36.7±0.2 9.6±0.6 30.8±0.2 36.6±0.2 13.6±0.3

CFA w/ cos [23] 29.3±0.2 36.0±0.2 9.2±0.5 30.2±0.2 36.6±0.1 11.2±0.5 31.1±0.1 36.6±0.1 14.8±0.2
DeFRCN [19] 27.8±0.3 32.6±0.3 13.6±0.7 29.7±0.2 34.0±0.2 16.8±0.6 31.4±0.1 34.8±0.1 21.2±0.4

CFA-DeFRCN [23] 28.4±0.2 32.8±0.2 15.2±0.5 30.2±0.2 34.0±0.2 18.8±0.4 31.7±0.1 34.6±0.1 23.0±0.3
NIFF-DeFRCN 31.1±0.1 36.6±0.0 14.6±0.2 32.1±0.1 36.8±0.1 18.0±0.2 33.3±0.0 37.7±0.1 20.0±0.1

Table 7. G-FSOD experimental results for 5,10,30-shot settings on MS-COCO. We report base (bAP), novel (nAP), and overall (AP) for
multiple runs using 10 different seeds.

Set Methods Shots
1 2 3 5 10

CFA w/ fc [23] 66.3±0.8 68.0±0.5 70.1±0.4 71.7±0.5 73.2±0.5
CFA w/ cos [23] 66.5±0.9 69.2±0.6 71.1±0.6 72.5±0.4 73.4±0.4
DeFRCN [19] 67.8±1.4 71.3±0.8 72.6±0.5 73.6±0.5 74.1±0.5

CFA-DeFRCN [23] 69.0±1.4 72.6±0.7 73.1±0.4 74.0±0.5 74.3±0.4
All Set 1

NIFF-DeFRCN 71.2±0.8 74.2±0.4 75.4±0.4 76.3±0.3 76.7±0.3
CFA w/ fc [23] 64.9±0.9 66.4±0.7 68.3±0.5 69.6±0.3 70.8±0.5

CFA w/ cos [23] 64.1±0.9 66.5±0.5 68.1±0.5 69.3±0.2 70.4±0.4
DeFRCN [19] 65.2±1.0 68.0±0.8 69.2±0.6 70.6±0.6 71.3±0.5

CFA-DeFRCN [23] 66.4±1.0 69.0±0.8 70.4±0.7 71.3±0.7 72.1±0.4
All Set 2

NIFF-DeFRCN 68.0±0.8 70.5±0.5 71.7±0.5 72.8±0.4 73.7±0.3
CFA w/ fc [23] 65.2±0.8 66.8±0.8 69.1±0.7 70.9±0.6 72.3±0.4

CFA w/ cos [23] 64.9±1.2 67.5±1.0 69.7±0.8 71.6±0.5 72.7±0.3
DeFRCN [19] 66.9±2.0 70.6±0.8 71.2±0.6 72.9±0.5 73.5±0.3

CFA-DeFRCN [23] 68.3±1.6 71.4±0.8 72.3±0.5 73.5±0.5 74.0±0.3
All Set 3

NIFF-DeFRCN 70.7±0.7 73.7±0.5 74.7±0.4 75.5±0.3 76.3±0.2

Table 8. G-FSOD experimental results for 1,2,3,5,10-shot settings on the three all sets of Pascal VOC (AP50).

Set Methods Shots
1 2 3 5 10

CFA w/ fc [23] 28.2±3.1 35.0±1.9 41.9±1.4 47.8±1.6 53.3±1.6
CFA w/ cos [23] 30.9±3.9 40.9±2.5 47.8±2.4 53.1±1.4 56.1±1.4
DeFRCN [19] 43.8±4.3 57.5±2.5 61.4±1.7 65.3±0.9 67.0±1.4

CFA-DeFRCN [23] 45.4±4.9 60.3±2.2 62.1±1.4 66.4±0.9 67.6±1.2
Novel Set 1

NIFF-DeFRCN 46.0±3.0 57.2±1.7 62.0±1.4 65.5±1.1 67.2±1.1
CFA w/ fc [23] 20.0±3.5 26.4±2.9 32.8±2.2 37.3±1.7 41.8±1.9

