2212.07048v3 [cs.CV] 27 Mar 2023

arxXiv

PD-Quant: Post-Training Quantization based on
Prediction Difference Metric

Jiawei Liu’*°® Lin Niu'*° Zhihang Yuan>'

! School of EIC, Huazhong University of Science & Technology

{jiaweiliu, linniu}@hust.edu.cn

hahnyuan@gmail.com

Xinggang Wang! Wenyu Liu®f
2 Houmo Al

dawei.yang@houmo.ai

Dawei Yang?

{xgwang, liuwy}@hust.edu.cn

Abstract

Post-training quantization (PTQ) is a neural network
compression technique that converts a full-precision model
into a quantized model using lower-precision data types.
Although it can help reduce the size and computational cost
of deep neural networks, it can also introduce quantiza-
tion noise and reduce prediction accuracy, especially in ex-
tremely low-bit settings. How to determine the appropriate
quantization parameters (e.g., scaling factors and round-
ing of weights) is the main problem facing now. EXxisting
methods attempt to determine these parameters by minimize
the distance between features before and after quantization,
but such an approach only considers local information and
may not result in the most optimal quantization parameters.
We analyze this issue and propose PD-Quant, a method
that addresses this limitation by considering global infor-
mation. It determines the quantization parameters by us-
ing the information of differences between network predic-
tion before and after quantization. In addition, PD-Quant
can alleviate the overfitting problem in PTQ caused by the
small number of calibration sets by adjusting the distribu-
tion of activations. Experiments show that PD-Quant leads
to better quantization parameters and improves the predic-
tion accuracy of quantized models, especially in low-bit
settings. For example, PD-Quant pushes the accuracy of
ResNet-18 up to 53.14% and RegNetX-600MF up to 40.67%
in weight 2-bit activation 2-bit. The code is released at
https://github.com/hustvl/PD-Quant.

1. Introduction

Various neural networks have been used in many real-
world applications with high prediction accuracy. When de-
ployed on resource-limited devices, networks’ vast memory
and computation costs become significant challenges. Re-

* Equal contribution. ® This work was done when Jiawei Liu and Lin
Niu were interns at Houmo AL T Corresponding authors.

ducing overhead while maintaining the model accuracy has
received considerable attention. Network quantization is an
effective technique that can compress the neural networks
by converting the format of values from floating-point to
low-bit [11, 13,28]. There are two types of quantization:
post-training quantization (PTQ) [34] and quantization-
aware training (QAT) [19]. QAT requires retraining a model
on the labeled training dataset, which is time-consuming
and computationally expensive. While PTQ only requires a
small number of unlabeled calibration samples to quantize
the pre-trained models without retraining, which is suitable
for quick deployment. Existing PTQ methods can achieve
good prediction accuracy with 8-bit or 4-bit quantization by
selecting appropriate quantization parameters. [23, 24, 32].
Local metrics (such as MSE [7] or cosine distance [49] of
the activation before and after quantization in layers) are
commonly used to search for quantization scaling factors.
These factors are chosen layer by layer by minimizing the
local metric with a small number of calibration samples. In
this paper, we observe that there is a gap between the se-
lected scaling factors and the optimal scaling factors .

Since the noise from quantization will be more severe
at low-bit, the prediction accuracy of the quantized model
significantly decreases at 2-bit. Recently, some meth-
ods [25,26,47] have added a new class of quantization pa-
rameters, weight rounding value, to adjust the rounding of
weights. They optimize both quantization scaling factors
and rounding values by reconstructing features layer-wisely
or block-wisely. Besides, the quantized model by PTQ re-
construction is more likely to be overfitting to the calibra-
tion samples because adjusting the rounding of weights will
significantly increase the PTQ’s degree of freedom.

We propose an effective PTQ method, PD-Quant, to ad-
dress the above-mentioned issues. In this paper, we fo-
cus on improving the performance of PTQ on extremely
low bit-width. PD-Quant uses the metric that considers the

We define the optimal quantization scaling factors as the factors that
make the quantized model have the lowest task loss (cross-entropy loss
calculated by real label) on the validation set.

https://github.com/hustvl/PD-Quant

global information from the prediction difference between
the quantized model and the full-precision (FP) model. We
show that the quantization parameters optimized by predic-
tion difference are more accurate in modeling the quan-
tization noise. Besides, PD-Quant adjusts the activations
for calibration in PTQ to mitigate the overfitting problem.
The distribution of the activations is adjusted to meet the
mean and variance saved in batch normalization layers. Ex-
periments show that PD-Quant leads to better quantization
parameters and improves the prediction accuracy of quan-
tized models, especially in low-bit settings. Our PD-Quant
achieves state-of-the-art performance in PTQ. For example,
PD-Quant pushes the accuracy of weight 2-bit activation
2-bit ResNet-18 up to 53.14% and RegNetX-600MF up to
40.67%. Our contributions are summarized as follows:

1. We analyze the influence of different metrics and indi-
cate that the widely used local metric can be improved
further.

2. We propose to use the information of the prediction
difference in PTQ, which improves the performance
of the quantized model.

3. We propose Distribution Correction (DC) to adjust the
activation distribution to approximate the mean and
variance stored in the batch normalization layer, which
mitigates the overfitting problem.

