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Abstract

Pruning—that is, setting a significant subset of the pa-
rameters of a neural network to zero—is one of the most
popular methods of model compression. Yet, several recent
works have raised the issue that pruning may induce or ex-
acerbate bias in the output of the compressed model. De-
spite existing evidence for this phenomenon, the relation-
ship between neural network pruning and induced bias is
not well-understood. In this work, we systematically inves-
tigate and characterize this phenomenon in Convolutional
Neural Networks for computer vision. First, we show that it
is in fact possible to obtain highly-sparse models, e.g. with
less than 10% remaining weights, which do not decrease in
accuracy nor substantially increase in bias when compared
to dense models. At the same time, we also find that, at
higher sparsities, pruned models exhibit higher uncertainty
in their outputs, as well as increased correlations, which
we directly link to increased bias. We propose easy-to-use
criteria which, based only on the uncompressed model, es-
tablish whether bias will increase with pruning, and iden-
tify the samples most susceptible to biased predictions post-
compression.

1. Introduction
The concept of “bias” in machine learning models spans

a range of considerations in terms of statistical, perfor-
mance, and social metrics. Different definitions can lead
to different relationships between bias and accuracy. For
instance, if bias is defined in terms of accuracy disparity
between identity groups, then accuracy in the “stronger”
group may have to be reduced in order to reduce model
bias. Several sources of bias have been identified in this
context. For example, bias in datasets commonly used to
train machine learning models [4,5,53] can severely impact
outputs, and may be difficult or even impossible to correct
during training. The choice of model architecture, training
methods, evaluation, and deployment can create or exacer-
bate bias [2, 42, 43].

One potential source of bias which is relatively less in-
vestigated is the fact that machine learning models, and
in particular deep neural networks, are often compressed

for efficiency before being deployed. Seminal work by
Hooker et al. [29] and its follow-ups, e.g. [28, 38] pro-
vided examples where model compression, and in particular
pruning, can exacerbate bias by leading models to perform
poorly on “unusual” data, which can frequently coincide
with marginalized groups. Given the recent popularity of
compression methods in deployment settings [13,18,19,27]
and the fact that, for massive models, compression is often
necessary to enable model deployment, these findings raise
the question of whether the bias due to compression can be
exactly characterized, and in particular whether bias is an
inherent side-effect of the model compression process.

In this paper, we perform an in-depth analysis of bias in
compressed vision models, providing new insights on this
phenomenon, as well as a set of practical, effective crite-
ria for identifying samples susceptible to biased predictions,
which can be used to significantly attenuate bias.

Our work starts from a common setting to study bias
and bias mitigation [28, 29, 40, 50]: we study properties of
sparse residual convolutional neural networks [25], in par-
ticular ResNet18, applied for classification on the CelebA
dataset [41]. Then, we validate our findings across other
CNN architectures and other datasets. To study the impact
of sparsity, we train highly accurate models with sparsity
ranging from 80% to 99.5%, using the standard gradual
magnitude pruning (GMP) approach [18, 21, 22, 55]. We
consider bias in dense and sparse models from two perspec-
tives: systematic bias, which refers to consistent errors in
the model output, and category bias, which refers to viola-
tions of fairness metrics associated with protected groups.

On the positive side, our analysis shows that the GMP
approach can produce models that are highly sparse, i.e. 90-
95% of pruned weights, without significant increase in any
bias-related metrics. Yet, this requires care: we show that
shared, jointly-trained representations are significantly less
susceptible to bias, and so careful choices of training pro-
cedure are needed for good results. On the other hand, at
very high sparsities (95%-99.5%) we do observe non-trivial
increase in category bias for the sparse models, for specific
protected attributes. We perform an in-depth study of this
phenomenon, correlating increase in bias with increased un-
certainty in the model outputs, induced by sparsity. Lever-
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aging insights from our analysis, we provide a simple set of
criteria and techniques based on threshold calibration and
overriding decisions for sensitive samples, which we show
to have a significant effect on bias reduction. The latter only
use information found in the original dense model.

2. Methodology
2.1. Notions of Bias

We now define the notions of bias we will use in the rest
of the paper. We emphasize these categories should not be
seen as exclusive: instead, they allow us to study different
aspects of the given phenomena.
Systematic Bias. A standard, broad meaning of bias is sys-
tematic error [12]: for example, we can measure whether
models are biased toward overconfidence in their predic-
tions, or if they tend to generalize poorly to data from a
shifted distribution. We call this Systematic Bias; a full list
of the metrics we use is given in section 2.3.
Category Bias. A complementary approach to defining
bias centers around the notion of subgroup/category of sam-
ples in the dataset. Here, bias refers to violations of group
fairness metrics with respect to given categories [2] for in-
stance by measuring differences in false positive, false neg-
ative, or error rates across subgroups. Other related metrics
are worst subgroup performance [47], or the standard devi-
ation of accuracy across identity categories [40].

Inherent to these definitions is that the choice of at-
tributes that define the subgroups must be meaningful in
a sociological context and relevant to the model’s applica-
tion. For example, it is appropriate to measure the accuracy
difference with respect to race and gender in facial identifi-
cation software, since even a moderate difference in accu-
racy can lead to discrimination in real-world settings. Mod-
els that are highly-accurate on standard metrics, e.g. top-1
accuracy, may still be considered biased, for instance with
respect to demographic parity. In order to distinguish the
concept of bias from that of fairness, here we focus on al-
gorithmic bias, which we define as cases in which a model
amplifies bias found in the training data. A classic example
is when a model tends to have worse accuracy on samples
from poorly-represented subgroups of the dataset. We call
this type of bias Category Bias.

These notions are complementary: category biases are
likely associated with systematic biases, and therefore,
studying systematic bias can help us understand cases
where models show socially-relevant category bias. This
is a common assumption that is frequently used to study
bias, for instance in the work on compression-identified ex-
emplars of [28, 29], which first identifies a consistent set of
examples on which compressed models frequently struggle,
and then demonstrates that these are enriched for certain
identity groups. Generally, we are also interested in under-
standing the relationship between statistical notions of bias,

examined via specific metrics, and potential systematic bias
across protected categories.

2.2. Category Bias Metric: Bias Amplification
Following prior work [29, 54], we consider datasets

where samples are classified according to binary attributes,
and use a subset of these as “identity” attributes. For this,
we introduce as our main metric a variant of Bias Amplifi-
cation (BA) [54]. Intuitively, bias amplification will mea-
sure the extent to which correlations between identity cate-
gories and predicted attributes in the training data are exag-
gerated by the model. While positive correlation between
an identity category and a predicted attribute can be reason-
able (a model can predict that women wear earrings more
frequently than men), models that amplify such input rela-
tionships in their output may be stereotyping, by relying on
identity markers as a proxy for other attributes.

To encode this formally, we compute bias amplification.
We define the function N(·) to provide the count of the
number of samples with a specific binary attribute value,
e.g. Young = 1, over a given sample set. We then define
the bias b of a binary attribute A ∈ {0, 1} with respect to a
binary identity category I ∈ {0, 1} as

b =
N(A = 1, I = 1)

N(A = 1)
,

if the attribute and identity category are positively corre-
lated in the training data, and

b =
N(A = 1, I = 0)

N(A = 1)
, otherwise.

The bias amplification is then the difference between the
bias computed on the predicted attribute Ã and the true
value of the attribute A, computed on the test set:

BA =
N(Ã = 1, I = 1)

N(Ã = 1)
− N(A = 1, I = 1)

N(A = 1)
,

if the predicted attribute is positively correlated with the
identity category, and

BA =
N(Ã = 1, I = 0)

N(Ã = 1)
− N(A = 1, I = 0)

N(A = 1)
,

if the predicted attribute is negatively correlated with the
identity category. We do not compute the Bias Amplifica-
tion on any attribute that is not significantly biased toward
either value of the identity category, or if some combination
of the predicted and protected attribute is very infrequent
(e.g., occurring less than 10 times in the test data).
Discussion. This metric has several advantages. Firstly,
it is clear that high BA values signal stereotyping by the
model. Unlike the original BA metric of [54], our defini-
tion uses the label distribution in the test data as the true
baseline for the predicted label distribution of the model,
allowing us to separate the effect of the model itself from
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the effect of the underlying data, and also allowing us to
test the model for bias in settings where the test distribution
does not closely resemble the training distribution.

Additionally, BA is not directly affected by other pos-
sible biases in the model, such as a tendency to un-
derpredict rare attributes. Moreover, unlike direct false-
positive/negative analysis, BA directly takes into account
predictions over both values of the protected attribute, and
can be meaningfully aggregated across attributes.

2.3. Systematic Bias Metrics
We use several other fine-grained metrics to measure the

systematic bias of dense and sparse models.
Threshold Calibration Bias (TCB). On many datasets,
the majority of attributes are not evenly split across samples:
e.g., for CelebA, the average imbalance is 80%/20%. We
measure the change (typically, decline) of the proportion
of predictions into the less common value of the attribute
using the default threshold. Note that values near 1 show
minimal TCB, while values away from 1 in either direction
show higher TCB.

TCB =

{
N(Ã=1)
N(A=1) , ifMean(A) < 0.5
N(Ã=0)
N(A=0) , otherwise.

Uncertainty and Calibration. Attribute predictions after
applying the sigmoid function range between 0 and 1. For a
converged model, they tend to cluster around the extremes,
with some smaller number of predictions falling nearer the
center of the interval. We consider prediction values be-
tween 0.1 and 0.9 to be uncertain. These uncertainty met-
rics simply compute the proportion of predictions that fall
into the uncertain interval. We then check if the uncer-
tainty correctly estimates the proportion correct by buck-
eting [8, 45]. The prediction range is split into ten equal-
width buckets, and average per-bucket difference of the con-
fidence and the proportion correct. These are then weighted
by the bucket size and aggregated. The weighted average
difference of the accuracy and confidence of the buckets is
presented as the Expected Calibration Error (ECE).

ECE =

10∑
m=1

|Bm|∑10
n=1 |Bn|

|acc(Bm)− conf(Bm)| .

Label Interrelation. Finally, we look at the strength of re-
lationship between predicted labels on the various attribute.
Specifically, for each attribute A, we train a linear regres-
sion using all other attributes as the features and A as the
variable to be predicted; the coefficient of determination
(R2) of this model tells us the extent to which the model
output for A can be predicted from the model outputs of
the other attributes in a co-trained model. Note that this
does not imply a causal relationship - we cannot say that
the model is using some of the attributes to predict oth-
ers. Rather, a high interrelation suggests that the hidden
feature layer is less expressive, forcing a closer relationship
between linear classifiers using it as the features.

2.4. Evaluation Setup

CelebA Setup. In our primary study, we focus on
ResNet18 [25] models that predict human-annotated binary
attributes from cropped-and-centered photos of celebrities
in the CelebA dataset [41].

CelebA attribute prediction is frequently used for bias
measurement [28, 29, 40, 50]. This is in part due to its size
and widespread availability. Yet, CelebA is an imperfect
proxy for real-world human photographs, as it skews sub-
stantially in both age and skin color, as well as make-up,
hairstyles, and overall presentation of the human subjects.
As previous works have looked at both models that jointly
co-train all or most CelebA attributes [40, 50] and models
that train only a single attribute [29], we conduct both types
of experiments. For the all-in-one/joint training, we train a
ResNet18 model with 40 logistic classifiers after the fully-
connected layer. Additionally, we train models with a single
head for 7 CelebA attributes: Blond, Smiling, Oval Face,
Big Nose, Mustache, Receding Hairline, Bags Under Eyes.

We validate our results by repeating our experiments on
the ResNet50 and MobileNetV1 [30] architectures, as well
as on structured sparsity (2:4, 1:4 and 1:8) sparsity pat-
terns, which are better supported by current NVIDIA hard-
ware [44]. We also validate some of our findings on the
uncropped CelebA dataset, as well as on the iWildcam [3]
and Animals with Attributes2 [51] datasets.

For CelebA, we use four attributes for computing Cate-
gory Bias: “Male”, “Young”, “Chubby”, and “Pale Skin”1.
These attributes were chosen because they loosely corre-
spond to categories traditionally used to measure bias and
discrimination. Examples of these categories can be found
in Appendix M. In the rest of the paper, we use “cate-
gories” to refer to these four attributes when they are
used as the group identifier to compute BA, and “at-
tribute” to refer to any CelebA attribute that is used as
a prediction target.
Model Architectures. For both ResNet and MobileNet
models, we use the standard model architecture, with only
one fully-connected layer and a logit transformation fol-
lowing the convolutional blocks, and Binary Cross-Entropy
loss. Unlike other studies using CelebA [50], we found
that including an additional fully-connected layer did not
improve accuracy. Nor did it increase accuracy to initial-
ize with ImageNet weights as in [40, 50], and therefore all
models were randomly initialized following [24]. Consis-
tent with other work, we use the cropped-and-centered ver-
sion of the dataset described in [41], and perform training
data augmentations consistent with [50]. We also validate
on the uncropped version. We report results after running
each experiment from 5 random seeds.

1The choices to present gender as a binary attribute, and the specific
words to describe the attributes were chosen by the creators of the CelebA
dataset. We continue their use here to avoid confusion and enable compar-
isons with other works.
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Model Compression. We perform unstructured pruning,
by gradually removing the lowest magnitude weights dur-
ing training, known as Global Magnitude Pruning (GMP)
[18, 21, 22, 55]. GMP is a standard baseline, which, de-
spite its simplicity, is competitive with more complex ap-
proaches [17,18,34,35,49]. We prune all ResNet18 models
to 80%, 90%, 95%, 98%, 99%, and 99.5% sparsity. Follow-
ing earlier work [31], we considered two variants of GMP.
The main variant starts from a random initialization (RI),
and gradually removes parameters after the tenth training
epoch, while simultaneously training the model [55]; we
refer to this setup as GMP-RI. The second variant starts
from a pre-trained dense model, then gradually removes pa-
rameters with the lowest global magnitude while continuing
to finetune the model at a lower learning rate; this second
variant will be referred to as GMP-PT. We train models us-
ing SGD with momentum, with the exception of pre-trained
(PT) pruning, for which we found Adam [33] to yield bet-
ter results. We use the model state at the end of the epoch
which reached highest performance on a held-out validation
dataset. All the experiments presented are performed for
ResNet18 models under the GMP-RI setup; we provide ad-
ditional validation for GMP-PT in Appendix E, which sup-
ports our conclusions.

Our setup makes some complementary choices relative
to prior work [28, 29]. Specifically, we prune weights by
magnitude globally as opposed to per-layer. This will allow
us to reach much higher sparsity levels relative to [28, 29]
before model breakdown. Further, we chose relatively long
model training times (100 epochs for 40-attribute dense and
GMP-RI models, 80 epochs for GMP-PT models, and 20
epochs for all single-attribute models), as this leads to both
higher accuracy and lower bias metrics.