CFA w/ cos [23] 21.0±3.5 29.0±2.3 34.6±2.3 38.9±1.2 43.0±1.9
DeFRCN [19] 31.5±3.6 40.9±2.2 45.6±2.0 50.1±1.4 52.9±1.1

CFA-DeFRCN [23] 32.9±3.7 42.3±2.2 47.1±1.9 51.2±1.4 55.3±1.3
Novel Set 2

NIFF-DeFRCN 30.1±3.0 39.6±1.8 45.0±1.9 49.4±1.6 52.8±1.3
CFA w/ fc [23] 20.3±3.4 26.4±3.1 34.3±2.5 41.2±2.4 46.5±1.6

CFA w/ cos [23] 21.5±4.7 30.4±4.1 38.4±2.8 45.5±2.1 49.9±1.0
DeFRCN [19] 38.2±6.8 50.9±2.8 54.1±2.2 59.2±1.2 61.9±1.3

CFA-DeFRCN [23] 41.4±5.8 52.9±3.0 56.1±1.7 60.3±1.1 62.9±0.9
Novel Set 3

NIFF-DeFRCN 41.1±2.6 52.5±1.8 56.4±1.5 59.7±1.2 62.1±1.0

Table 9. G-FSOD experimental results for 1,2,3,5,10-shot settings on the three novel sets of Pascal VOC (nAP50).

F. Qualitative Results

We present various qualitative results in Fig. 2 on the
MS-COCO (10-shot). In the first column, we show images
with only base classes (green boxes) followed by images

with only novel classes (blue boxes) in the second column.
In the third column, we present images with both classes.
We chose to present these three cases to validate the perfor-
mance of the proposed NIFF in various scenarios. . Further,
we also present various failure cases in the last two columns.

Figure 2. Qualitative results of the proposed NIFF method (NIFF-DeFRCN) on the MS-COCO(10-shot) dataset. Success scenarios are
demonstrated in the first three columns show while the last two columns present the failure scenarios. Base classes are denoted by green
bounding boxes while novel classes are colored with blue.

References
[1] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 580–587,
2014.

[2] Ross Girshick. Fast R-CNN. In IEEE International
Conference on Computer Vision, pages 1440–1448, 2015.

[3] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. In Advances in Neural Information
Processing Systems, pages 91–99, 2015.

[4] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-
ing into high quality object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6154–6162, 2018.

[5] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. SSD: Single shot multibox detector. In European
Conference on Computer Vision, pages 21–37, 2016.

[6] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 779–788, 2016.

[7] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster,
stronger. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 7263–7271, 2017.

[8] Tsung-Yi Lin, Priyal Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. Focal loss for dense object detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
42(2):318–327, 2018.

[9] Simone Antonelli, Danilo Avola, Luigi Cinque, Donato
Crisostomi, Gian Luca Foresti, Fabio Galasso, Marco Raoul
Marini, Alessio Mecca, and Daniele Pannone. Few-shot ob-
ject detection: A survey. ACM Comput. Surv., 54(11s), sep
2022.

[10] Xiaopeng Yan, Ziliang Chen, Anni Xu, Xiaoxi Wang, Xi-
aodan Liang, and Liang Lin. Meta R-CNN: Towards gen-
eral solver for instance-level low-shot learning. In IEEE
International Conference on Computer Vision, pages 9577–
9586, 2019. 3

[11] Qi Fan, Wei Zhuo, and Yu-Wing Tai. Few-shot object detec-
tion with attention-rpn and multi-relation detector. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4012–4021, 2020.

[12] Yang Xiao and Renaud Marlet. Few-shot object detection
and viewpoint estimation for objects in the wild. In European
Conference on Computer Vision, pages 192–210, 2020. 3

[13] Bohao Li, Boyu Yang, Chang Liu, Feng Liu, Rongrong Ji,
and Qixiang Ye. Beyond Max-Margin: Class margin equi-
librium for few-shot object detection. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 7359–
7368, 2021.