2. Related Work and Background

Many excellent works have been proposed to resolve
neural networks’ enormous memory footprint and inference
latency, including knowledge distillation [12, 18,45], model
pruning [29, 59], and model quantization [4,37,51].

We focus on model quantization, which is an effec-
tive technique for compressing neural networks. Quantized
models keep their weights and activations in low-bit data
types to reduce memory and computation requirements. We
can map a real-valued tensor x (weights or activations) to
the integer grid according to the following equation:

Z = clamp (L%1 + Z; Qmin7Qmaz>) (1)

S = (mmax - xmzn)/ (2b - 1) P (2)

where |-] is the round-to-nearest operator. .S denotes the
quantization scaling factors, which reflect the proportional
relationship between FP values and integers. Moreover,
Z is the offset defined as zero-point. T4, is the maxi-
mum in the vector, and x,,;, is the minimum in the vec-
tOr. [@mins ¢maz) 1S the quantization range determined by

The prediction is the processed output of the last layer, such as the
probability after softmax in the classification model.

bit-width. We only consider uniform unsigned symmet-
ric quantization, as it is the most widely used quantization
setup. Therefore, ¢.,i, is equal to 0 and ¢4, is equal to
2b — 1, where b is the bit-width which determines the num-
ber of integer grids. Nonuniform quantization [21] is chal-
lenging to deploy on hardware, so we will not consider it in
this work. In general, we divide quantization methods into
Quantization-aware training [5, 14,22,49,54,54,58] (QAT)
and Post-training quantization [3,25,31,46,47,56] (PTQ).

2.1. Quantization-aware training

QAT modifies the quantization noise during training pro-
cesses with full labeled training datasets. STE [2] solves
the problem of producing zero gradients during backpropa-
gation by employing a gradient estimator. During the train-
ing process, [20] smoothed activation ranges by exponen-
tial moving averages. LSQ [9] introduces trainable clip-
ping threshold parameters to learn the min and max ranges
of the quantization by STE. Although QAT enables lower
bit quantization with competitive results, it needs labeled
datasets and amounts of computing resources.

2.2. Post-training quantization

PTQ algorithms often determine the quantization scal-
ing factors with limited calibration data through a simple
parameter space search without training or fine-tuning [1,

, 10,44,49,56]. Metrics for searching scaling factors in-
clude MSE distance [7] and cosine distance [49]. [1] seeks
the optimal clipping ranges by minimizing the difference
between FP and quantized feature map.

Later, several methods have been proposed to optimize
rounding values. Although these PTQ methods introduce
fine-tuning during quantization, they still differ from QAT.
QAT adjusts the model’s weights using whole labeled train-
ing dataset, while PTQ only optimizes the quantization pa-
rameters on some unlabeled data. AdaRound [31] suggests
a new rounding mechanism that assigns a continuous vari-
able to each weight value to determine whether it should be
rounded up or down, rather than using the nearest round-
ing. BRECQ [25] optimizes activation scaling factors and
proposes reconstructing quantization parameters block by
block. QDrop [47] imports the activation error into the re-
construction process and introduces drop operation. These
methods can achieve usable accuracy at low bits without
inference overhead. They reconstruct features by calculat-
ing the MSE distance between quantized and FP activations.
AQuant [27] improves activation quantization strategy and
the quantization performance, but has additional inference
overhead. NWQ [43] was published at the same time as our
method, so we do not compare with it.

Some methods [3,6,15,50,55,57] can now quantize mod-
els without using real data. GDFQ [50] adopts a gener-
ator to synthesize calibration data. ZeroQ [3] uses statis-

=4, _5> Layer,’ — A Layer;,;—>— Output

| |
S ¥ ‘CLOC ‘CPD
—» Conv —»a—> A T

X
Layer;, —— Layer; ;> > Ouﬁgut

Figure 1. The pipeline overview of our method is with PD loss for
determining activation scaling factors. The blue and yellow rect-
angle indicates the quantizing and FP layer, respectively. We mark
the green diamond as the loss function. The red X in the figure
represents an approach we did not adopt but adopted in previous
work.

tics from batch normalization layers to synthesize calibra-
tion data from a Gaussian distribution. Compared to using
real calibration data, these methods often struggle to exhibit
competitive performance. However, inspired by ZeroQ, we
proposed DC in PD-Quant.

3. Methodology

In this section, we will start by conducting a compre-
hensive analysis of the impacts of various metrics in the
search for activation quantization scaling factors. Then, we
develop a high-accuracy post-training quantization method,
PD-Quant. It applies Prediction Difference (PD) loss to op-
timize the quantization parameters. Besides, we introduce
regularization and propose Distribution Correction (DC) to
solve the overfitting problem.