Accuracy Results. Using GMP and an extended training
schedule, we are able to obtain sparse models that match
or outperform the dense baseline, both in terms of accu-
racy and ROC-AUC values, even at high (≥ 99%) sparsi-
ties, while providing substantial improvements in theoret-
ical FLOPs (computed as in [14]), and practical inference
speed on CPU when using the DeepSparse inference engine
[10]. We present our results for dense and sparse (GMP-
RI) models trained to predict all 40 attributes in Table 1,
which show that sparse models can outperform the dense
one, even at high sparsities. This is also confirmed by the
more robust AUC metric, which is agnostic to the prediction
threshold; at all sparsity levels, except for 99.5%, we can
observe a slight improvement in AUC scores over the dense
models. We observe a similar trend regarding the quality of
sparse models over the dense baseline with single-attribute
training. This is in contrast to previous work [29], which
observes a degradation of sparse models over dense even at
90% sparsity. We believe our improved results are due to
the use of a better pruner (global over uniform layer-wise
magnitude pruning), and improved training schedule. Nev-

Metric Dense Sparsity (%)
80 90 95 98 99 99.5

Accuracy (%) 90.4 90.8 91.0 91.3 91.5 91.5 91.1
AUC (%) 80.5±0.2 81.0 ± 0.2 81.3 ± 0.3 81.5 ± 0.2 81.5 ± 0.2 81.0 ± 0.1 79.7 ± 0.1

Inf. FLOPs (B) 3.64 1.40 0.998 0.683 0.386 0.241 0.145
Inf. items/sec 130 138 181 234 318 373 403

Table 1. Average Accuracy AUC, estimated inference FLOPs, and
inference times on CPU (using the DeepSparse Engine [36]) for
ResNet18 models jointly trained on all 40 binary attributes. We
report results after running each experiment from 5 random seeds.
For better readability, we present AUC scores as percentages. We
omit variances for the accuracies, as they are all ≤ 0.1.

ertheless, they further motivate our study of properties of
sparse models, beyond accuracy.

Additionally, we examined randomly-selected images in
each category manually, to validate the quality of the human
ratings and the images presented to the automated classifier
(see Appendix M for screenshots).

3. The Effects of Sparsity on Bias
3.1. Baseline: Analysis of Dense Models

Systematic Bias in Uncompressed Models. Examining
bias in dense models, we find that, when jointly-trained
across all attributes, they tend to under-predict the less
prevalent output value for each attribute, with an average
TCB of 0.9. Models trained on a single attribute have a
worse under-prediction error than jointly-trained models at
lower sparsities; for instance, predictions for Oval Face had
a TCB of 0.84 when trained jointly with all other attributes,
but 0.52 when trained singly. Additionally, dense models
were overconfident with respect to the prediction probabil-
ity, with an average ECE of 0.054 for jointly-trained mod-
els. Single-attribute dense models showed higher uncer-
tainty (Figure 3 and Appendix C), despite having higher
accuracy than jointly-trained models.
Category Bias in Uncompressed Models. Dense models
exhibit non-trivial bias amplification (BA), for both singly
and jointly-trained attributes. The results show two trends.
The first, shown in Figure 1 (left), is that BA is substan-
tially higher with respect to specific categories: for instance,
with respect to Male and Young, relative to Chubby and
Pale Skin. The attributes with highest BA value for dense
joint training are Double Chin (Male, 0.053), Wavy Hair
(Male, 0.047), Wearing Necktie (Young, 0.046), Pointy
Nose (Male, 0.045), Chubby (Male, 0.043), and Oval Face
(Male, 0.042). (See Appendix J for a full table.) These at-
tributes rank in the top five for several identity categories,
suggesting that they are prone to correlations.

The second trend is that single-attribute training shows
a much higher BA than joint training. (See the bottom row
of Figure 3, 0% sparsity.) For instance, BA with respect
to ‘Male’ is about three times higher when training singly
rather than jointly in the case of Oval Face and Big Nose
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(0.15 vs 0.04 and 0.11 vs 0.03).

Male Young Chubby Pale Skin
Category
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Figure 1. (Left) Bias Amplification by category for dense
ResNet18 CelebA models. (Right) Distribution of Worst-Case
Bias Amplification across identity categories, for all attributes and
sparsities, CelebA on ResNet18.

Discussion. It appears that both compressed and uncom-
pressed models are still prone to bias amplification. From
the point of view of our analysis, the presence of bias in the
dense model allows us to compare against sparse models.
Manual Review of Celeb-A Samples. It is tempting to as-
cribe intuitive explanations to the above correlations. How-
ever, examining the above attributes more closely, we ob-
serve that they have low accuracy and high uncertainty val-
ues. Inspecting randomly chosen images, we noticed that
attributes such as Pointy Nose often appear difficult to clas-
sify, even for human raters. Others, such as Wearing Neck-
tie, are often impossible to observe directly on the cropped
version of the image typically used for this task2. Finally, an
inspection of images shows that Wearing Lipstick appears
difficult to judge from the appearance of the mouth, without
relying on indirect information, such as the person’s gen-
der, or presence of other makeup. Thus, even though we
do not detect large bias amplification for this attribute, we
consider this measurement unreliable. See Appendix M for
examples from these categories.

3.2. The Effect of Sparsity on Systematic Bias
Figure 2 shows the effect of pruning CelebA models

jointly-trained on all attributes on systematic bias, in the
random initialization (RI) setup. First, notice that, as we
increase model sparsity, accuracy stays largely unchanged.
Yet, other characteristics of the model change considerably.
Threshold Calibration Bias (TCB) worsens with sparsity for
jointly trained models, with an ever-lower proportion of pre-
dictions of the less popular value of each attribute. (Con-
sider that the average TCB for dense models is 0.90, while
for 99.5%-sparse models it is 0.81.) Uncertainty goes up
considerably for almost every attribute, roughly doubling
from dense to 99.5%-sparse models.

Combining these two observations, we note that in our
experiments, jointly-trained sparse models are better cali-
brated than dense with an average ECE of 0.013 for jointly-
trained 99.5% sparse models versus 0.054 for dense models.

2Human raters were asked to assign labels using the uncropped version
of the image.
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Figure 2. Systematic Bias metrics (TCB, ECE, Interdependence)
of ResNet18 models jointly trained on all CelebA attributes. The
thick black line denotes the mean value at each sparsity level. In
this and all boxplots, the horizontal line represents the median
across all CelebA attributes, the edges of the box denote the 25th

and 75th quartiles, and dots indicate all points more than 2.5 times
the distance from the mean to the respective quartile.

(Note that [8] observe similar behavior of ECE for Lottery
Tickets [16], at lower sparsity, and on different datasets.)
Finally, label interdependence increases with sparsity, from
an average R2 of 0.31 to 0.36, suggesting that the more
compact feature representation in sparse models results in
greater entanglement between the features for every at-
tribute.

For singly-trained models, uncertainty is largely un-
changed as sparsity increases, perhaps due to already hav-
ing high values in the dense model, relative to the jointly-
trained model. In effect, jointly-trained models have lower
uncertainty than singly-trained ones at lower sparsities, but
roughly equal uncertainty at higher sparsities. (See Figure 3
and Appendix C for full data.) Threshold Calibration Bias
confirms this trend: TCB is roughly constant with sparsity
for singly-trained models, but gets worse (decreases) for
jointly-trained models. Thus, jointly-trained models are less
miscalibrated at lower sparsities relative to singly-trained
ones, but similarly miscalibrated at higher sparsities.

3.3. The Effect of Sparsity on Category Bias

Next, we focus on the effect of sparsity on bias amplifica-
tion. Here, the expectation is that, if sparse models exhibit
more bias, for instance by picking up on spurious correla-
tions, bias amplification should increase. We first examine
this trend in Figure 1 (right), for jointly-trained models. We
observe that BA presents a slight increase w.r.t. sparsity
between 90 and 95%, after which the increase is more pro-
nounced. The values for BA at the highest sparsity levels
are largely determined by the BA values of dense models,
with a coefficient of determination R2 = 73.2.

In contrast, when we examine runs with single-attribute
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Figure 3. Effect of single versus joint training of attributes on
accuracy (first row), uncertainty (second row), Threshold Calibra-
tion Bias (third row), and Bias Amplification for the ‘Male’ at-
tribute (fourth row), on the ResNet18 CelebA model, predicting
Oval Face (left) and Big Nose (right).

training (bottom row of Figure 3 and Appendix C), we ob-
serve that, in this case, sparsity has very little effect on
bias amplification for the hidden ‘Male’ category, which
stays roughly constant, within noise bounds. However, re-
call from our previous discussion that the baseline (dense)
bias amplification is significantly higher for single-attribute
training relative to jointly-trained attributes. Specifically,
BA for dense singly-trained models is roughly as high as
for 99.5%-sparse jointly-trained models. One interpreta-
tion is that the additional prediction heads of the jointly-
trained models encourage a more robust feature representa-
tion which discourages bias at low sparsity; at high sparsity,
however, the compactness of representation induces more
bias. Thus, switching to singly-trained attributes may be a
good strategy at high sparsity levels.

Another observation is the high correlation between the
evolution of uncertainty (second row in Figure 3), TCB
(third row), and that of bias amplification (fourth row), rel-
ative to the sparsity increase. Specifically, the increase in
output uncertainty is linked to stronger bias amplification.

We further investigated whether co-training the identity

category with the attribute of interest encourages more di-
versity in the representation. In this case, we observed a
very similar trend regarding BA as for singly-trained at-
tributes, which indicates that the source of bias goes beyond
the relationship between the two attributes. These results
are shown in Appendix D.

3.4. Injecting Backdoor Features in Sparse Models
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Figure 4. Effect on BA of adding a backdoor feature when per-
forming single-attribute training for four attributes.

To study the amplification of bias by sparse models, we
artificially introduce bias in the data through specific mod-
ifications to the samples, via “backdoor attacks”. We then
measure the effects on a similarly “backdoored” test set, for
dense and sparse models for single-attribute prediction. We
follow a similar approach to [48, 50] for backdooring: we
apply a fixed transformation—grayscaling of the entire im-
age [50], or inserting a small yellow square [48] — to the
majority of training samples with a positive label, and to a
smaller subset of those having the negative label. On the test
set, we keep an even ratio of backdoored samples. We per-
form both the grayscale and yellow square backdoor attacks
when training with four separate attributes: Blond, Smiling,
Oval Face and Big Nose. We use a backdooring split of
95% positive /5% negative for Blond and Smiling, and 65%
positive /35% negative for Oval Face and Big Nose. The
smaller split prevents the model from simply memorizing
the backdoor on harder tasks.

Targeted backdoors enable us to better control and iso-
late the source of bias introduced in the models. We con-
sider category bias, and focus on bias amplification (BA) as
our main metric. Specifically, in the definition of BA de-
scribed in Section 2.1 we consider backdooring as our iden-
tity category, i.e. if a sampled is backdoored, then it has
identity category 1, and 0 otherwise.

Our results in Figure 4 show that, as expected, BA in-
creases substantially for all models considered. Moreover,
we observe that bias is slightly amplified with sparsity, for
example on the Big Nose or Smiling attributes. Overall, our
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study on bias for backdoored models results in similar con-
clusions to the “clean” single label experiments. For exam-
ple, when examining the BA scores for single label training
in Figure 3, we notice that the values have only a slight in-
crease with sparsity. This suggests that bias is more likely
to follow from less diverse feature representations, whereas
here the relationship with sparsity is weaker.

4. Mitigating Sparsity-Induced Bias
4.1. Threshold Calibration

Inspired by our earlier observation that sparser models
tend to show worse threshold calibration bias, we consider
what happens when we adjust the thresholds to better fit
the true distribution of each attribute. We note that the de-
cision to adjust the threshold is not clear-cut; the logistic
loss encourages the correct prediction, rather than the cor-
rect ranking for each attribute. Further, the threshold ad-
justment does not take the identity feature into account, and
should not be confused with fairness-aware threshold ad-
justments [23]. Instead, we set a single threshold for each
attribute so that the predictions are correctly calibrated on
the original CelebA validation set.
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Figure 5. (Left) Effect of threshold calibration on ResNet18 mod-
els jointly trained on all attributes. (Right) Proportion of uncertain
predictions for dense models across all attributes for all elements
in the CelebA test set, and for Compression-Identified Exemplars
at different sparsities.

The results of threshold calibration are shown in Figure 5
(Left). Despite the fact that the threshold adjustment pro-
cess is agnostic to identity categories, this simple correction
reduces the bias amplification across all sparsities, almost
eliminating bias effects at up to 90% sparsity.

4.2. Overriding Sensitive Samples
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Figure 6. Effect of label overrides on Male Bias Amplification.

Since the additional bias amplification in sparse mod-
els must be due to test samples whose classification has

changed between dense and sparse models, we examine
these examples more closely. We focus on Compression-
Identified Exemplars (CIEs) [28, 29], which are the test
examples on which the modal dense label across multiple
training runs disagrees with the modal sparse label, regard-
less of which one is correct. For each sparsity, we com-
pute the CIEs across five runs each of the dense and sparse
models. Our results in Figure 5 (Right) show that CIEs are
greatly enriched for prediction uncertainty, suggesting that
improving the predictions of these examples may assist in
reducing BA, especially in the sparse models. However,
CIEs are expensive to compute due to requiring multiple
models for consensus, and are specific to the sparsity level.

Prediction overrides, where a fixed label for a small sub-
set of data is distributed along with the model, and selected
over the model prediction at inference time, are common in
model deployment. Inspired by our observation that CIEs
are highly enriched for uncertain examples, we propose
to prioritize the highest-uncertainty data as classified by a
dense model, in cases where the dense model already shows
positive BA. We replicate this setting on the test dataset.
This is consistent with standard practice for override prior-
itization to improve accuracy, since the most uncertain ex-
amples are presumed to have the highest chance of having
the wrong label.

We consider two possible override labels: the correct la-
bel, which simulates human overrides, and the dense label,
which simulates the best possible label if human labeling
is impractical. We apply these overrides to all sparse la-
bels and measure the bias amplification. Our results (Fig-
ure 6 and Figure B.1) show that overrides with both human
and dense labels substantially decrease the bias amplifica-
tion of models of all sparsities. For instance, using manual
overrides for the most uncertain 5% of examples lowers the
mean BA of the 99.5% sparse model by 23%, and replacing
the top 10% lowers the mean BA by 35%. This suggests that
the use of uncertainty-based override pipelines is an effec-
tive tool for reducing bias amplification on sparse models,
even when only the dense model is used to set prioritization.

5. Additional Validation
We emphasize the fact that the above observations have

been validated on additional datasets and models, so our
findings hold generally. We discuss these experiments
briefly below, and present them in full in the Appendix.
Additional Validation on CelebA. We experiment with
the setup where pruning starts from a pretrained model,
for which we include the results in Appendix E, showing
similar results. We additionally prune to N:M (2:4, 1:4
and 1:8) sparsity patterns [44] in Appendix F, with sim-
ilar results to lower-sparsity models pruned without this
restriction. Experiments validating our results for singly-
and jointly-trained attributes on the MobileNetV1 architec-
ture [30] can be found in Appendix G, showing the same
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trends, but at slightly lower sparsities. We additionally val-
idate the joint training results on the ResNet50 architecture
in Appendix H, with very similar results to ResNet18. Fi-
nally, we repeat the ResNet18 joint training experiments us-
ing the uncropped CelebA dataset, which ensures that fea-
tures such as the presence of neckwear are available to the
model (as they were to the human labellers). We discuss
these results in Appendix I.