[14] Tung-I Chen, Yueh-Cheng Liu, Hung-Ting Su, Yu-Cheng
Chang, Yu-Hsiang Lin, Jia-Fong Yeh, Wen-Chin Chen, and
Winston Hsu. Dual-awareness attention for few-shot object
detection. IEEE Transactions on Multimedia, pages 1–1,
2021.

[15] Gongjie Zhang, Zhipeng Luo, Kaiwen Cui, and Shijian Lu.
Meta-DETR: Few-shot object detection via unified image-
level meta-learning. CoRR, abs/2103.11731, 2021.

[16] Xin Wang, Thomas E. Huang, Trevor Darrell, Joseph E.
Gonzalez, and Fisher Yu. Frustratingly simple few-shot
object detection. In International Conference on Machine
Learning, pages 9919–9928, 2020. 3, 4

[17] Jiaxi Wu, Songtao Liu, Di Huang, and Yunhong Wang.
Multi-scale positive sample refinement for few-shot object
detection. In European Conference on Computer Vision,
pages 456–472, 2020. 3

[18] Bo Sun, Banghuai Li, Shengcai Cai, Ye Yuan, and Chi
Zhang. FSCE: few-shot object detection via contrastive pro-
posal encoding. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 7352–7362, 2021.

[19] Limeng Qiao, Yuxuan Zhao, Zhiyuan Li, Xi Qiu, Jianan Wu,
and Chi Zhang. DeFRCN: Decoupled faster R-CNN for few-
shot object detection. In IEEE International Conference on
Computer Vision, 2021. 1, 3, 4

[20] Hongxu Yin, Pavlo Molchanov, Jose M. Alvarez, Zhizhong
Li, Arun Mallya, Derek Hoiem, Niraj K. Jha, and Jan Kautz.
Dreaming to distill: Data-free knowledge transfer via deep-
inversion. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8712–8721,
2020.

[21] James Smith, Yen-Chang Hsu, Jonathan Balloch, Yilin Shen,
Hongxia Jin, and Zsolt Kira. Always be dreaming: A new
approach for data-free class-incremental learning. In 2021
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9354–9364, 2021.

[22] Zhibo Fan, Yuchen Ma, Zeming Li, and Jian Sun. General-
ized few-shot object detection without forgetting. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4527–4536, 2021. 3

[23] Karim Guirguis, Ahmed Hendawy, George Eskandar, Mo-
hamed Abdelsamad, Matthias Kayser, and Jürgen Beyerer.
Cfa: Constraint-based finetuning approach for generalized
few-shot object detection. In 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 4038–4048, 2022. 1, 3, 4

[24] A. Mordvintsev, Christopher Olah, and Mike Tyka. Incep-
tionism: Going deeper into neural networks. 2015.

[25] Akshay Chawla, Hongxu Yin, Pavlo Molchanov, and Jose
Alvarez. Data-free knowledge distillation for object detec-
tion. In 2021 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 3288–3297, 2021.

[26] Sergey Ioffe and Christian Szegedy. Batch Normaliza-
tion: Accelerating deep network training by reducing inter-
nal covariate shift. In International Conference on Machine
Learning, pages 448–456, 2015.

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
European Conference on Computer Vision, pages 740–755.
Springer, 2014.

[28] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (VOC) challenge. International Journal of Computer
Vision, 88(2):303–338, 2010.

[29] Juan-Manuel Perez-Rua, Xiatian Zhu, Timothy M.
Hospedales, and Tao Xiang. Incremental few-shot ob-
ject detection. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 13843–13852, 2020.

[30] James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-
maran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. Proceedings of the National
Academy of Sciences, 114, 2016. 2

[31] Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng,
and Trevor Darrell. Few-shot object detection via feature
reweighting. In IEEE International Conference on Computer
Vision, pages 8419–8428, 2018. 3

[32] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,
Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In ECCV, pages
144–161, 2018.

[33] Wang Zhou, Shiyu Chang, Norma E. Sosa, Hendrik F.
Hamann, and David D. Cox. Lifelong object detection. vol-
ume abs/2009.01129, 2020.