3.1. Prediction Difference Loss

Previous PTQ works [7,49] search quantization scaling
factors by local metrics, such as MSE or Cosine distance
of each layer’s activation before and after quantization. To
investigate the influence of these metrics when determining
activation scaling factors, we compare their search results
with those of task loss. Task loss refers to the cross-entropy
loss determined by the real label, and we define the scal-
ing factors with the lowest task loss as optimal. Fig. 2
shows the task loss and other metrics for different scal-
ing factors of 2-bit activation. As seen, the scaling factor
optimized by local metrics (Cosine and MSE) is inconsis-
tent with that based on task loss. We can observe that the
scaling factors searched by local metric losses is far from
the optimal scaling factor minimized by task loss. As an
example, as shown in Fig. 2a, for the activation quanti-
zation in the Resnetl8.layer4.blockO.convl, green line of
task loss (CE) indicates the optimal scaling factor is around
0.35 x Ny (normalized scaling factor) while local metrics
consider 0.15 x N as their scaling factor.

Since the real label is not available in PTQ, we cannot

layer2.block1.activation layer4.block0.conv1.activation

123 123
123 123
o o
- -
o °
[[
N N
© ©
E E
o o
z z
000 025 050 0.75 1.00 0.00 025 050 0.75 1.00
Normalized Scale Normalized Scale
(a) ResNet-18
layer3.block1.activation layer2.block0.conv1.activation
——— Cosine
MSE
[} [}
g —Cc | &
= — PD -
el el
[} [}
N N
© ©
E E
o o
P4 z
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Normalized Scale Normalized Scale

(b) ResNet-50

Figure 2. Different loss metrics are plotted, including task loss
(CE) under various scaling factors on ResNetl18 and ResNet50
with the ImageNet dataset. The normalized scaling factor (INs)
means the proportion of *mes==min and normalized loss indi-
cates that the minimum value of all losses is normalized to 1.0.

use task loss as the metric. To achieve more accurate per-
formance for PTQ, we propose PD loss to determine the
activation scaling factors. PD loss compares the prediction
difference between the FP and the quantized models rather
than the difference in each layer’s activation before and after
quantization. Specifically, we feed the quantized activation
A; into the subsequent FP layers to obtain the output pre-
diction. And then, the output prediction will be compared
with the FP output prediction to calculate PD loss. When
searching for the optimal activation scaling factors, we take
the following formula as the metric:

afgnéian Lrp(filAizr), firi(LI(A2), 3)

where S, denotes scaling factors for activation quantization

Model ResNet-18 ResNet-50 RegNet-600M
Bits W8A2 W4A2 W8A2 W4A2 WS8A2 W4A2

Min-Max! - - - - - -
Cosine! 11.09 4.15 2.19 1.14 0.96 0.65
MSE! 23.15 1031 9.23 4.85 3.71 1.88
PDY 2841 1227 1131 6.01 7.47 3.17

Table 1. Metric test (top-1 accuracy(%) on validation set for acti-
vation scaling factors. The weight quantization for each bit setting
in the table is the same. ! represents calculating metric with only
local information and Y means metric with global information.

in quantizing layer L7, and f;(-) refers to a part of the FP
network mapping input A;_; to FP output. f1+1(+) is the
part of the FP network mapping the output of L} to the final
prediction. We make the assumption that the quantization
for all previous layers of A;_; has been done. Fig. 1 shows
the detailed process for the parameters search by PD loss.

As shown in Fig. 2, the scaling factor optimized by the
red line of PD loss (PD) is closer to the scaling factor ex-
pected by task loss. Still, take the ResNet-18 activation, as
mentioned above, as an example. The optimal scaling fac-
tor chosen by PD loss is around 0.35 x N, almost the same
as CE. In particular, we only consider the scaling factors
of activation quantization, and we will discuss the scaling
factors of weight quantization later in Sec. 5.1.

To further investigate how PD loss affects activation scal-
ing factors determination, we respectively evaluate local
metrics and PD loss on ResNet-18, ResNet-50 [16], and
RegNetX-600MF [38] as examples. As shown in Tab. 1, the
Min-Max quantization strategy (i.e.Eq. (1)) loses all quan-
tization accuracy in the extremely low-bit. Compared to
the local metric (Min-Max, MSE, Cosine), the quantiza-
tion parameters optimization strategy with PD loss exhibits
better results on ImageNet [39] dataset. The results ver-
ify that PD loss can significantly improve quantization per-
formance in the extremely low-bit of the activation scaling
factors. Moreover, it indicates that the widely used local
metric could be better at low-bit. However, only optimizing
the scaling factor does not gain usable results, although PD
loss can achieve improvement. So we further verified the ef-
fect of our proposed PD loss with the optimization of both
activation scaling factors and rounding values in Sec. 3.2,
which can achieve usable accuracy at extremely low-bit.

We choose Kullback-Leibler (KL) divergence as the PD
loss metric to measure the prediction difference for the clas-
sification networks. We will discuss the choice of PD loss
in Sec. 5.2. For the detailed implementation of KL, we fol-
low [18]. In summary, according to our analysis, consid-
ering prediction differences is beneficial for searching the
activation scaling factors at low-bit.

3.2. Prediction Difference Loss with Regularization

Recently, some PTQ methods (such as AdaRound [31],
BRECQ [25], and QDrop [47]) have achieved remarkable
progress on PTQ, especially in low-bit. They propose op-
timizing a continuous variable for each weight value that
will be quantized. These variables, called rounding val-
ues, determine whether weight values will be rounded up or
down during the quantization process. The quantization pa-
rameters in these PTQ methods contain scaling factors and
rounding values. In summary, we can describe the process

of weight quantization as follows:

- T +0
T = clamp <L51 + Z5 Qmin, Lhna:c) s “4)

where 6 is the optimization variable for each weight value to
decide rounding results up or down [31], i.e., % ranges from
0 to 1. Other parameters are consistent with Eq. (1). As for
activation quantization, the quantization steps are also the
same as Eq. (1).