Additional Datasets. We further validated our findings
on two additional datasets. The Animals with Attributes
(AwA) dataset [51] serves as a useful validation for our
observations regarding the effect of sparsity on bias in bi-
nary prediction (Appendix K). The challenging iWildcam
dataset [3] validates our observations regarding increased
uncertainty relative to sparsity in the context of multiclass
classification (Appendix L).

6. Related Work

Fairness, Bias, and Bias Mitigation. A number of fair-
ness metrics have been proposed, including individual fair-
ness, which requires that individuals with similar character-
istics receive similar outcomes, and group fairness, which
requires parity along some metric between individuals in
commonly-identified groups [2]. Many works propose
techniques to remove or mitigate bias in general [47, 50],
while [40] mitigates accuracy bias on compressed mod-
els. Notably, [50] proposes the use of synthetic bench-
marks such as backdooring images. Backdooring is also
used by [48] for evaluating bias in transfer learning.

Bias Due to Compression. Seminal work by Hooker et
al. [28, 29] initiated the study of compression-induced bias,
showing that bias can be amplified by model pruning, and
isolate the influence of Compression Identified Exemplars
(CIEs) as rare examples in the training data. Our work sig-
nificantly extends this research, by examining compression
effects via Bias Amplification, and showing that highly-
sparse models may in fact be bias-free for moderate ≤ 90%
sparsities, using joint training, global pruning, and addi-
tional finetuning. In addition, we provide strategies for bias
mitigation that do not require knowledge of identity cate-
gories, nor any information about compressed models.

Recent work by Chen et al. [8] studies pruning effects
from four aspects: generalization/robustness to distribution
shifts, prediction uncertainty, interpretability, and loss land-
scape, for pruned models obtained via variants of the Lot-
tery Ticket Hypothesis (LTH) approach [7, 9, 16]. They
show that LTH-pruned models match (or slightly outper-
form) dense models across all these categories. Our work
is related in that they also study prediction uncertainty for
models, noticing that sparse LTH models can be competi-
tive with dense ones in terms of uncertainty, measured as
ECE. Yet, the focus of our work is different: we perform an
in-depth comparison of bias effects, specifically focusing on

the high-sparsity range, where we exhibit and carefully ana-
lyze the emergence of bias. In addition, we provide a set of
techniques for characterizing and mitigating bias in pruned
models, which is beyond the scope of [8].

Good et al. [20] studies the relative distortions in the re-
call of a model in relationship with sparsity, and proposed
a gradient-based pruning method to decrease the negative
effect of sparsity on this metric. Other works analyze the
variance in classification error among classes as a proxy for
bias in sparse models [6], while others [32, 52] use knowl-
edge distillation [26] to decrease the misalignment between
sparse and dense models. By comparison, our study focuses
on characterizing and mitigating bias given a fixed com-
pression scheme, for which we propose different metrics,
as well as detection criteria and countermeasures.
Systematic Bias. Finally, systematic bias is an impor-
tant avenue of research that compliments our work by us-
ing more sophisticated techniques to identify and categorize
hard-to-learn examples [1,11,15,46]. However, these works
use finer-grained definitions of systematic bias, and do not
consider model compression.

7. Conclusion
We performed an in-depth study of bias in sparse mod-

els, and showed that it is possible to obtain highly-sparse
models without loss in accuracy or AUC. However, these
models have higher uncertainty compared to dense ones,
and the predicted labels are more interdependent. Bias am-
plification is often substantially exacerbated at high sparsi-
ties (≥ 95%) and the bias of individual attributes in sparse
models correlates well with their bias in the dense base-
line. However, the effect we observe on both systematic
and category bias is influenced by the training setting, i.e.
joint or individual attribute training. In future work, we plan
to examine the impact of different compression approaches
(pruning and quantization techniques) on our bias metrics,
more complex countermeasures for mitigating the bias we
have shown to arise in highly-compressed models, and fur-
ther applications, such as language modelling.

Acknowledgments
The authors would like to sincerely thank Sara Hooker

for her feedback during the development of this work. EI
was supported in part by the FWF DK VGSCO, grant agree-
ment number W1260-N35. AP and DA acknowledge gen-
erous ERC support, via Starting Grant 805223 ScaleML.

8



References
[1] Robert J. N. Baldock, Hartmut Maennel, and Behnam

Neyshabur. Deep learning through the lens of example diffi-
culty. In NeurIPS, 2021. 8

[2] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fair-
ness and Machine Learning. fairmlbook.org, 2019. http:
//www.fairmlbook.org. 1, 2, 8

[3] Sara Beery, Elijah Cole, and Arvi Gjoka. The iwildcam 2020
competition dataset. arXiv preprint arXiv:2004.10340, 2020.
3, 8, 37

[4] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major,
and Shmargaret Shmitchell. On the Dangers of Stochastic
Parrots: Can Language Models Be Too Big? 2021. 1

[5] Abeba Birhane and Vinay Uday Prabhu. Large image
datasets: A pyrrhic win for computer vision? In IEEE Win-
ter Conference on Applications of Computer Vision (WACV),
2021. 1

[6] Cody Blakeney, Nathaniel Huish, Yan Yan, and Ziliang
Zong. Simon says: Evaluating and mitigating bias in pruned
neural networks with knowledge distillation. arXiv preprint
arXiv:2106.07849, 2021. 8

[7] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu,
Yang Zhang, Zhangyang Wang, and Michael Carbin. The
lottery ticket hypothesis for pre-trained BERT networks.
arXiv preprint arXiv:2007.12223, 2020. 8

[8] Tianlong Chen, Zhenyu Zhang, Jun Wu, Randy Huang, Si-
jia Liu, Shiyu Chang, and Zhangyang Wang. Can you win
everything with a lottery ticket? Transactions on Machine
Learning Research, 2022. 3, 5, 8

[9] Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong.
When vision transformers outperform resnets without pre-
training or strong data augmentations. arXiv preprint
arXiv:2106.01548, 2021. 8

[10] DeepSparse. NeuralMagic DeepSparse Inference Engine,
2021. 4

[11] Greg d’Eon, Jason d’Eon, James R. Wright, and Kevin
Leyton-Brown. The spotlight: A general method for dis-
covering systematic errors in deep learning models. In ACM
Conference on Fairness, Accountability, and Transparency
(FAccT), 2022. 8

[12] Thomas G Dietterich and Eun Bae Kong. Machine learning
bias, statistical bias, and statistical variance of decision tree
algorithms. Technical report, Technical report, Department
of Computer Science, Oregon State University, 1995. 2

[13] Erich Elsen, Marat Dukhan, Trevor Gale, and Karen Si-
monyan. Fast sparse convnets. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
14629–14638, 2020. 1

[14] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Cas-
tro, and Erich Elsen. Rigging the lottery: Making all tickets
winners. In International Conference on Machine Learning
(ICML), 2020. 4

[15] Sabri Eyuboglu, Maya Varma, Khaled Saab, Jean-Benoit
Delbrouck, Christopher Lee-Messer, Jared Dunnmon, James
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A. Full Training Settings
In this section we provide the complete details regarding the training setting for our dense and sparse models on CelebA.

For all our experiments we used standard random augmentations for CelebA used in [50], and we normalized the samples
using mean and standard deviation each of 0.5 per channel. Furthermore, we replicated all experiments from five different
seeds. We adapted the public implementation for model pruning: https://github.com/IST-DASLab/ACDC to train
with Binary Logistic Loss.
Joint training. We train the dense model for 100 epochs, using SGD with momentum, with the same hyperparameters
(learning rate scheduler, momentum, weight decay, batch size) as the ones used for training ImgageNet in [37], but without
label smoothing. Generally, we have noticed that on the held-out CelebA validation set, the dense model tends to overfit after
around 40 epochs; therefore, we consider the model with the best validation during training and we use it for our final results
on the test set. Likewise, we use the same training hyperparameters for GMP-RI; furthermore, we start pruning from the
10th epoch, using global magnitude pruning on all layers, and increase the sparsity level every 10 epochs, using a standard
polynomial schedule [55]. We finetune the sparse models for the last 20 epochs of training and consider the models with the
best validation between epochs 80-100. In the case of GMP-PT models, we use 80 epochs for training, and we increase the
sparsity level every 4th epoch, while the final 20 epochs are reserved for finetuning at maximum sparsity. For GMP-PT we
use the Adam optimizer, with a fixed learning rate of 0.0001, similar to [39].
Single label training. In addition to the joint attribute training, we also train a subset of labels individually. The labels
we consider are the following: Bags Under Eyes, Blond, Big nose, Mustache, Oval Face, Receding Hairline, and Smiling.
All single label experiments are trained for 20 epochs to avoid overfitting. The dense models were trained using SGD with
momentum, with initial learning rate 0.1, batch size 256, momentum value 0.9 and weight decay 0.0001; additionally, we
used a cosine annleaning learning rate scheduler. The GMP-RI models were trained using SGD with momentum value 0.9,
weight decay 0.0001 and fixed learning rate of 0.1; models were pruned starting from the third epoch, with a gradual increase
in sparsity every epoch following a polynomial schedule [55], while the final 4 epochs were reserved for finetuning.
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B. Full Override Results for Jointly-trained ResNet18 Models
In this section, we present the full data for the impact on Bias Amplification of selectively overriding model predictions

with dense predictions (in the case of sparse models) or correct labels. In all cases, the overridden samples are prioritized
by the uncertainty of the dense model on that attribute. Further, only predictions for attributes that show positive bias
amplification in the dense case are overridden. The results are shown in Figure B.1. We observe that in general, overrides
using dense model predictions are effective in the case of very sparse (99%-99.5% sparse) models, but their effectiveness
decreases for less sparse models. This is consistent with our observation that less sparse models show less bias amplification
relative to dense even without any interventions. Further, we observe that even for categories where the BA is relatively low
(Chubby and Pale Skin), overrides are still effective at further reducing relative bias amplification at high sparsity. Overriding
with the true label reduces bias amplification throughout.
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Figure B.1. [CelebA / ResNet18 / GMP-RI] Effect of label overrides on Bias Amplification. In all cases, overrides are prioritized by dense
model uncertainty.
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C. Full results for Singly-trained CelebA models on ResNet18
In this section we provide and discuss Figure C.2, which is a more complete version of Figure 3 (Accuracy and Bias on

singly-trained models); this version includes all seven binary attributes for which we ran the experiment, and all metrics.
We observe that the conclusions which we described in Sections 3 for the Oval Face and Big Nose attributes generally hold
true for the additional five attributes (Bgs Under Eyes, Receding Hairline, Mustache, Blond Hair, and Smiling) as well. We
observe that model accuracy and AUC is generally higher for single-attribute models than joint models, at no or low sparsities,
but roughly equal for high sparsities. Further, singly-trained models are much less impacted by sparsity than jointly-trained
models when it comes to both Systematic and Categorical bias. However, this manifests as less bias in jointly-trained models
at low sparsity, and roughly equal bias at high sparsities (≥ 95%).
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Figure C.2. [CelebA / ResNet18 / Single Attribute / GMP-RI] Effect of single versus joint training of attributes on Accuracy (first row),
Uncertainty (second row), ECE (third row), Threshold Calibration Bias (fourth row), and Bias Amplification for the ‘Male’, ‘Young’,
‘Chubby’, and ‘Pale Skin’ attributes (fifth-eighth rows), on the ResNet18 CelebA model, predicting, from left to right, Oval Face, Big
Nose, Bags Under Eyes, Receding Hairline, Mustache, Blond Hair, and Smiling). Orange denotes results from joint runs and blue denotes
results from single runs. Omitted panels are cases where BA cannot be computed, either because there is no relationship between the
predicted attribute and the category, or because the attribute is not present for one of the values of the category.
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Figure C.3. [CelebA / ResNet18 / Single Attribute / GMP-RI] Effect of threshold adjustment on Accuracy (first row), Threshold Calibration
Bias (second row), and Bias Amplification for the ‘Male’, ‘Young’, ‘Chubby’, and ‘Pale Skin’ attributes (third-sixth rows), on the ResNet18
CelebA model, predicting, from left to right, Oval Face, Big Nose, Bags Under Eyes, Receding Hairline, Mustache, Blond Hair, and
Smiling). Red denotes results where the threshold is calibrated on the validation set, and blue denotes results from runs where the default
threshold of 0.5 was used. Omitted panels are cases where BA cannot be computed, either because there is no relationship between the
predicted attribute and the category, or because the attribute is not present for one of the values of the category.
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D. Bias Amplification Results from Training the Predicted and Category Attribute Together

Inspired by our observation that, at low sparsities, joint training of all 40 attributes results in substantially lower bias
amplification, we tested the impact of jointly training two attributes - a predicted attribute that shows high bias amplification
in other training scenarios, and the identity category with regard to which high BA was observed. In all, we jointly co-trained
five such pairs: Big Nose + Male, Oval Face + Male, Big Nose + Young, Mustache + Young, and Receding Hairline +
Young. Except for using two logistic heads in the prediction layer, the training setting matches exactly our training settings
for singly-trained models.

The results of the experiment are shown in Figure D.4. We observe that in all five cases, the BA of the ”double” model,
which co-trains the protected and predicted attribute, matches the BA of the single model fairly closely. This result suggests
that more attributes looking at various facial features would need to be jointly trained in order to decrease BA at lower
sparsities.
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Figure D.4. [CelebA / ResNet18 / Two-Attribute / GMP-RI] Comparison of bias amplification between models that are singly-trained,
jointly-trained for all forty attributes, and models that are trained to predict only one attribute + the protected category.
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E. Post-training pruning results
We further extend our analysis of bias in sparse CelebA/ResNet18 models, by using a different pruning procedure. Specif-

ically, we perform gradual magnitude pruning starting from pre-trained dense models (GMP-PT); the full training hyperpa-
rameters are explained in Appendix Section A. Our results for GMP-PT are presented in Figure E.5. In terms of accuracy or
AUC performance, we obtain good quality models even at high sparsity (> 99%), which is in line with our observations for
the GMP-RI setting. Similarly, our conclusions hold for Systematic and Category bias. Namely, the ECE and TCB go down
with sparsity, while the interdependence slightly increases and the fraction of uncertain samples increases substantially with
model sparsity. The Category bias (BA) also increases with sparsity; this can be seen better on the Male attribute. Notably,
compared to GMP-RI, the BA values are slightly lower for less sparse models (e.g 80% and 90% sparse). We further test
methods for bias mitigation on the GMP-RT and notice similar effects to the GMP-RI setting; namely, when overriding low
confidence samples in the sparse models with either the true or dense label, we observe a substantial decrease in Category
bias, as measured by BA, particularly at high sparsity (please see Figure E.7). Lastly, we study the relationship between
uncertain samples and compression identified exemplars (CIEs) [28, 29] in Figure E.6 and observe that most of the CIEs are
uncertain samples.
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Figure E.5. [CelebA / ResNet18 / GMP-PT] Accuracy and Systematic Bias metrics (TCB, ECE, Interdependence) of ResNet18 models
jointly trained on all CelebA attributes, and pruned Post-Training (GMP-PT). The thick black line denotes the mean value at each sparsity
level.
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Figure E.6. [CelebA / ResNet18 / GMP-PT] (Left) Effect of threshold calibration on models jointly trained on all attributes. (Right)
Proportion of uncertain predictions for dense models across all attributes for all elements in the CelebA test set, and for Compression-
Identified Exemplars at different sparsities.
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Figure E.7. [CelebA / ResNet18 / GMP-PT] Effect of label overrides on Bias Amplification. In all cases, overrides are prioritized by dense
model uncertainty.
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F. N:M Sparsity Results
While modern GPU hardware cannot take full advantage of unstructured sparsity, introducing additional constraints can

lead to effective speedups. In particular, N:M sparsity patterns, in which N out of every contiguous M values are removed,
can be successfully accelerated [44]. We validate our findings by evaluating systematic and categorical bias in the N:M
sparsity setting. The sparsification algorithm is a variant of the Random-Initialization Global Magnitude Pruning algorithm
used in the main body of the paper. Each experiment was repeated from three different random initializations.