The next problem is whether PD loss (as described in
Sec. 3.1) can also improve the optimization of both scaling
factors and rounding values. We conduct preliminary ex-
periments with PD loss on the ImageNet dataset with 1024
calibration samples to answer this question. We calculate
PD loss as the difference between the prediction of the FP
model and the prediction of the quantized model. However,
as shown in Tab. 2, the performance of PD-only degrades
severely in all settings. Moreover, it performs much worse
on the validation set than on the calibration set. For ex-
ample, the accuracy of 2 bit quantization (W2A2) on the
calibration set is almost equal to the FP model on ResNet-
18 [16], but the performance on the validation set is ex-
tremely poor. This phenomenon indicates that the model
suffers from a severe overfitting problem. This issue arises
from the limited amount of data available for calibration.

To address the above overfitting problem, we introduce
an explicit regularization [17,36,47] by adding a constraint
to the optimization problem. Our regularization approach
constrains the difference between the FP and quantized acti-
vation of the internal block. On the one hand, the regulariza-
tion can encourage the quantized model to learn the robust-
ness from the FP model. On the other hand, regularization
is beneficial to minimize the perturbation caused by quan-
tization, which is verified to be effective in BRECQ [25].
Specifically, PD-Quant adopts PD loss to guide the quanti-
zation parameter optimization and introduces regularization
to alleviate overfitting. In our implementation, we regard
block as the smallest unit as in previous work [21,25,47,52]
and quantize neural networks from shallow to deep. In more

Method Bits (W/A) Acc(val) Acc(cali)
FP 32/32 71.01 70.90
PD-only 1.07 70.51
PD+Reg 2/2 49.16 71.09
PD+Reg+Drop 52.74 68.26
PD-only 51.32 70.41
PD+Reg 472 56.20 70.41
PD+Reg+Drop 58.17 68.36

Table 2. PTQ accuracy on ImageNet at ResNet18 with 1024 cali-
bration images. Reg means regularization. Acc(val)/Acc(cali) de-
notes the top-1 accuracy (%) on validation/calibration set.

A_i— Blocqu — A, Block,,, ---—>Output

A e - |
—> oS g ﬁReg SRR U S D O — Lo
DC—+APC» Block, —4, I

AP L——— Block;, — Block;,q ”'_'Oufzgut

Figure 3. An overview of the PD-Quant. The blue and yellow
rectangles indicate the quantized and FP layer, respectively. The
green diamond is marked as the loss function. The green circle
with DC indicates the Distribution Correction. FP output is the
prediction of the whole FP network.

detail, when quantizing the l;;, block, our optimization ob-
jective is as follows:

arg Tgnén £PD(Ofpa fl+1 (lel) + A7‘£7‘eg (Al7 Al))7

Al = B?(Al—l; 97 Sa)7

®)

where 6 is described in equation Eq. (4), and S, is the acti-
vation quantization scaling factor.)\, is a hyper-parameter
to control the degree of regularization. L,.4 is the regular-
ization loss to alleviate the overfitting problem. Here we
use the MSE distance between each block’s output feature
maps before and after quantization as £,.., = || 4; — 4,3
Bj! denotes the block being quantized with input A;_1. Like
Sec. 3.1, we also make the quantization for all previous lay-
ers of the input A,_1 has been done. fi+1() is the part of
the FP network mapping the output of quantizing block A
to the final prediction. O, is the FP prediction as the target
in PD loss. Fig. 3 shows the overview of our PD-Quant.

By introducing regularization, the performance of the
quantized model has been dramatically improved, shown
in Tab. 2 as PD+Reg. The overfitting problem has been
effectively alleviated, and the gap in performance between
the calibration set and the validation set has narrowed a lot.
Random drop is also a regularization method, a supplement
to our method for alleviating overfitting. We introduce acti-
vation drop in the feature map as QDROP [47], which can
further improve the performance of the quantized model.
The introduction of drop does not conflict with our method,
and we only introduce it when computing the regularization
loss.

3.3. Distribution Correction for Regularization

In this section, we will introduce a novel method to im-
prove the generalizability of the quantized model further.
Since only limited unlabeled images are accessible in PTQ,
quantization parameters are determined only by activating
these few samples. However, the feature distribution of such
small data is difficult to reflect the feature distribution of the

" OAD

30

28 -
2

26

OAD
ADC

1024
CALI

0
-1.3 -09 -05

0
-1.3 -09 -05 -01

-0.1 03 0.3
(a) (b)
3 OAD 3 OAD
30 ADC 30 ADC
5120 51200
2 28 CALI 2 28 CALI
2 26 2 2
f= [
(9} -03 -0.2 [0} =03 -0.2
a a
1 1
0 0
-13 -09 -05 -01 03 -13 -09 -05 -01 03

(©) (d

Figure 4. We plot the Distribution Correction for post-conv acti-
vation on the last block of ResNet18. OAD means the original ac-
tivation distribution, and ADC denotes the original activation dis-
tribution (OAD) rectified by DC. Two histograms in blue and or-
ange represent their distribution. The red line is the kernel density
estimate (KDE) curve for different numbers of calibration(CALI)
from the ImageNet training set.

whole training set. As described in Sec. 3.2, our regulariza-
tion loss computes the distance between the quantized block
activation and the FP block activation.

We propose a novel method to adjust the feature from the
FP block itself, i.e., rectifying the feature by the statistics
stored in the pre-trained FP model’s Batch Normalization
(BN) layer. Specifically, we correct the activation distribu-
tion of each FP block’s input by achieving an approximate
mean and variance between the activation and BN statistics.
Since these BN statistics come from the whole training set,
the corrected distribution of activations will be closer to the
distribution of the entire training set. Through learning the
corrected FP feature distribution, the quantized model by
DC has better generalizability.

Assuming there are n Batch Normalization (BN) layers
in the l;;, block, we can compute the mean and variance of
their input, denoting {/i(; ;). 6¢;)li = 0,1..n}. And the
original mean f(; ;) and variance o(; ;) are recorded in BN
layers. We modify the input of the block AF'f to APS using
the following optimization:

n

arg min A,
ADC
-1 =1

(Il iy = i I3+ 1 6 — o 113)

(6)
+ 1 APS - AT
where A, is a hyper-parameter. We fine-tuning the input
APY so that fi(; ;) and 6(;) are closer to ju(; ;) and o(;).
The second term in Eq. (6) is to make the modified AP9

Methods Bits (W/A) ResNet-18 ResNet-50 MobileNetV2 RegNetX-600MF RegNetX-3.2GF MNasx2
Full Prec. 32/32 71.01 76.63 72.62 73.52 78.46 76.52
ACIQ-Mix [1] 67.00 73.80 - - - -
LAPQ [33] 60.30 70.00 49.70 57.71 55.89 65.32
Bit-Split [40] 44 67.56 73.71 - - - -
AdaRound [31] 67.96 73.88 61.52 68.20 73.85 68.86
QDrop [47]* 69.17 75.15 68.07 70.91 76.40 72.81
PD-Quant 69.23+0.06 75.16+0.07 68.19+0.12 70.95+0.12 76.65+0.09 73.26+0.09
LAPQ 0.18 0.14 0.13 0.17 0.12 0.18
Adaround 24 0.11 0.12 0.15 - - -
QDrop* 64.57 70.09 53.37 63.18 71.96 63.23
PD-Quant 65.17+0.08 70.77+0.15 55.17+0.28 63.89+0.13 72.38+0.11 63.40+0.21
QDrop* an 57.56 63.26 17.30 49.73 62.00 34.12
PD-Quant 58.59+0.15 64.18+0.14 20.10+0.37 51.09+0.15 62.79+0.13 39.13+0.51
QDrop* n 51.42 55.45 10.28 39.01 54.38 23.59
PD-Quant 53.14+0.14 57.16+0.15 13.76+0.40 40.67+0.26 55.06+0.23 27.58+0.60

Table 3. Comparison on PD-Quant with various post-training quantization algorithms. * denotes our implementation using open-source

codes. PD-Quant is our proposed method. Other results listed are all from [

]. We gain the results of 10 runs using randomly sampled

calibration sets. The results in the table include the mean and standard deviation.

not deviate too much from AlF_ };. As shown in Fig. 3, we
inference with Allz Cl to get A; and calculate L,.,.

In Fig. 4, we visualize the effect of our proposed DC. For
all four subplots, the blue column (OAD) means an original
activation distribution of 1024 calibration samples, and the
orange column (ADC) denotes the OAD rectified by DC.
Fig. 4a is the histogram of OAD and ADC. The red line in
Fig. 4b is the kernel density estimate (KDE) curve for 1024
calibration samples. Next, we increase the number of cali-
bration samples. Fig. 4c and Fig. 4d show the KDE curve
for 5120 and 51200 calibration samples from the ImageNet
training set. From Fig. 4, we notice that as the number of
calibration samples increases, the KDE curve of calibration
samples is closer to the ADC. The illustration shows that the
distribution of ADC, produced by the DC from OAD, can
reflect the distribution of more samples in the training set
and improve the generalizability of the quantized model.

4. Experimental Results
4.1. Experimental Environments

We quantize various CNN architectures to evalu-
ate our proposed method, including ResNet [16], Mo-
bileNetV2 [40], RegNet [38], and MNasNet [41]. The FP
pre-trained models for all our implementation in the exper-
iments are from [25]. Our method evaluates on ImageNet
dataset [39] with a batch size of 32. We randomly sample
1024 images from the ImageNet training dataset as the cal-
ibration set. In addition, we also set the first and the last
layer quantization to 8-bit for all PTQ experiments unless
otherwise specified. We keep the same quantization settings
and hyper-parameters in our implementation as QDrop [47].