We present our results in Figure F.8. As in our other experiments, we observe little effect on accuracy and AUC even at the
highest 1:8 sparsity level; further, we observe that, as with unstructured sparsity, Expected Calibration Error decreases slightly
with sparsity, while Uncertainty increases and Threshold Calibration Bias gets slightly worse. As far as Bias Amplification,
we observe a slight increase when splitting the data by the Male category, for the 1:4 and 1:8 sparsity pattern. Splitting by
the other three categories (Young, Chubby, and Pale Skin) shows minimal, if any, increased BA, likely because even at the
highest 1:8 sparsity level, the model is less than 90% sparse, as compared with up to 99.5% sparsity for unstructured pruning.
We note that this further validates our finding that ResNet18 models predicting CelebA attributes can be pruned to fairly high
sparsity without significant effect on BA.
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Figure F.8. [CelebA / ResNet18/ N:M/ GMP-RI] Accuracy and Systematic Bias metrics (TCB, ECE, Interdependence) of MobileNetV1
models jointly trained on all CelebA attributes. The thick black line denotes the mean value at each sparsity level.
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Figure F.9. [CelebA / ResNet18 / N:M Sparsity / GMP-RI] (Left) Effect of threshold calibration on ResNet18 N:M sparsity models jointly
trained on all attributes. (Right) Proportion of uncertain predictions for dense models across all attributes for all elements in the CelebA
test set, and for Compression-Identified Exemplars at different sparsities.
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Figure F.10. [CelebA / ResNet18 / N:M Sparsity / GMP-RI] Effect of label overrides on Bias Amplification. In all cases, overrides are
prioritized by dense model uncertainty.
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G. MobileNetV1 results
We additionally validate our results on different architectures, for the joint label training setting. Namely, we choose

MobileNet [30], as it is a smaller model, and known to be more difficult to prune. We train the dense and sparse models using
the same hyperparameters described in Appendix Section A. We show results under the GMP-RI setting.

For the MobileNet architecture, we note that sparse models maintain a good performance relative to dense, except for
99% and 99.5% sparsity, where we observe a decrease in performance, both in terms of accuracy and AUC scores (the
99.5% models in particular are very poor and are omitted from analysis). The results for systematic and context bias in
Figure G.11 show similar trends to those observed for ResNet18; we note that all our bias metrics, including uncertainty,
are substantially amplified at 99% sparsity, which is not surprising given the lower performance of the model. Moreover,
we show in Figure G.13 that it is possible to decrease the bias in 99% sparse models by over-ridding the labels of the low
confidence samples with their true or dense labels, and we also show that most of CIEs are uncertain samples in Figure G.12.

We also repeat the single-label experiments on this architecture. Unlike the joint training, performance on singly-trained
MobileNet models does not decrease at the 99% sparsity level, which can be observed in Figure G.14. Generaly, we observe
similar trends in both Systematic and Categorical bias as we observe on ResNet18.
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Figure G.11. [CelebA / MobileNetV1 / GMP-RI] Accuracy and Systematic Bias metrics (TCB, ECE, Interdependence) of MobileNetV1
models jointly trained on all CelebA attributes. The thick black line denotes the mean value at each sparsity level.
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Figure G.12. [CelebA / MobileNetV1 / GMP-RI] (Left) Effect of threshold calibration on models jointly trained on all attributes. (Right)
Proportion of uncertain predictions for dense models across all attributes for all elements in the CelebA test set, and for Compression-
Identified Exemplars at different sparsities.
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Figure G.13. [CelebA / MobileNetV1 / GMP-RI] Effect of label overrides on Bias Amplification. In all cases, overrides are prioritized by
dense model uncertainty.
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Figure G.14. [CelebA / MobleNetV1 / Single Attribute / GMP-RI] Effect of single versus joint training of attributes on Accuracy (first
row), Uncertainty (second row), ECE (third row), Threshold Calibration Bias (fourth row), and Bias Amplification for the ‘Male’, ‘Young’,
‘Chubby’, and ‘Pale Skin’ attributes (fifth-eighth rows), on the MobileNet CelebA model, predicting, from left to right, Oval Face, Big
Nose, Bags Under Eyes, Receding Hairline, Mustache, Blond Hair, and Smiling). Orange denotes results from joint runs and blue denotes
results from single runs. Omitted panels are cases where BA cannot be computed, either because there is no relationship between the
predicted attribute and the category, or because the attribute is not present for one of the values of the category.

22



H. ResNet50 Results
We further validate our joint training GMP-RI results on the ResNet50 architecture, which has roughly double the pa-

rameters of ResNet18 (25.529.472 versus 11.683.712). We use the same experimental settings as for the ResNet18 GMP-RI
experiments, excepting that the ResNet50 experiments were performed only in triplicate (from three random seeds).

The accuracy and systematic bias metrics are presented in Figure H.15. Overall, the patters we observe using the ResNet50
architecture very closely match those using ResNet18. Figure H.17 shows the impact on Bias Amplification of overriding
the most uncertain predictions (closest to 0.5 probability as measured on a dense model) with either the dense prediction or
the correct label. Consistent with the rest of the paper, the override is only applied if the Bias Amplification is positive on
the dense model for the attribute and category in question. As in other cases, both types of overrides are effective at reducing
Bias Amplification, generally when using the correct label, and when applied to high-sparsity models in the case of the dense
label.
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Figure H.15. [CelebA / ResNet50 / GMP-RI] Accuracy and Systematic Bias metrics (TCB, ECE, Interdependence) of ResNet50 models
jointly trained on all CelebA attributes. The thick black line denotes the mean value at each sparsity level.
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Figure H.16. [CelebA / ResNet50 / GMP-RI](Left) Effect of threshold calibration on ResNet50 models jointly trained on all at-
tributes. (Right) Proportion of uncertain predictions for dense models across all attributes for all elements in the CelebA test set, and
for Compression-Identified Exemplars at different sparsities.
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Figure H.17. [CelebA / ResNet50 / GMP-RI] Effect of label overrides on Bias Amplification. In all cases, overrides are prioritized by
dense model uncertainty.
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I. Uncropped CelebA Results
While inspecting the CelebA samples using our visualization tool described in Appendix Section M we observed that some

of the attributes were more prone to mislabelling, due to decisions conventionally made when training models on CelebA;
for example, due to the cropping of the images in the standard CelebA version used in practice, it is often times impossible to
directly observe the presence of attributes like Wearing Necktie or Wearing Necklace (see the discussion in M, and specifically
Figures M.32, M.30). In an effort to disentangle the data inherent bias, due to cropping, from Systematic or Categorical bias,
we further validate our results on dense and sparse models trained on the uncropped version of CelebA. We use the same
setting for training ResNet18 GMP-RI models, as the one described in Appendix Section A. In terms of accuracy or AUC
scores, we observe a decrease in performance for very sparse (99.5% sparse) models trained on the uncropped CelebA.
Otherwise, our findings in terms of systematic (ECE, TCB, Interdependence) or context (BA) bias generally confirm those
on the standard CelebA dataset. It is worth noting, however, that using the uncropped CelebA version substantially reduced
the Categorical bias for the problematic attributes Wearing Necklace or Wearing Necktie. For example, the BA scores for the
dense model changed from 4.6 to 0.9 for Wearing Necktie and from -2.2 to -1.4 for Wearing Necklace. More importantly, the
bias decreased substantially for high sparse models; for example, the interval for the BA scores for models in the 98%-99.5%
sparsity range changed from [-34.4, -21.3] for the cropped version to [-5.8, -3.4] for uncropped, for the Wearing Necklace
attribute. Similarly, the BA score for Wearing Necktie on the 99.5% sparse model dropped from 8.7 to 3.1, and also decreased
substantially for lower sparsity levels. These findings confirm our expectations that data inherent bias can play a significant
role in the overall bias equation for a model, and improvements can be obtained by carefully taking the data bias into account.
We further show that Categorical bias can be decreased by careful relabelling in Figure I.20 and show the uncertainty of CIEs
in Figure I.19.
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Figure I.18. [Uncropped CelebA / ResNet18 / GMP-RI] Accuracy and Systematic Bias metrics (TCB, ECE, Interdependence) of ResNet18
models jointly trained on all CelebA attributes, using the uncropped images for training and inference. The thick black line denotes the
mean value at each sparsity level.
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Figure I.19. [Uncropped CelebA / ResNet18 / GMP-RI] (Left) Effect of threshold calibration on models jointly trained on all at-
tributes. (Right) Proportion of uncertain predictions for dense models across all attributes for all elements in the CelebA test set, and
for Compression-Identified Exemplars at different sparsities.
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Figure I.20. [Uncropped CelebA / ResNet18/ GMP-RI] Effect of label overrides on Bias Amplification. In all cases, overrides are prioritized
by dense model uncertainty.
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J. Tabular Results for Jointly-Trained ResNet18 CelebA Models
In this section, we present our main results for systematic and categorical bias metrics for ResNet18 CelebA models in

tabular form. We first present the average values across attributes for all metrics by sparsity in Table J.1, then give detailed
per-attribute numbers for each metric in subsequent tables. The means and standard deviations were computed from runs
from five random seeds.

Table J.1. Mean Accuracy, Systematic Bias, and Categorical Bias Values, Joint CelebA Training, ResNet18

Sparsity 0 80 90 95 98 99 99.5
Metric

Accuracy 0.904 0.908 0.909700 0.913 0.915 0.914 0.911
AUC 0.805 0.810 0.813 0.815 0.815 0.810 0.797

Expected Calibration Error 0.0538 0.0401 0.0341 0.0254 0.0153 0.0128 0.0127
Interdependence 0.310 0.319 0.324 0.332 0.341 0.349 0.361
Threshold Calibration Bias 0.903 0.895 0.889 0.877 0.853 0.833 0.805
Uncertainty 0.139 0.172 0.186 0.207 0.237 0.256 0.276

’Male’ Bias Amplification 0.0170 0.0180 0.0210 0.0241 0.0294 0.0337 0.0402
’Young’ Bias Amplification 0.00600 0.00663 0.00711 0.00851 0.00817 0.0101 0.0148
’Chubby’ Bias Amplification -0.00208 -0.00133 -0.000278 0.00106 0.00269 0.00583 0.00844
’Pale Skin’ Bias Amplification 0.000097 -0.000065 0.000323 0.000419 0.000581 0.000645 0.000935
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Table J.2. Threshold Calibration Bias, Joint CelebA training, ResNet18

Sparsity 0 80 90 95 98 99 99.5
Attribute

5 o Clock Shadow 92.7 ± 4.3 92.1 ± 3.6 91.8 ± 3.8 91.1 ± 3.6 89.4 ± 2.6 88.6 ± 2.4 84.9 ± 3.1
Arched Eyebrows 99.4 ± 3.6 99.5 ± 3.6 99.1 ± 3.9 99.9 ± 3.0 99.0 ± 2.8 98.2 ± 2.9 96.1 ± 2.3
Attractive 97.0 ± 0.9 96.8 ± 1.0 96.3 ± 0.9 96.3 ± 0.5 96.2 ± 0.6 95.8 ± 0.8 94.9 ± 0.6
Bags Under Eyes 92.3 ± 2.8 91.1 ± 3.5 90.6 ± 3.7 89.4 ± 2.5 85.2 ± 3.6 83.2 ± 3.3 77.2 ± 1.3
Bald 93.9 ± 3.5 94.4 ± 5.5 97.8 ± 4.8 98.3 ± 3.9 97.4 ± 4.2 99.2 ± 5.7 90.8 ± 5.4
Bangs 96.7 ± 0.9 96.9 ± 0.9 96.7 ± 1.5 96.4 ± 0.8 95.6 ± 1.0 94.9 ± 1.2 93.7 ± 0.5
Big Lips 62.7 ± 4.2 61.7 ± 3.9 60.1 ± 3.8 57.1 ± 2.0 47.8 ± 2.4 38.3 ± 2.1 31.3 ± 2.7
Big Nose 98.4 ± 4.2 96.6 ± 5.3 95.6 ± 5.3 94.5 ± 3.5 91.0 ± 3.3 88.2 ± 3.4 84.1 ± 4.1
Black Hair 94.8 ± 2.8 94.0 ± 1.8 94.0 ± 2.8 94.2 ± 2.8 93.6 ± 2.7 92.9 ± 2.8 92.6 ± 2.0
Blond Hair 97.1 ± 2.0 96.8 ± 1.5 96.7 ± 1.7 96.6 ± 1.4 95.3 ± 0.9 95.4 ± 1.8 94.7 ± 1.2
Blurry 82.1 ± 3.6 80.4 ± 4.2 80.2 ± 3.7 76.1 ± 3.4 73.2 ± 4.3 70.6 ± 3.0 67.6 ± 3.9
Brown Hair 107.6 ± 2.1 106.6 ± 4.0 105.3 ± 3.1 105.9 ± 2.6 104.0 ± 2.3 102.9 ± 1.9 103.0 ± 2.7
Bushy Eyebrows 90.6 ± 4.6 89.2 ± 5.7 87.8 ± 5.6 86.9 ± 3.6 84.7 ± 4.1 82.4 ± 4.0 80.9 ± 3.8
Chubby 87.7 ± 1.9 86.8 ± 1.7 87.5 ± 2.2 84.9 ± 1.9 80.6 ± 2.1 77.5 ± 2.9 69.8 ± 2.7
Double Chin 77.5 ± 3.2 77.5 ± 3.1 78.0 ± 3.9 75.3 ± 2.2 71.0 ± 4.5 66.7 ± 2.8 60.7 ± 4.0
Eyeglasses 98.1 ± 0.6 98.5 ± 0.7 98.5 ± 0.3 98.9 ± 0.4 98.7 ± 0.3 98.8 ± 0.6 98.0 ± 1.0
Goatee 107.4 ± 2.7 107.4 ± 2.4 107.6 ± 3.3 110.7 ± 3.0 111.8 ± 4.7 112.2 ± 4.1 110.6 ± 4.9
Gray Hair 98.8 ± 2.1 97.0 ± 1.6 97.1 ± 1.7 95.8 ± 2.3 93.1 ± 2.1 94.8 ± 2.3 95.0 ± 3.7
Heavy Makeup 100.5 ± 0.3 100.3 ± 0.6 100.1 ± 0.4 100.7 ± 0.3 100.9 ± 0.1 100.9 ± 0.4 102.3 ± 0.6
High Cheekbones 98.2 ± 1.5 98.1 ± 1.3 97.9 ± 1.3 97.8 ± 1.4 97.9 ± 1.4 97.6 ± 1.1 98.4 ± 0.7
Male 99.3 ± 0.2 99.2 ± 0.3 99.2 ± 0.3 99.2 ± 0.3 99.2 ± 0.4 99.2 ± 0.4 99.2 ± 0.4
Mouth Slightly Open 99.4 ± 0.5 99.4 ± 0.5 99.2 ± 0.4 99.3 ± 0.4 99.5 ± 0.4 99.2 ± 0.3 99.3 ± 0.8
Mustache 73.1 ± 4.4 72.9 ± 2.5 71.4 ± 3.1 69.8 ± 3.4 69.7 ± 4.0 60.2 ± 1.0 57.4 ± 6.9
Narrow Eyes 59.3 ± 2.0 56.3 ± 1.4 55.4 ± 2.0 51.5 ± 1.6 45.8 ± 1.5 42.5 ± 1.7 39.4 ± 2.4
No Beard 95.1 ± 2.1 95.6 ± 1.8 95.7 ± 2.0 95.7 ± 1.4 95.6 ± 1.9 94.8 ± 1.5 93.9 ± 2.9
Oval Face 84.0 ± 4.0 81.1 ± 2.9 78.6 ± 3.9 74.2 ± 2.6 64.3 ± 3.3 56.1 ± 2.9 51.5 ± 2.5
Pale Skin 80.0 ± 4.0 78.5 ± 3.2 77.2 ± 4.7 73.6 ± 2.8 70.0 ± 3.7 66.2 ± 2.6 64.6 ± 4.3
Pointy Nose 84.9 ± 2.9 81.3 ± 3.0 78.8 ± 2.4 74.0 ± 2.2 70.1 ± 1.7 66.1 ± 0.9 63.4 ± 1.6
Receding Hairline 83.3 ± 3.2 81.8 ± 3.4 81.1 ± 4.3 79.3 ± 2.2 76.6 ± 2.3 73.1 ± 2.1 66.6 ± 3.9
Rosy Cheeks 88.9 ± 6.2 88.0 ± 7.0 85.6 ± 7.6 86.2 ± 3.0 83.9 ± 3.6 81.6 ± 5.1 78.9 ± 3.9
Sideburns 94.9 ± 3.4 96.5 ± 3.5 95.3 ± 3.8 95.8 ± 4.2 94.9 ± 4.1 95.6 ± 5.2 95.2 ± 5.2
Smiling 99.8 ± 0.5 99.8 ± 0.8 99.4 ± 0.6 99.3 ± 0.8 98.8 ± 0.8 98.7 ± 0.7 98.3 ± 0.5
Straight Hair 87.2 ± 2.0 85.6 ± 1.1 83.4 ± 1.5 81.1 ± 2.2 75.5 ± 1.8 72.5 ± 0.6 65.6 ± 1.2
Wavy Hair 83.5 ± 0.9 84.0 ± 1.2 83.9 ± 1.3 83.1 ± 1.2 81.9 ± 1.5 81.2 ± 1.5 79.7 ± 1.1
Wearing Earrings 97.0 ± 1.5 97.4 ± 2.0 96.9 ± 1.7 96.5 ± 1.5 95.6 ± 2.0 94.5 ± 1.9 91.2 ± 2.0
Wearing Hat 97.4 ± 1.5 97.4 ± 1.6 97.5 ± 1.0 97.6 ± 1.5 97.1 ± 2.0 96.1 ± 1.4 94.4 ± 1.5
Wearing Lipstick 97.6 ± 0.3 97.9 ± 0.3 97.8 ± 0.4 98.0 ± 0.3 98.3 ± 0.4 98.7 ± 0.3 99.1 ± 0.4
Wearing Necklace 66.0 ± 4.1 58.1 ± 3.9 51.8 ± 3.6 42.4 ± 2.2 28.3 ± 2.8 18.9 ± 1.1 9.3 ± 1.1
Wearing Necktie 82.8 ± 1.9 81.3 ± 2.6 81.9 ± 2.6 81.5 ± 0.6 78.8 ± 2.4 78.3 ± 1.1 71.3 ± 3.2
Young 85.0 ± 1.3 86.3 ± 1.9 85.3 ± 1.9 84.7 ± 0.7 82.3 ± 0.7 80.6 ± 1.4 76.6 ± 1.4
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Table J.3. Uncertainty, Joint CelebA training, ResNet18

Sparsity 0 80 90 95 98 99 99.5
Attribute

5 o Clock Shadow 9.3 ± 0.4 10.9 ± 0.4 11.7 ± 0.4 12.9 ± 0.4 14.9 ± 0.4 16.5 ± 0.4 18.5 ± 0.4
Arched Eyebrows 24.3 ± 0.3 30.8 ± 0.4 33.4 ± 0.1 37.5 ± 0.3 43.4 ± 0.5 47.2 ± 0.4 50.5 ± 0.4
Attractive 28.8 ± 0.5 37.6 ± 0.6 40.8 ± 0.4 45.0 ± 0.5 50.0 ± 0.3 52.5 ± 0.3 54.2 ± 0.4
Bags Under Eyes 22.1 ± 0.4 28.1 ± 0.3 30.6 ± 0.2 35.0 ± 0.4 40.9 ± 0.3 44.8 ± 0.3 47.2 ± 0.5
Bald 2.1 ± 0.1 2.2 ± 0.1 2.2 ± 0.1 2.5 ± 0.1 2.7 ± 0.1 2.9 ± 0.1 3.1 ± 0.2
Bangs 7.5 ± 0.2 8.5 ± 0.2 9.0 ± 0.1 10.0 ± 0.1 11.0 ± 0.2 11.8 ± 0.1 12.7 ± 0.3
Big Lips 29.5 ± 1.0 39.7 ± 1.2 44.0 ± 1.4 51.8 ± 1.3 63.2 ± 1.3 69.8 ± 1.1 74.8 ± 1.2
Big Nose 21.1 ± 0.3 26.7 ± 0.7 29.5 ± 0.9 34.9 ± 0.7 42.4 ± 0.6 46.9 ± 0.8 49.9 ± 0.8
Black Hair 17.7 ± 0.4 21.3 ± 0.3 22.7 ± 0.3 24.9 ± 0.3 28.3 ± 0.4 30.2 ± 0.4 32.7 ± 0.4
Blond Hair 8.0 ± 0.1 8.9 ± 0.1 9.4 ± 0.2 10.2 ± 0.2 11.2 ± 0.2 12.0 ± 0.2 12.8 ± 0.2
Blurry 6.1 ± 0.3 7.3 ± 0.5 7.7 ± 0.4 8.2 ± 0.3 9.2 ± 0.4 9.8 ± 0.3 10.4 ± 0.4
Brown Hair 22.5 ± 0.3 28.5 ± 0.5 30.9 ± 0.4 34.1 ± 0.6 37.8 ± 0.5 39.1 ± 0.6 41.0 ± 0.5
Bushy Eyebrows 13.2 ± 0.3 16.0 ± 0.4 17.1 ± 0.5 18.7 ± 0.4 20.9 ± 0.5 22.3 ± 0.8 24.2 ± 1.0
Chubby 7.3 ± 0.3 8.3 ± 0.2 8.8 ± 0.3 9.7 ± 0.2 11.2 ± 0.2 12.4 ± 0.3 13.4 ± 0.3
Double Chin 6.3 ± 0.2 7.0 ± 0.1 7.4 ± 0.3 8.2 ± 0.2 9.3 ± 0.2 10.3 ± 0.4 11.0 ± 0.5
Eyeglasses 0.9 ± 0.1 0.7 ± 0.0 0.7 ± 0.0 0.7 ± 0.1 0.6 ± 0.0 0.7 ± 0.1 1.1 ± 0.2
Goatee 5.1 ± 0.1 5.7 ± 0.1 6.0 ± 0.1 6.7 ± 0.2 7.5 ± 0.1 8.1 ± 0.4 9.3 ± 0.3
Gray Hair 3.5 ± 0.1 3.7 ± 0.1 3.8 ± 0.1 4.2 ± 0.1 4.7 ± 0.1 5.2 ± 0.1 5.8 ± 0.2
Heavy Makeup 14.3 ± 0.1 16.9 ± 0.2 18.0 ± 0.3 19.9 ± 0.2 22.5 ± 0.2 24.4 ± 0.3 26.3 ± 0.2
High Cheekbones 20.3 ± 0.3 25.3 ± 0.5 27.3 ± 0.5 30.0 ± 0.4 33.7 ± 0.6 36.3 ± 0.4 38.2 ± 0.5
Male 3.0 ± 0.1 2.9 ± 0.1 3.0 ± 0.1 3.2 ± 0.1 3.5 ± 0.1 4.3 ± 0.1 6.0 ± 0.1
Mouth Slightly Open 10.7 ± 0.3 12.3 ± 0.1 12.9 ± 0.3 13.9 ± 0.2 15.5 ± 0.1 16.6 ± 0.3 18.1 ± 0.6
Mustache 4.8 ± 0.1 5.4 ± 0.2 5.7 ± 0.2 6.3 ± 0.2 7.2 ± 0.2 7.8 ± 0.2 8.5 ± 0.2
Narrow Eyes 14.9 ± 0.4 19.0 ± 0.3 20.8 ± 0.5 23.8 ± 0.5 27.4 ± 0.7 28.6 ± 0.8 31.0 ± 1.3
No Beard 6.9 ± 0.2 7.6 ± 0.3 7.9 ± 0.2 8.6 ± 0.2 9.4 ± 0.2 10.3 ± 0.3 11.4 ± 0.4
Oval Face 34.6 ± 0.9 46.1 ± 1.3 50.8 ± 1.6 58.0 ± 0.9 70.6 ± 1.0 78.8 ± 0.6 85.3 ± 0.4
Pale Skin 4.8 ± 0.2 5.7 ± 0.3 6.0 ± 0.2 6.3 ± 0.3 7.0 ± 0.3 7.4 ± 0.3 7.7 ± 0.4
Pointy Nose 37.1 ± 0.2 49.8 ± 0.9 54.0 ± 0.7 58.8 ± 0.7 64.7 ± 0.6 67.8 ± 0.4 72.4 ± 0.6
Receding Hairline 9.9 ± 0.2 11.6 ± 0.2 12.6 ± 0.3 13.7 ± 0.3 15.7 ± 0.3 16.9 ± 0.3 18.3 ± 0.4
Rosy Cheeks 10.0 ± 0.3 11.5 ± 0.5 12.3 ± 0.5 13.2 ± 0.2 14.4 ± 0.4 15.2 ± 0.3 16.3 ± 0.3
Sideburns 3.8 ± 0.0 4.3 ± 0.2 4.5 ± 0.1 4.9 ± 0.1 5.5 ± 0.2 6.0 ± 0.2 7.0 ± 0.2
Smiling 12.9 ± 0.3 15.2 ± 0.3 16.0 ± 0.2 17.4 ± 0.3 19.3 ± 0.4 20.7 ± 0.3 22.7 ± 0.5
Straight Hair 26.7 ± 0.5 34.1 ± 0.4 37.0 ± 0.5 41.3 ± 0.4 46.9 ± 0.4 50.3 ± 0.5 54.4 ± 0.5
Wavy Hair 25.9 ± 0.3 32.7 ± 0.7 35.4 ± 0.4 39.1 ± 0.4 43.8 ± 0.5 46.8 ± 0.3 50.6 ± 0.3
Wearing Earrings 16.7 ± 0.2 19.8 ± 0.1 21.3 ± 0.3 23.2 ± 0.3 25.9 ± 0.3 27.5 ± 0.5 29.8 ± 0.3
Wearing Hat 1.4 ± 0.0 1.5 ± 0.0 1.5 ± 0.1 1.7 ± 0.0 1.9 ± 0.1 2.1 ± 0.1 2.4 ± 0.2
Wearing Lipstick 12.6 ± 0.2 14.9 ± 0.4 15.8 ± 0.3 16.9 ± 0.2 18.4 ± 0.2 19.4 ± 0.2 20.3 ± 0.4
Wearing Necklace 24.3 ± 0.8 31.5 ± 0.9 34.5 ± 0.6 39.1 ± 0.8 45.4 ± 1.0 49.3 ± 1.0 52.5 ± 0.6
Wearing Necktie 9.6 ± 0.3 10.4 ± 0.1 11.1 ± 0.3 11.8 ± 0.1 12.6 ± 0.4 13.6 ± 0.1 15.8 ± 0.4
Young 14.9 ± 0.3 18.1 ± 0.4 19.9 ± 0.2 23.3 ± 0.4 29.0 ± 0.3 32.5 ± 0.4 35.9 ± 0.5
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Table J.4. Interdependence, Joint CelebA training, ResNet18