The learning rate for the activation quantization scaling fac-
tor is 4e-5, and for weight quantization rounding, the learn-
ing rate is 3e-3. The DC is with a learning rate of le-3. The
choice of hyper-parameter A\, and). in Eq. (5) and Eq. (6)
will be discussed later in Sec. 4.4, respectively. Quantiza-
tion parameters are fine-tuning with 20000 iterations. Our
code is based on Pytorch [35] and we evaluate all our ex-
periments on a single Nvidia RTX A6000.

4.2. Performance Comparison

We comprehensively compare our PD-Quant with mul-
tiple PTQ algorithms in many bit-settings and find that PD-
Quant achieves performance improvement, especially in ex-
tremely low-bit. Considering that only optimizing the acti-
vation scaling factors can not achieve usable results at low
bits, all our experiments below optimize both rounding val-
ues and activation scaling factors unless otherwise speci-
fied. We choose the best-performing method QDrop [47] as
our baseline. The results of QDrop in open-source code are
higher than those in their paper. We introduced a drop [47]
in the regularization process as described in Sec. 3.2. All
our experiments with regularization include it unless other-
wise stated.

In summarizing the results in Tab. 3, it can be ob-
served that PD-Quant achieves significant improvements
compared with those strong baselines of PTQ. When quan-
tizing the network to W4A4, experiments show that PD-
Quant slightly improves QDrop. However, the benefits
of PD-Quant become more apparent as the bit-width de-
creases. At the W2A4 bit setting, the performance of PD-
Quant is better than the baseline in all network architec-
tures. With W4A2 quantization, PD-Quant can improve the

accuracy of MobileNetV2 by 2.8% and RegNet-600MF by
1.4%. For more challenging cases W2A2, the performance
of PD-Quant surpasses QDrop in all networks. According
to the table, PD-Quant reaches 27.58% in MNasNet, while
QDrop only gets 23.59%. Since we use the same quanti-
zation setting with QDrop, the results indicate that the op-
timization strategy with our PD-Quant plays a critical role
in extremely low-bit. Once PD-Quant finishes optimizing
the quantization parameters, no additional computation is
required for inference.

As in previous PTQ work, we also keep the first and last
layer 8-bit. The results in Tab. 3 are all done with the 8-bit
setting. Nevertheless, to be noted, some work [21, 25, 52]
adds an extra first layer’s output 8-bit, which will perform
better than our 8-bit setting. Therefore, we conduct further
experiments to ensure the effectiveness of our method com-
pared with these methods. Specifically, we use the same
8-bit settings as these methods for experiments, and the re-
sults are shown in Tab. 4.

Methods Bits (W/A) ResNet-18 MobileNetV2
Full Prec. 32/32 71.01 72.62
BRECQ [25] 69.60 66.57
RAPQ [57] 4/4 69.28 64.48
PD-Quant 69.72 68.76
BRECQ [25] 64.80 53.34
RAPQ [52] 2/4 65.32 48.12
PD-Quant 65.56 55.32

Table 4. Comparison on PD-Quant with different post-training
quantization algorithms in another 8-bit setting.

4.3. Ablation Study

Tab. 5 shows the ablation study of our proposed method
compared with the baseline (QDrop) [47]. We quantize
ResNet-18 and MobileNetV2 as examples to analyze the ef-
fects of PD and DC on the overall method. We evaluate our
method on W2A2 and W4A2, which can reveal the impact
of each component. PD-only optimizes the quantization pa-
rameters (activation scaling factors and rounding values) by
only PD loss. However, there is a huge drop in results be-
cause of over-fitting, as analyzed in Sec. 3.2. We introduce
Regularization to compensate for the performance loss of
PD-only and achieve higher accuracy than the baseline.

Since QDrop optimizes the quantization parameters by
computing the difference between the activation of the
quantized block and the FP block. So our proposed DC
can be well applied to this baseline method to alleviate the
overfitting problem. Seeing the effect of QDrop+DC, it can
improve by 0.9% at W2A2 campared with the baseline. In
our PD-Quant, the introduction of DC can also further im-
prove the performance by around 0.7% in MobileNetV2 at
the W2A2 setting.

The impact of introducing prediction difference can
be seen from PD+Reg. PD loss with regularization can
improve the accuracy of ResNet-18 by 1.68% and Mo-
bileNetV2 by 3.21% compared with the baseline at the
W2A2 bit setting. In W4A2 quantization, the performance
of our method is also better than the baseline.

Model ResNet-18 MobileNetV2
Bits W2A2 W4A2 W2A2 W4A2

QDrop 5142 5756 1028 17.30
PD-only 1.07 51.32 7.01 13.59
PD+Reg 52.74 5817 13.49 20.05
QDrop+DC 5232 57.77 1038 17.58
PD-Quant 53.08 58.65 14.17 20.40

Table 5. Ablation study (top-1 accuracy(%)) on validation set for
our proposed method. QDrop is the baseline method. PD-only
means optimizing quantization parameters by only PD loss. Reg
means regularization. PD-Quant is our proposed method, includ-
ing PD, Reg, and DC for optimizing both activation scaling factors
and rounding values.