Sparsity 0 80 90 95 98 99 99.5
Attribute

5 o Clock Shadow 43.7 ± 0.5 44.9 ± 1.1 45.3 ± 0.6 45.9 ± 0.9 47.1 ± 0.5 48.5 ± 0.6 48.8 ± 1.1
Arched Eyebrows 34.5 ± 0.9 35.4 ± 1.1 36.0 ± 1.1 37.3 ± 0.7 38.2 ± 0.5 39.3 ± 0.7 42.1 ± 1.2
Attractive 44.6 ± 0.2 46.8 ± 0.5 48.2 ± 0.2 50.5 ± 0.4 53.1 ± 0.3 54.5 ± 0.4 56.0 ± 0.6
Bags Under Eyes 28.1 ± 1.0 30.3 ± 0.9 30.9 ± 1.1 32.4 ± 0.7 33.6 ± 0.8 35.1 ± 1.1 36.6 ± 0.7
Bald 13.0 ± 0.6 13.0 ± 0.9 13.8 ± 0.5 13.6 ± 0.6 13.3 ± 0.5 13.9 ± 0.6 14.4 ± 0.8
Bangs 10.5 ± 0.4 10.9 ± 0.4 11.4 ± 0.3 11.6 ± 0.2 12.2 ± 0.3 12.5 ± 0.2 12.9 ± 0.2
Big Lips 15.4 ± 0.5 16.6 ± 0.5 17.5 ± 0.2 19.3 ± 0.3 21.7 ± 0.9 23.4 ± 0.6 24.8 ± 0.8
Big Nose 35.7 ± 0.6 37.9 ± 0.9 39.0 ± 0.5 40.6 ± 0.5 44.0 ± 0.2 46.6 ± 0.5 49.8 ± 0.4
Black Hair 29.0 ± 0.7 29.4 ± 0.6 29.7 ± 0.3 30.0 ± 0.3 30.3 ± 0.6 30.5 ± 0.6 30.8 ± 0.5
Blond Hair 23.8 ± 0.5 24.2 ± 0.7 24.3 ± 0.4 25.2 ± 0.4 25.5 ± 0.4 25.5 ± 0.2 25.3 ± 0.4
Blurry 9.2 ± 0.2 9.8 ± 0.4 10.0 ± 0.2 10.2 ± 0.2 10.3 ± 0.3 10.4 ± 0.4 10.4 ± 0.5
Brown Hair 24.8 ± 0.5 25.5 ± 1.0 25.8 ± 0.6 26.7 ± 0.5 26.9 ± 0.2 27.2 ± 0.3 27.7 ± 0.7
Bushy Eyebrows 18.2 ± 0.8 19.0 ± 0.9 19.3 ± 0.6 19.2 ± 0.5 20.0 ± 0.6 20.7 ± 0.5 21.7 ± 0.5
Chubby 40.8 ± 1.6 44.0 ± 1.0 45.1 ± 0.6 47.6 ± 0.6 48.6 ± 1.3 50.6 ± 0.9 52.9 ± 1.2
Double Chin 39.6 ± 1.3 42.7 ± 0.8 43.8 ± 0.8 46.4 ± 0.5 47.3 ± 1.6 49.1 ± 1.2 51.0 ± 2.0
Eyeglasses 14.9 ± 0.2 15.3 ± 0.2 15.3 ± 0.5 15.7 ± 0.4 16.8 ± 0.5 17.2 ± 0.2 17.8 ± 0.3
Goatee 47.3 ± 1.3 48.1 ± 1.2 49.1 ± 1.4 50.4 ± 1.4 52.7 ± 2.0 55.2 ± 1.8 59.8 ± 3.3
Gray Hair 21.2 ± 0.5 21.1 ± 0.5 21.5 ± 0.3 21.7 ± 0.3 22.3 ± 0.8 23.2 ± 0.9 25.3 ± 1.3
Heavy Makeup 69.7 ± 0.2 69.9 ± 0.3 70.2 ± 0.5 70.9 ± 0.2 71.5 ± 0.3 71.8 ± 0.3 73.1 ± 0.3
High Cheekbones 60.4 ± 0.5 62.4 ± 0.6 63.5 ± 0.4 65.2 ± 0.4 67.2 ± 0.3 68.6 ± 0.3 71.8 ± 0.7
Male 74.2 ± 0.6 74.4 ± 0.6 74.5 ± 0.6 74.7 ± 0.4 75.0 ± 0.4 75.4 ± 0.4 75.5 ± 0.2
Mouth Slightly Open 33.4 ± 0.1 33.7 ± 0.4 33.9 ± 0.4 34.2 ± 0.3 34.5 ± 0.3 35.0 ± 0.4 35.1 ± 0.6
Mustache 26.7 ± 1.8 27.0 ± 0.7 27.1 ± 0.9 26.7 ± 1.2 27.4 ± 1.4 26.0 ± 0.8 30.0 ± 3.4
Narrow Eyes 5.6 ± 0.3 6.3 ± 0.3 6.4 ± 0.4 6.5 ± 0.4 6.4 ± 0.3 6.6 ± 0.6 7.0 ± 0.6
No Beard 64.9 ± 0.5 65.8 ± 0.5 65.8 ± 0.4 66.4 ± 0.6 67.1 ± 0.3 67.6 ± 0.6 67.3 ± 0.6
Oval Face 16.3 ± 0.5 18.6 ± 0.6 19.3 ± 0.7 20.4 ± 0.7 21.5 ± 0.5 21.4 ± 0.3 24.7 ± 1.1
Pale Skin 3.7 ± 0.2 3.7 ± 0.3 3.8 ± 0.2 4.0 ± 0.2 4.2 ± 0.2 4.3 ± 0.2 4.5 ± 0.4
Pointy Nose 15.7 ± 0.5 17.4 ± 0.5 18.3 ± 0.5 19.7 ± 0.6 22.1 ± 0.6 23.9 ± 0.5 27.1 ± 0.5
Receding Hairline 17.4 ± 0.8 17.6 ± 0.9 18.4 ± 1.1 19.0 ± 0.8 20.4 ± 0.6 20.8 ± 0.6 22.5 ± 1.2
Rosy Cheeks 18.2 ± 1.1 18.9 ± 1.2 18.8 ± 1.2 19.9 ± 0.4 20.9 ± 0.9 21.7 ± 1.4 24.5 ± 0.7
Sideburns 38.8 ± 1.2 39.8 ± 1.3 40.3 ± 1.6 40.9 ± 1.7 42.6 ± 1.6 45.0 ± 2.3 49.6 ± 2.8
Smiling 63.1 ± 0.5 64.6 ± 0.6 65.6 ± 0.6 67.0 ± 0.6 68.7 ± 0.2 69.8 ± 0.3 72.5 ± 1.0
Straight Hair 17.0 ± 0.6 17.6 ± 0.4 17.6 ± 0.5 18.0 ± 0.4 18.1 ± 0.4 18.5 ± 0.3 17.7 ± 0.8
Wavy Hair 28.4 ± 0.4 29.0 ± 0.5 29.2 ± 0.6 29.4 ± 0.2 29.3 ± 0.6 29.9 ± 0.5 29.6 ± 0.3
Wearing Earrings 25.1 ± 0.7 25.8 ± 0.7 25.8 ± 0.4 26.3 ± 0.5 27.2 ± 0.2 28.0 ± 0.6 28.8 ± 0.4
Wearing Hat 12.2 ± 0.2 12.3 ± 0.2 12.5 ± 0.3 12.7 ± 0.2 12.7 ± 0.2 12.8 ± 0.4 12.6 ± 0.4
Wearing Lipstick 80.1 ± 0.2 80.5 ± 0.4 80.6 ± 0.3 81.0 ± 0.1 81.3 ± 0.1 81.4 ± 0.2 81.8 ± 0.3
Wearing Necklace 12.4 ± 0.6 13.7 ± 0.9 14.2 ± 1.3 14.8 ± 1.1 14.8 ± 1.0 13.3 ± 0.9 9.7 ± 1.3
Wearing Necktie 21.4 ± 0.9 20.8 ± 1.0 21.1 ± 0.8 21.6 ± 0.6 21.8 ± 0.8 23.1 ± 0.5 24.2 ± 0.6
Young 39.2 ± 0.5 40.2 ± 0.4 41.3 ± 0.5 42.9 ± 0.6 45.7 ± 0.3 46.8 ± 0.7 46.4 ± 0.5
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Table J.5. ’Male’ Bias Amplification, Joint CelebA training, ResNet18

Sparsity 0 80 90 95 98 99 99.5
Attribute

5 o Clock Shadow – – – – – – –
Arched Eyebrows 2.3 ± 0.4 2.4 ± 0.2 2.4 ± 0.2 2.7 ± 0.3 3.0 ± 0.5 3.8 ± 0.5 5.1 ± 0.2
Attractive -0.0 ± 0.3 0.1 ± 0.2 0.3 ± 0.2 0.6 ± 0.2 0.8 ± 0.2 1.0 ± 0.3 1.6 ± 0.2
Bags Under Eyes 1.9 ± 0.5 2.4 ± 0.8 3.1 ± 0.5 4.1 ± 0.2 5.4 ± 0.9 6.6 ± 0.6 8.8 ± 0.8
Bald – – – – – – –
Bangs -0.1 ± 0.2 -0.0 ± 0.4 0.1 ± 0.4 0.3 ± 0.1 0.1 ± 0.2 0.1 ± 0.2 -0.3 ± 0.2
Big Lips 2.4 ± 0.2 1.7 ± 0.6 1.9 ± 0.5 2.0 ± 0.8 -0.1 ± 0.8 -2.1 ± 1.4 -5.5 ± 2.3
Big Nose 3.3 ± 0.7 3.8 ± 0.7 4.4 ± 0.2 5.4 ± 1.0 7.9 ± 1.2 10.0 ± 0.7 12.1 ± 0.4
Black Hair 0.1 ± 0.5 -0.0 ± 0.4 0.3 ± 0.5 0.2 ± 0.4 0.3 ± 0.4 0.3 ± 0.6 0.2 ± 0.5
Blond Hair 2.4 ± 0.4 2.4 ± 0.3 2.4 ± 0.3 2.8 ± 0.2 3.1 ± 0.3 3.1 ± 0.3 3.6 ± 0.2
Blurry 0.9 ± 0.6 0.3 ± 1.0 0.3 ± 1.0 -0.7 ± 1.3 -0.9 ± 1.5 -1.4 ± 0.7 -1.4 ± 0.9
Brown Hair 0.2 ± 0.4 -0.4 ± 0.3 0.3 ± 0.1 0.3 ± 0.5 0.5 ± 0.3 1.0 ± 0.2 1.1 ± 0.5
Bushy Eyebrows 3.4 ± 0.6 5.0 ± 0.7 5.8 ± 0.7 5.6 ± 0.5 7.3 ± 0.6 8.2 ± 0.9 8.4 ± 1.5
Chubby 4.3 ± 0.6 4.4 ± 0.5 4.9 ± 1.0 5.1 ± 0.8 6.5 ± 0.4 8.0 ± 0.8 10.8 ± 0.1
Double Chin 5.3 ± 0.7 4.8 ± 0.8 5.5 ± 1.3 6.0 ± 1.1 7.2 ± 1.4 8.1 ± 0.9 10.3 ± 0.2
Eyeglasses 0.2 ± 0.1 0.2 ± 0.2 0.1 ± 0.1 -0.0 ± 0.2 0.0 ± 0.1 -0.0 ± 0.2 0.1 ± 0.2
Goatee – – – – – – –
Gray Hair 3.6 ± 1.0 3.6 ± 1.0 4.1 ± 0.8 3.8 ± 0.5 4.4 ± 0.8 4.9 ± 0.8 6.1 ± 0.5
Heavy Makeup 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0
High Cheekbones -0.4 ± 0.5 -0.4 ± 0.4 -0.2 ± 0.3 -0.0 ± 0.4 -0.0 ± 0.4 0.2 ± 0.3 -0.1 ± 0.3
Male – – – – – – –
Mouth Slightly Open -0.1 ± 0.2 -0.2 ± 0.1 -0.2 ± 0.0 -0.1 ± 0.1 -0.1 ± 0.1 -0.0 ± 0.0 -0.1 ± 0.1
Mustache – – – – – – –
Narrow Eyes – – – – – – –
No Beard -0.6 ± 0.2 -0.5 ± 0.2 -0.5 ± 0.2 -0.5 ± 0.2 -0.5 ± 0.2 -0.6 ± 0.2 -0.7 ± 0.3
Oval Face 4.2 ± 0.6 4.3 ± 0.7 5.1 ± 0.4 6.3 ± 0.5 9.8 ± 0.7 13.3 ± 0.6 17.0 ± 0.9
Pale Skin 1.5 ± 1.2 1.4 ± 1.1 2.2 ± 1.0 3.4 ± 0.8 4.9 ± 0.7 4.9 ± 0.6 5.3 ± 0.8
Pointy Nose 4.5 ± 0.5 5.8 ± 0.5 6.5 ± 0.6 7.7 ± 0.2 9.4 ± 0.5 11.5 ± 0.4 13.9 ± 0.3
Receding Hairline 3.3 ± 0.4 3.2 ± 0.8 4.1 ± 1.1 5.5 ± 1.0 5.9 ± 1.5 7.0 ± 0.6 10.1 ± 1.4
Rosy Cheeks – – – – – – –
Sideburns – – – – – – –
Smiling -0.2 ± 0.2 -0.3 ± 0.2 -0.2 ± 0.1 -0.1 ± 0.1 -0.1 ± 0.1 -0.2 ± 0.2 0.2 ± 0.1
Straight Hair 1.7 ± 1.0 2.2 ± 0.5 2.3 ± 0.8 3.0 ± 0.4 2.9 ± 0.5 2.5 ± 0.7 1.7 ± 1.2
Wavy Hair 4.7 ± 0.3 4.7 ± 0.1 4.8 ± 0.2 5.1 ± 0.3 5.6 ± 0.1 6.1 ± 0.3 6.6 ± 0.3
Wearing Earrings 1.6 ± 0.3 1.8 ± 0.2 1.7 ± 0.2 2.0 ± 0.2 2.4 ± 0.1 2.6 ± 0.2 3.1 ± 0.1
Wearing Hat 0.3 ± 0.9 0.3 ± 0.7 0.5 ± 0.6 0.5 ± 0.2 0.9 ± 0.8 1.3 ± 0.6 1.9 ± 0.3
Wearing Lipstick -0.0 ± 0.1 0.1 ± 0.1 0.1 ± 0.0 0.1 ± 0.1 0.1 ± 0.0 0.1 ± 0.1 0.0 ± 0.1
Wearing Necklace 1.7 ± 0.2 2.4 ± 0.2 2.7 ± 0.3 3.3 ± 0.4 3.9 ± 0.2 3.8 ± 0.1 4.3 ± 0.2
Wearing Necktie – – – – – – –
Young 0.1 ± 0.2 0.1 ± 0.2 0.2 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 0.3 ± 0.2 0.1 ± 0.2
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Table J.6. ’Young’ Bias Amplification, Joint CelebA training, ResNet18

Sparsity 0 80 90 95 98 99 99.5
Attribute

5 o Clock Shadow – – – – – – –
Arched Eyebrows 0.1 ± 0.2 0.0 ± 0.2 -0.0 ± 0.3 0.2 ± 0.1 0.2 ± 0.2 0.3 ± 0.1 0.7 ± 0.2
Attractive 0.1 ± 0.1 0.4 ± 0.3 0.6 ± 0.1 0.8 ± 0.2 1.2 ± 0.1 1.1 ± 0.2 0.7 ± 0.1
Bags Under Eyes 1.4 ± 0.6 1.9 ± 0.6 2.1 ± 0.4 3.0 ± 0.8 3.7 ± 0.5 4.7 ± 0.8 6.3 ± 0.7
Bald -1.3 ± 0.5 -1.3 ± 0.4 -1.6 ± 0.8 -1.7 ± 1.1 -2.3 ± 0.3 -1.7 ± 0.5 -1.3 ± 0.6
Bangs 0.3 ± 0.4 0.3 ± 0.2 0.2 ± 0.2 0.0 ± 0.4 0.0 ± 0.2 0.0 ± 0.3 -0.2 ± 0.3
Big Lips 2.6 ± 0.4 2.1 ± 0.2 2.0 ± 0.3 2.0 ± 0.4 1.6 ± 0.6 1.6 ± 0.6 2.1 ± 0.4
Big Nose 1.9 ± 0.7 2.7 ± 0.8 2.9 ± 0.8 3.5 ± 0.3 5.4 ± 0.5 7.3 ± 0.7 8.6 ± 1.1
Black Hair -0.6 ± 0.4 -0.5 ± 0.1 -0.7 ± 0.2 -0.4 ± 0.2 -0.4 ± 0.2 -0.3 ± 0.2 0.0 ± 0.3
Blond Hair 1.0 ± 0.3 1.1 ± 0.3 1.0 ± 0.3 1.0 ± 0.2 0.8 ± 0.4 0.6 ± 0.3 0.4 ± 0.2
Blurry -1.1 ± 0.5 -0.4 ± 0.6 -0.8 ± 0.6 -0.4 ± 1.0 -0.5 ± 1.1 -0.1 ± 0.6 -0.2 ± 0.8
Brown Hair -0.2 ± 0.2 -0.3 ± 0.3 -0.2 ± 0.3 -0.0 ± 0.3 0.0 ± 0.3 0.2 ± 0.3 0.2 ± 0.6
Bushy Eyebrows 0.5 ± 0.4 0.4 ± 0.4 0.3 ± 0.4 0.2 ± 0.4 0.0 ± 0.3 0.2 ± 0.2 0.6 ± 0.4
Chubby 0.8 ± 1.2 2.6 ± 0.9 2.9 ± 1.0 3.3 ± 1.2 3.8 ± 1.0 4.4 ± 0.6 6.1 ± 1.1
Double Chin 4.0 ± 0.6 4.6 ± 0.9 5.3 ± 1.4 5.5 ± 1.0 5.6 ± 1.2 6.3 ± 0.5 7.8 ± 1.6
Eyeglasses -0.4 ± 0.3 -0.3 ± 0.2 -0.2 ± 0.3 -0.3 ± 0.1 -0.2 ± 0.2 -0.3 ± 0.1 -0.2 ± 0.1
Goatee -1.6 ± 0.7 -2.0 ± 0.9 -2.4 ± 0.9 -1.7 ± 0.7 -1.1 ± 1.1 0.7 ± 0.4 1.4 ± 0.9
Gray Hair 1.6 ± 0.6 1.8 ± 0.3 1.8 ± 0.4 1.7 ± 0.5 1.5 ± 0.2 1.2 ± 0.3 0.7 ± 0.5
Heavy Makeup -0.4 ± 0.1 -0.3 ± 0.2 -0.2 ± 0.1 -0.2 ± 0.1 -0.1 ± 0.1 0.0 ± 0.1 0.1 ± 0.0
High Cheekbones – – – – – – –
Male 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.1 0.5 ± 0.1 0.5 ± 0.1
Mouth Slightly Open – – – – – – –
Mustache 1.5 ± 1.6 1.2 ± 0.5 2.2 ± 1.7 4.2 ± 1.1 4.6 ± 1.5 7.0 ± 1.4 10.0 ± 3.9
Narrow Eyes 0.8 ± 0.8 1.6 ± 0.7 2.0 ± 0.6 2.4 ± 0.8 1.8 ± 1.0 1.7 ± 1.0 2.0 ± 1.1
No Beard -0.2 ± 0.0 -0.2 ± 0.0 -0.2 ± 0.1 -0.2 ± 0.0 -0.2 ± 0.0 -0.2 ± 0.0 -0.2 ± 0.0
Oval Face 1.1 ± 0.6 1.6 ± 0.7 1.7 ± 0.7 2.9 ± 0.5 5.4 ± 0.7 8.6 ± 0.5 10.0 ± 0.8
Pale Skin 2.0 ± 0.7 1.7 ± 0.6 2.0 ± 0.7 2.0 ± 0.4 3.1 ± 0.5 3.7 ± 0.4 4.0 ± 0.4
Pointy Nose 2.1 ± 0.3 2.7 ± 0.9 2.7 ± 0.6 3.3 ± 0.6 4.0 ± 0.6 4.5 ± 0.5 4.7 ± 0.3
Receding Hairline 3.4 ± 1.1 3.3 ± 1.3 4.9 ± 0.5 5.0 ± 1.1 5.9 ± 1.2 7.0 ± 0.6 10.5 ± 0.3
Rosy Cheeks -0.0 ± 0.5 -0.1 ± 0.4 0.3 ± 0.4 0.0 ± 0.8 0.2 ± 0.9 0.1 ± 0.9 -0.3 ± 0.6
Sideburns -2.5 ± 0.6 -1.8 ± 1.1 -1.9 ± 1.1 -1.8 ± 1.2 -1.7 ± 0.7 -2.1 ± 0.8 -2.3 ± 0.7
Smiling – – – – – – –
Straight Hair 1.4 ± 0.4 1.7 ± 0.4 2.1 ± 0.7 2.5 ± 0.3 2.6 ± 0.5 3.7 ± 0.2 4.8 ± 0.5
Wavy Hair -0.1 ± 0.1 -0.3 ± 0.2 -0.3 ± 0.1 -0.2 ± 0.2 0.1 ± 0.2 0.2 ± 0.2 0.7 ± 0.2
Wearing Earrings 0.2 ± 0.3 0.1 ± 0.1 -0.0 ± 0.2 0.0 ± 0.4 0.1 ± 0.5 -0.1 ± 0.3 0.3 ± 0.1
Wearing Hat -0.1 ± 0.5 -0.1 ± 0.3 -0.2 ± 0.2 -0.0 ± 0.4 -0.3 ± 0.2 -0.6 ± 0.2 -1.1 ± 0.4
Wearing Lipstick -0.1 ± 0.1 -0.1 ± 0.1 -0.1 ± 0.1 -0.1 ± 0.1 -0.1 ± 0.1 0.0 ± 0.1 0.1 ± 0.1
Wearing Necklace -2.2 ± 0.9 -5.1 ± 1.1 -8.0 ± 0.9 -11.2 ± 1.1 -21.3 ± 1.8 -30.5 ± 2.4 -34.4 ± 3.3
Wearing Necktie 4.6 ± 1.6 3.8 ± 0.7 4.3 ± 1.0 4.1 ± 0.2 4.8 ± 1.1 5.6 ± 0.6 8.7 ± 1.3
Young – – – – – – –
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Table J.7. ’Chubby’ Bias Amplification, Joint CelebA training, ResNet18

Sparsity 0 80 90 95 98 99 99.5
Attribute

5 o Clock Shadow 1.1 ± 0.3 1.0 ± 0.3 1.3 ± 0.4 1.5 ± 0.2 1.6 ± 0.2 1.6 ± 0.2 1.7 ± 0.3
Arched Eyebrows 0.4 ± 0.0 0.4 ± 0.1 0.4 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.4 ± 0.1
Attractive -0.1 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.0 -0.0 ± 0.1 -0.0 ± 0.0 -0.0 ± 0.0 -0.1 ± 0.0
Bags Under Eyes -0.1 ± 0.2 -0.1 ± 0.3 0.1 ± 0.3 0.5 ± 0.2 1.2 ± 0.4 1.8 ± 0.2 2.4 ± 0.1
Bald -2.0 ± 1.2 -2.0 ± 1.8 -2.3 ± 0.8 -2.1 ± 0.4 -3.2 ± 0.8 -3.1 ± 0.1 -2.4 ± 0.9
Bangs -0.2 ± 0.1 -0.2 ± 0.1 -0.1 ± 0.1 -0.1 ± 0.0 -0.1 ± 0.1 -0.1 ± 0.1 -0.1 ± 0.1
Big Lips – – – – – – –
Big Nose 0.7 ± 0.6 0.9 ± 0.8 1.2 ± 0.7 1.6 ± 0.6 2.8 ± 0.6 4.1 ± 0.6 5.0 ± 0.8
Black Hair – – – – – – –
Blond Hair 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.0 0.4 ± 0.0 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.0
Blurry 1.2 ± 0.7 1.0 ± 0.3 1.1 ± 0.3 1.4 ± 0.4 1.4 ± 0.6 1.3 ± 0.3 1.0 ± 0.5
Brown Hair 0.0 ± 0.1 0.0 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.0 0.0 ± 0.1
Bushy Eyebrows – – – – – – –
Chubby – – – – – – –
Double Chin -4.1 ± 1.7 -2.3 ± 2.5 -1.1 ± 1.2 0.6 ± 0.9 2.3 ± 1.9 3.3 ± 1.5 1.8 ± 0.7
Eyeglasses -0.2 ± 0.2 -0.2 ± 0.1 -0.2 ± 0.1 -0.2 ± 0.1 -0.2 ± 0.1 -0.2 ± 0.1 -0.1 ± 0.1
Goatee -0.5 ± 0.6 -0.3 ± 0.2 -0.8 ± 0.4 -0.2 ± 0.8 -0.2 ± 0.4 0.7 ± 0.5 2.0 ± 0.4
Gray Hair -2.8 ± 0.7 -2.7 ± 0.7 -2.3 ± 0.7 -1.9 ± 0.6 -1.7 ± 0.4 -1.1 ± 0.5 -0.0 ± 0.8
Heavy Makeup -0.1 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.0
High Cheekbones 0.2 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.0 0.3 ± 0.1 0.4 ± 0.1
Male -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0
Mouth Slightly Open 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.1
Mustache -3.7 ± 0.8 -3.5 ± 0.2 -2.7 ± 1.6 -2.9 ± 0.8 -1.1 ± 0.9 2.6 ± 1.6 6.7 ± 2.5
Narrow Eyes -0.0 ± 0.4 0.4 ± 0.4 0.6 ± 0.4 1.1 ± 0.2 1.1 ± 0.4 1.7 ± 0.6 1.9 ± 0.4
No Beard -0.0 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.0 -0.0 ± 0.0 -0.1 ± 0.0
Oval Face -0.8 ± 0.2 -1.0 ± 0.1 -1.2 ± 0.3 -1.0 ± 0.2 -0.8 ± 0.4 -0.1 ± 0.2 0.3 ± 0.2
Pale Skin 0.4 ± 0.3 0.3 ± 0.3 0.4 ± 0.1 0.3 ± 0.3 0.9 ± 0.3 1.2 ± 0.2 1.1 ± 0.3
Pointy Nose 0.3 ± 0.2 0.4 ± 0.1 0.5 ± 0.1 0.6 ± 0.0 0.7 ± 0.0 0.8 ± 0.1 0.9 ± 0.0
Receding Hairline 0.5 ± 0.5 0.6 ± 0.9 1.0 ± 0.6 1.4 ± 0.4 2.1 ± 0.7 2.6 ± 0.7 4.5 ± 0.8
Rosy Cheeks 0.8 ± 0.2 0.8 ± 0.3 0.8 ± 0.2 0.9 ± 0.2 0.8 ± 0.1 0.5 ± 0.1 0.4 ± 0.2
Sideburns -1.1 ± 0.4 -0.8 ± 0.3 -0.7 ± 0.6 -1.0 ± 0.6 -0.8 ± 0.1 -0.6 ± 0.5 -0.3 ± 0.6
Smiling 0.2 ± 0.1 0.2 ± 0.0 0.2 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.1 0.2 ± 0.1
Straight Hair 0.6 ± 0.2 0.6 ± 0.1 0.7 ± 0.3 0.8 ± 0.2 1.0 ± 0.2 1.1 ± 0.3 1.4 ± 0.2
Wavy Hair 0.4 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.4 ± 0.1
Wearing Earrings 0.1 ± 0.2 0.1 ± 0.2 0.1 ± 0.2 0.1 ± 0.1 0.1 ± 0.0 0.2 ± 0.1 0.4 ± 0.0
Wearing Hat -0.1 ± 0.3 0.0 ± 0.2 0.1 ± 0.2 0.2 ± 0.3 0.1 ± 0.1 -0.0 ± 0.2 -0.1 ± 0.3
Wearing Lipstick -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 0.0 ± 0.0
Wearing Necklace 0.0 ± 0.2 -0.3 ± 0.2 -0.5 ± 0.3 -0.4 ± 0.4 -1.0 ± 0.5 -1.4 ± 0.3 -3.5 ± 3.7
Wearing Necktie 1.5 ± 0.2 1.7 ± 0.7 2.0 ± 0.7 1.8 ± 0.7 1.5 ± 0.6 2.8 ± 0.4 4.2 ± 0.5
Young -0.5 ± 0.1 -0.5 ± 0.0 -0.4 ± 0.0 -0.4 ± 0.0 -0.3 ± 0.0 -0.3 ± 0.1 -0.3 ± 0.1
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Table J.8. ’Pale Skin’ Bias Amplification, Joint CelebA training, ResNet18

Sparsity 0 80 90 95 98 99 99.5
Attribute

5 o Clock Shadow 0.0 ± 0.1 -0.0 ± 0.1 -0.0 ± 0.1 0.0 ± 0.2 0.0 ± 0.1 -0.0 ± 0.1 -0.0 ± 0.1
Arched Eyebrows -1.0 ± 0.2 -1.1 ± 0.2 -0.9 ± 0.1 -0.9 ± 0.1 -0.8 ± 0.1 -0.9 ± 0.1 -1.0 ± 0.2
Attractive 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 0.4 ± 0.0 0.4 ± 0.1
Bags Under Eyes 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.2 0.6 ± 0.1 0.5 ± 0.1 0.7 ± 0.1 0.9 ± 0.1
Bald – – – – – – –
Bangs -0.1 ± 0.1 -0.1 ± 0.2 -0.1 ± 0.1 -0.1 ± 0.1 -0.0 ± 0.1 -0.1 ± 0.2 -0.0 ± 0.1
Big Lips -0.7 ± 0.2 -0.8 ± 0.2 -0.7 ± 0.2 -0.6 ± 0.3 -0.9 ± 0.3 -1.9 ± 0.3 -2.3 ± 0.1
Big Nose 0.6 ± 0.1 0.8 ± 0.2 0.8 ± 0.1 0.8 ± 0.1 1.1 ± 0.1 1.3 ± 0.0 1.6 ± 0.1
Black Hair 0.0 ± 0.1 -0.2 ± 0.2 -0.0 ± 0.2 -0.0 ± 0.1 0.1 ± 0.1 0.0 ± 0.1 0.1 ± 0.1
Blond Hair 0.1 ± 0.1 -0.1 ± 0.1 0.0 ± 0.1 0.2 ± 0.2 0.2 ± 0.1 0.4 ± 0.2 0.2 ± 0.1
Blurry 0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.2 0.1 ± 0.2 0.1 ± 0.2 0.3 ± 0.2 0.1 ± 0.2
Brown Hair -0.9 ± 0.2 -0.8 ± 0.2 -0.7 ± 0.1 -0.7 ± 0.1 -0.7 ± 0.1 -0.7 ± 0.2 -0.9 ± 0.2
Bushy Eyebrows -0.1 ± 0.2 0.1 ± 0.2 0.2 ± 0.2 0.2 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.5 ± 0.1
Chubby 0.2 ± 0.1 0.1 ± 0.4 0.1 ± 0.2 0.1 ± 0.2 0.2 ± 0.1 0.3 ± 0.1 0.6 ± 0.1
Double Chin 0.5 ± 0.2 0.3 ± 0.3 0.4 ± 0.3 0.5 ± 0.2 0.8 ± 0.1 0.7 ± 0.1 0.7 ± 0.2
Eyeglasses -0.0 ± 0.1 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
Goatee – – – – – – –
Gray Hair 0.1 ± 0.4 0.1 ± 0.2 -0.1 ± 0.2 -0.1 ± 0.2 -0.4 ± 0.3 -0.4 ± 0.1 -0.4 ± 0.1
Heavy Makeup 0.5 ± 0.0 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.1 0.6 ± 0.0
High Cheekbones -0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.1 0.0 ± 0.1 -0.0 ± 0.0
Male 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.0 0.1 ± 0.1 0.1 ± 0.0 0.1 ± 0.0 0.2 ± 0.0
Mouth Slightly Open -0.1 ± 0.1 -0.1 ± 0.0 -0.2 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.1 -0.1 ± 0.0 -0.1 ± 0.0
Mustache – – – – – – –
Narrow Eyes – – – – – – –
No Beard -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
Oval Face -1.3 ± 0.1 -1.4 ± 0.1 -1.4 ± 0.1 -1.4 ± 0.2 -1.4 ± 0.2 -1.7 ± 0.3 -1.4 ± 0.5
Pale Skin – – – – – – –
Pointy Nose – – – – – – –
Receding Hairline 0.8 ± 0.1 0.7 ± 0.2 0.9 ± 0.3 1.0 ± 0.2 1.0 ± 0.2 1.2 ± 0.2 1.3 ± 0.1
Rosy Cheeks – – – – – – –
Sideburns – – – – – – –
Smiling -0.2 ± 0.0 -0.2 ± 0.0 -0.2 ± 0.0 -0.2 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.0
Straight Hair -0.1 ± 0.2 0.0 ± 0.2 0.1 ± 0.2 -0.2 ± 0.3 -0.4 ± 0.3 -0.1 ± 0.3 0.1 ± 0.3
Wavy Hair -0.1 ± 0.1 -0.1 ± 0.1 -0.2 ± 0.2 -0.1 ± 0.1 -0.1 ± 0.1 -0.1 ± 0.1 -0.1 ± 0.1
Wearing Earrings 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.2 0.3 ± 0.1 0.3 ± 0.1 0.4 ± 0.1 0.4 ± 0.2
Wearing Hat 0.8 ± 0.3 0.8 ± 0.2 1.0 ± 0.2 0.9 ± 0.2 1.0 ± 0.3 1.0 ± 0.1 1.2 ± 0.1
Wearing Lipstick -0.1 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.1 -0.1 ± 0.0 -0.1 ± 0.0 -0.0 ± 0.0 0.0 ± 0.1
Wearing Necklace – – – – – – –
Wearing Necktie 0.3 ± 0.3 0.3 ± 0.2 0.4 ± 0.2 0.2 ± 0.2 0.2 ± 0.2 0.3 ± 0.1 0.4 ± 0.2
Young -0.0 ± 0.0 -0.1 ± 0.1 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.1 ± 0.0
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K. Results on the Animals with Attributes Dataset
In our efforts of investigating the exacerbation of bias in sparse models, we further validate our results on CelebA on the