4.4. Hyperparameters Analysis

As described in Eq. (5), there is a hyper-parameter A,
in the optimization objective. A, limits the strength of the
regularization constraint. We analyze how it affects quan-
tization performance on ResNet-18 and MobileNetV2 with
W2A2 quantization. According to Tab. 6, we found that dif-
ferent networks have different optimal)\, but our method
is not very sensitive to it. Results show that the proposed
method can achieve a steady accuracy without tedious hy-
perparameter tuning.

Ar
005 01 02 05 1

ResNet-18 5243 52.60 52.74 5258 52.55
MobileNetV2 1348 13.49 13.03 1337 12.38

Model

Table 6. Hyperparameter analysis for A\, at W2A2 setting.

Model Ae
0 0.001 0.005 0.01 0.02
ResNet-18 52.74 53.04 52.87 52.89 53.08

MobileNetV2 1349 13.77 14.17 13.24 13.09

Table 7. Hyperparameter analysis for A\. at W2A2 setting.

Moreover, we also conduct experiments to analyze the
hyperparameter in Distribution Correction. As illustrated in
Eq. (6), A, controls the degree of correction. We demon-
strate how A, affects model performance in Tab. 7, where
Ae = 0 means no DC.

Although there is some effect when A, changes, our DC
method can also get a stable level of accuracy without hand-
crafted hyper-parameter adjusting.

5. Discussion

In this section, we will first discuss why we do not deter-
mine weight quantization scaling factors by PD loss. Then
the reasons for choosing KL to calculate the prediction dif-
ference will be explained. Finally, we will analyze the lim-
itations of PD-Quant.

5.1. Weight Quantization Scaling Factor With PD
Loss

We didn’t use PD loss to find weight quantization scal-
ing factors (5,,) in Sec. 3.1 because weight quantization
is different from activation quantization. Current methods
mostly quantize weights per channel, resulting in a much
larger search space than activation quantization. Besides,
our experiments in Tab. 8 show that the weight scaling fac-
tors are not sensitive to the introduction of PD information.

. W2A32 W32A2
Metric
First layer ~All layers First layer All layers
MSE! 11.09 0.09 56.10 23.38
PDY 10.98 0.10 56.83 28.66

Table 8. We quantize only weights/activations for ResNet-18 to in-
vestigate how PD loss affects weight/activation quantization scal-
ing factors. The results listed include only quantizing the first layer
of the model and quantizing all layers.

We evaluate how PD loss affects activation scaling fac-
tors and weight scaling factors in Tab. 8. To avoid the in-
fluence of other quantization parameters, we optimize only
scaling factors in the experiments. As can be seen, all exist-
ing methods fall crash, including PD loss, when we quantize
the weights with low bits. To better understand the impact
of our method on weight quantization, we conducted an ex-
periment on the first layer only, referred to as “First Layer”
for the rest of the paper. Unlike the previous experiments,
the First Layer did not set the first and last layer to 8 bit, and
we set per-tensor weight quantization in the First Layer of
W2A32. Our method can effectively search for the optimal
scaling factor during activation quantization at low bits, but
not for weight quantization. We think this is because the pa-
rameter space of weights is deterministic, while the param-
eter space of activations varies with different input image.

5.2. Determination of PD loss

In Tab. 9, we have compared different global metrics for
searching the activation quantization scaling factors. MSEY
and Cosine? measure the difference between the quantized
prediction and FP prediction by MSE distance and cosine

distance. KLY consider the KL divergence [18] of the two
models’ prediction. As can be seen in Tab. 9, KL per-
forms best among all metrics. We believe this is because
our quantization process can be seen as a knowledge distil-
lation [12, 18], where the quantized model is the student and
the FP model is the teacher.

Model ResNet-18 RegNet-600M
Metric W8A2 W4A2 W8A2 W4A2

MSEY 27.06 11.13 3.70 1.64
Cosined 27.28 7.12 5.93 3.06
KLY 2841 12.27 7.47 3.17

Table 9. Metric test (top-1 accuracy(%) on validation set for acti-
vation scaling factors. ¢ means calculating the difference between
predictions.

5.3. Limitations

PD-Qunat requires additional computation and fine-
tuning compared to the baseline method QDROP, result-
ing in increased time cost. The time cost of quantization
is shown in Tab. 10. While training time consumption is a
limitation of PD-Quant, our method’s additional time cost
is acceptable when compared to quantization-aware train-
ing (QAT) methods. For example, LSQ [9], a QAT method,
takes 120 hours to train for 90 epochs at ResNet-18, while
PD-Quant only needs 1 hour.

Method ResNet-18 MobileNetV2 RegNetX-600MF

QDrop 0.43h 0.93h 0.8%h
PD 0.91h 2.26h 2.37h
PD+DC 1.11h 2.68h 2.75h

Table 10. Time cost comparison. (one Nvidia RTX A6000)

6. Conclusion

In this work, we first observed that it was very benefi-
cial to introduce PD information when optimizing the ac-
tivation scaling factors at low-bit. Based on this observa-
tion, we proposed PD-Quant, an effective method for post-
training quantization. When optimizing activation scaling
factors and rounding values, we discovered that our pro-
posed method could also improve current methods. In ad-
dition, we found that over-fitting is a factor that leads to
performance degradation. To respond to this problem, we
propose a method to correct the calibration set distribution
to improve model generalizability. The experimental results
show that PD-Quant is very effective at low bits.