Animals with Attributes (AwA2) [51] dataset, which consists of 37 322 images of animals belonging to 50 different classes.
Each class is annotated using 85 binary attributes, which indicate the presence or absence of different characteristics in each
species. We note that AwA2 is not as suited for the study of bias as CelebA, for two important reasons: first, there is a reduced
sociological incentive of studying bias, compared to a dataset consisting of human subjects; furthermore, the attributes are
labelled at species level, rather than individually per sample, which makes it more difficult to disambiguate between different
sources of bias. Nonetheless, we believe AwA2 still serves as a useful validation for our findings on CelebA.

In our experiments with AwA2, we train dense and GMP-RI models at {80%, 90%, 95%, 98%, 99%, 99.5%} sparsities to
predict the 85 binary attributes. For both the dense and sparse models we use the same training setup and hyperparameters
as for CelebA. We follow the original dataset split [51], where the train and test set classes are disjoint: 40 classes are used
for training and validation, and the remaining 10 we leave for testing. We follow a different split for train and validation,
compared to [51]; namely, we randomly select 80% of the samples for training and the remaining 20% for validation. Our
choice is motivated by the fact that further splitting the classes between train and validation would make it more likely to
exclude certain attributes from the train set; this would be detrimental to our analysis, as we want to measure the presence of
bias on certain attributes. The categories under which it is most sensible to study Categorical bias are not well-established
for Animals with Attributes; here we use Furry, Bipedal, Domestic, and Water, where the last refers to the animal’s natural
habitat.

Our results are shown in Figure K.21. We observe a degradation in AUC scores for models at ≥ 98%sparsity, whereas
the accuracy does not decrease significantly even at 99.5% sparsity. Moreover, the fraction of uncertain samples increases
substantially at ≥ 98% sparsity, and roughly doubles compared to the dense model at 99.5% sparsity. Other metrics, such as
TCB or interdependence, decrease slightly with sparsity, compared to the dense model; however, in the case of Systematic
(and, to a large extent, Categorical) bias, the fact that the attributes are labeled at the species level - and therefore the model
need only learn the species to also learn all the labels - makes this result difficult to interpret. We further study the amplifi-
cation of bias with sparsity, by following a similar approach to the one on CelebA: namely, we select four category identity
attributes with respect to which we compute bias amplification on the remaining attributes. On all attributes considered we
did not observe a significant increase in bias induced by sparsity. Generally, our observations on AwA2 seem to validate our
findings from CelebA: good quality models even at high sparsity, and substantially increased uncertainty with sparsity.
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Figure K.21. [Animals With Attributes2 / ResNet18 / GMP-RI] Accuracy and Systematic Bias metrics (TCB, ECE, Interdependence) of
ResNet18 models jointly trained on all AwA2 attributes. The thick black line denotes the mean value at each sparsity level.
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Metric Dense Sparsity (%)
80 90 95 98

ID F1 Score (%) 50.1±0.3 51.6±0.6 50.1±1.8 48.2±1.6 43.7±1.2
OOD F1 Score (%) 38.5±1.3 39.8± 0.7 38.9 ± 1.9 37.2 ± 1.6 33.4 ±1.3

ID Precision (%) 54.1±0.8 55.3±0.4 54.6±2.2 52.7±2.5 49.3±1.9
OOD Precision (%) 41.5±0.8 43.2±0.4 43.4 ± 2.2 41.5 ±2.5 38.2 ±1.9

ID Recall (%) 53.1±0.6 53.3±0.7 51.2±1.7 50.4±2.9 45.4±5.6
OOD Recall (%) 39.6±0.7 40.1± 0.7 40.0 ± 1.6 38.6 ± 1.3 35.5 ±1.7

Table L.9. Average ID and OOD Test Accuracy and for iWildcam models

L. iWildcam Results
The iWildCam dataset [3] is a set of images collected from wildlife-spotting camera traps provided by the Wildlife Con-

servation Society (WCS). Each image contains at least one animal, and is annotated with a single animal label (there is an
extension of this dataset containing unlabelled images, but we do not use it here). In total, the dataset contains 203 029
labelled images, divided between a training set, in-distribution (ID) validation and test sets, and out-of-distribution(OOD)
validation and test sets. The train (129 809 images), ID validation (7 134 images), and ID test (8154 images) sets were
obtained by splitting the photographs from 243 cameras, while the OOD validation (14 961 images) and test (42 791 images)
sets were obtained using images from an additional 32 and 48 cameras, respectively. The iWildCam dataset contains images
of 182 different animals and is highly unbalanced in terms of class sizes, with some classes having less than 10 images in
the training data, and some over 1000. For this reason, the dataset is frequently used to study rare-subgroup performance, as
in [3].

We study compression-induced bias on the iWildcam dataset by measuring the performance degradation for rarer classes.
It is postulated in, e.g, [29] that features that distinguish rare examples may be cannibalized by larger classes, leading to
degraded performance for those classes. To conduct our study, we trained models at 0%, 80%, 90%, 95%, and 98% sparsity.
All models used the training settings and hyperparameters (including data augmentations, batch size, epoch number, opti-
mizer, and learning rates) used in [3] for plain ERM. The pruning was done using the GMP-RI variant of Global Magnitude
Pruning, with pruning beginning at epoch 2 and ending at epoch 11, with another 2 epochs afterwards for fine-tuning. We
use the metrics of Macro Precision, Recall, and F1-Score used in [3]; these metrics assign equal weight to each class when
computing the aggregate values. Additionally, we measure the softmax entropy across classes of the predictions as a measure
of uncertainty. Ths measure is computed by first computing the softmax per-class prediction for each example,

σ(z)i =
ezi∑
j e

zj
,

where the sum is taken over all classes. As these values sum up to 1 for each example, they may be loosely interpreted as the
probabilities for each class; thus, their entropy

H(X) = −
∑
i

σ(xi) log(σ(xi))

may be interpreted as a measure of uncertainty as to the correct class (where the sum is once again taken over that example’s
predictions for every class). To stay ideologically consistent with the Macro metrics used to evaluate accuracy, we compute
the average entropy across examples by upweighting rare class examples, so that each class has equal weight in determining
the average entropy.

We report our accuracy and bias results in Table L.9. Following convention, we report Precision, Recall, and F1-score in
%, even though F1-score is a hyperbolic mean of the first two. We observe that the Macro F1-Score, precision, and recall stay
fairly constant between Dense, 80%, and 90% sparse models, but then decay fairly rapidly after that, with a ID F1-Score drop
of 6.4% between 90% sparse and 98% sparse models =, and an OOD F1-Score drop of 5.4%. We also note that precision
and recall are fairly well balanced in the models. The dense results are a fairly close match to the results obtained in [3]; we
attribute the difference primarily to the choice of random seed.

We additionally break down the dense and sparse F1-Score, Precision, and Recall by the size of the class in the test data, as
shown in Figure L.22. We observe that class size has a very large impact on all three metrics, with very small classes having
extremely low performance as compared to larger classes. We further observe that, outside of the very low-performant 0-5
class size, sparsity disproportionately affects the performance of smaller classes, with F1-Score decreasing substantially with
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sparsity for classes containing 6-50 examples, but remaining nearly constant for classes of over 50 elements on ID test data.
On OOD data, the performance decreases with sparsity on all class sizes (again, over 5 examples), but the decrease is greater
on smaller class sizes. This experiments provides further evidence for the hypothesis outlined in [29] that ERM with sparsity
can sacrifice smaller group performance to preserve accuracy on larger groups. However, we note that on the ID test data, we
do not see this effect until the higher sparsity levels of 95% and 98%, where overall F1 score also starts to drop.

The entropy of the models is shown in Figure L.23. We observe that the entropy of the models increases with sparsity
when measured on the OOD test set; on the ID test set, the entropy also increases, but only for high-sparsity models where
the accuracy is also lower, and the smaller classes’ performance is largely decayed. This adds confirmatory evidence that
increased uncertainty is related to increased bias as sparsity increases.
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Figure L.22. [iWildCam / ResNet18 / GMP-RI] Macro F1-Score, Precision, and Recall by sparsity and size of test class.
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Figure L.23. [iWildCam / ResNet18 / GMP-RI] Average prediction Entropy across sparsities.
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M. Example Viewer
As part of our contributions, we provide a simple UI tool that allows the people working with a dataset, for example

engineers or scientists who build models, to quickly and easily examine a small subset of the data. This tool is not meant to
be a replacement for external review, such as example relabeling, or an audit of the data collection pipeline; if these tools are
available than we strongly recommend they be used; however, they can be expensive and difficult to implement; our Example
Viewer can serve as a minimum check in case that more extensive review is impossible. Further, our tool relies primarily on
random sampling to choose examples to examine. This may cause users of the tool to miss small effects in the data, which
may be surfaced by tools using more sophisticated error metrics to choose examples. We also note that other tools already
exist that allow for model and dataset exploration, for instance the Kaggle dataset viewer, or HuggingFace Hub. However,
unlike these tools, the Example Viewer runs locally. This design choice confers the advantage that neither data nor models
need be uploaded to a third-party tool; in addition to increased privacy, this means that it is very easy to integrate the Example
Viewer into a research pipeline, where tens or even hundreds of types models may be created as part of the study, and any
of them may be instantly auditable through the tool. Finally, the tool is web-based using the popular Flask framework, and
so can be run on a development machine (e.g., a laptop), on a development server while still allow for local viewing, or on
a world-open server as a regular website. We provide the tool as code, which requires only Python and a few additional
packages to run. It is available at [will be made available upon acceptance].

The tool has two core functionalities: viewing a random sample of positive and negative examples for a binary prediction
task, and viewing a random selection of true positives, false negatives, false positives, and true negatives for a binary pre-
diction task. These are further stratified by high and low certainty examples, using the definition in section 2.4. In all cases,
reloading the page produces a new random sample.

Despite its simplicity, a quick examination can yield clues to defects in the dataset. As case studies, we first present
the viewer showing positive and negative examples for the four CelebA identity categories - Male (Figure M.24), Young
(Figure M.25), Chubby (Figure M.26), and Pale Skin (Figure M.27). Then, we show three case studies that demonstrate
problems in the dataset that can easily be detected from the Example Viewer. Please note that in all illustrations, we avoid
cherry-picking by taking the screenshot of the very first returned random set. First, we demonstrate that the categories
”Wearing Necklace” (Figures M.32, M.33) and ”Wearing Necktie” (Figures M.30, M.31) often cannot be inferred from the
cropped version of the CelebA dataset, due to the fact that images are generally cropped at the neck, between the chin and the
clavicle. The cropping frequently removes or largely reduces direct visual evidence of the presence or absence of the attribute,
leaving the model to use other, correlated features, even though the human raters had access to the full version of the image.
Additionally, we show a view of positive and negative examples of the Wearing Lipstick attribute (Figures M.28, M.29).
These examples readily show that in many cases it is very difficult to determine whether the person in the photograph is
wearing lipstick by only examining the mouth. Rather, it appears far more likely that the human raters used other information
in the photograph, such as the gender, clothes, and other makeup of the subject as additional information in choosing the
correct label. relying heavily on this information can naturally lead to bias in the human labels, thus making any bias (and
accuracy) measurement of the predictions unreliable. A closer examination of the viewer output that also shows correct and
incorrect high and low-certainty predictions of the GMP-RI 80% sparse model on these attributes (Figures M.33, M.31, and
M.29) confirms this observation. Additionally, we note that in the case of Wearing Lipstick and Wearing Necklace, the high-
certainty True Negatives appear to skew much more heavily Male than do the low-certainty True Negatives, and the opposite
is true for Wearing Necktie. This suggests that the Male attribute and markers of this attribute are used heavily by the model
in order to make these predictions.
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Figure M.24. Examples of images that are Positive and Negative for Male.
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Figure M.25. Examples of images that are Positive and Negative for Young.
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Figure M.26. Examples of images that are Positive and Negative for Chubby.
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Figure M.27. Examples of images that are Positive and Negative for Pale Skin.
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Figure M.28. Examples of images that are Positive and Negative for Wearing Lipstick.

44



Figure M.29. Examples of 80% sparse model performance on images that are Positive and Negative for Wearing Lipstick.
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Figure M.30. Examples of images that are Positive and Negative for Wearing Necktie.
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Figure M.31. Examples of 80% sparse model performance on images that are Positive and Negative for Wearing Necktie.
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Figure M.32. Examples of images that are Positive and Negative for Wearing Necklace.
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Figure M.33. Examples of 80% sparse model performance on images that are Positive and Negative for Wearing Necklace.
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