Acknowledgements

This work was supported by National Natural Science
Foundation of China (NSFC No. 61733007).

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

[10]

(11]

[12]

Ron Banner, Yury Nahshan, and Daniel Soudry. Post train-
ing 4-bit quantization of convolutional networks for rapid-
deployment. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. 2, 6

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432,2013. 2, 12

Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami,
Michael W Mahoney, and Kurt Keutzer. Zeroq: A novel
zero shot quantization framework. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13169-13178, 2020. 2

Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-
los. Deep learning with low precision by half-wave gaus-
sian quantization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5918-5926,
2017. 2

Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. Pact: Parameterized clipping activa-
tion for quantized neural networks. arXiv preprint
arXiv:1805.06085, 2018. 2

Kanghyun Choi, Hye Yoon Lee, Deokki Hong, Joonsang Yu,
Noseong Park, Youngsok Kim, and Jinho Lee. It’s all in the
teacher: Zero-shot quantization brought closer to the teacher.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8311-8321, 2022. 2
Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev.
Low-bit quantization of neural networks for efficient infer-
ence. In 2019 IEEE/CVF International Conference on Com-
puter Vision Workshop (ICCVW), pages 3009-3018. IEEE,
2019.1,2,3

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 11

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S Modha.
Learned step size quantization. arXiv preprint
arXiv:1902.08153,2019. 2, 8, 12

Jun Fang, Ali Shafiee, Hamzah Abdel-Aziz, David Thors-
ley, Georgios Georgiadis, and Joseph H Hassoun. Post-
training piecewise linear quantization for deep neural net-
works. In European Conference on Computer Vision, pages
69-86. Springer, 2020. 2

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. A survey of quanti-
zation methods for efficient neural network inference. arXiv
preprint arXiv:2103.13630, 2021. 1

Jianping Gou, Baosheng Yu, Stephen J Maybank, and
Dacheng Tao. Knowledge distillation: A survey. Interna-

(13]

[14]

[15]

(16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

tional Journal of Computer Vision, 129(6):1789—-1819, 2021.
2,8

S Han, H Mao, and WJ Dally. Compressing deep neural net-
works with pruning, trained quantization and huffman cod-
ing. arXiv preprint arXiv:1510.00149, 2015. 1

Tiantian Han, Dong Li, Ji Liu, Lu Tian, and Yi Shan. Im-
proving low-precision network quantization via bin regular-
ization. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 5261-5270, 2021. 2

Matan Haroush, Itay Hubara, Elad Hoffer, and Daniel
Soudry. The knowledge within: Methods for data-free model
compression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8494—
8502, 2020. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770778, 2016. 4, 6, 11

Alex Herndndez-Garcia and Peter Konig. Data augmen-
tation instead of explicit regularization. arXiv preprint
arXiv:1806.03852,2018. 4

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015. 2,4, 8

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and
Daniel Soudry. Accurate post training quantization with
small calibration sets. In International Conference on Ma-
chine Learning, pages 4466—4475. PMLR, 2021. 1

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2704-2713, 2018. 2

Yongkweon Jeon, Chungman Lee, Eulrang Cho, and Yeonju
Ro. Mr. biq: Post-training non-uniform quantization based
on minimizing the reconstruction error. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12329-12338, 2022. 2,4, 7

Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son,
Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and
Changkyu Choi. Learning to quantize deep networks by op-
timizing quantization intervals with task loss. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4350-4359, 2019. 2

Raghuraman Krishnamoorthi. Quantizing deep convolu-
tional networks for efficient inference: A whitepaper. arXiv
preprint arXiv:1806.08342, 2018. 1

Jun Haeng Lee, Sangwon Ha, Saerom Choi, Won-Jo Lee,
and Seungwon Lee. Quantization for rapid deployment of

deep neural networks. arXiv preprint arXiv:1810.05488,
2018. 1

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi
Zhang, Fengwei Yu, Wei Wang, and Shi Gu. Brecq: Pushing
the limit of post-training quantization by block reconstruc-
tion. arXiv preprint arXiv:2102.05426,2021. 1,2,4,6,7

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

[36]

(37]

(38]

Zhengyi Li, Cong Guo, Zhanda Zhu, Yangjie Zhou, Yuxian
Qiu, Xiaotian Gao, Jingwen Leng, and Minyi Guo. Effi-
cient activation quantization via adaptive rounding border for
post-training quantization. arXiv preprint arXiv:2208.11945,
2022. 1

Zhengyi Li, Cong Guo, Zhanda Zhu, Yangjie Zhou, Yuxian
Qiu, Xiaotian Gao, Jingwen Leng, and Minyi Guo. Effi-
cient activation quantization via adaptive rounding border for
post-training quantization. arXiv preprint arXiv:2208.11945,
2022. 2

Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xi-
aotong Zhang. Pruning and quantization for deep neural
network acceleration: A survey. Neurocomputing, 461:370-
403, 2021. 1

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning.
arXiv preprint arXiv:1810.05270, 2018. 2

Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma,
and Wen Gao. Post-training quantization for vision trans-
former. Advances in Neural Information Processing Systems,
34:28092-28103, 2021. 11

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Chris-
tos Louizos, and Tijmen Blankevoort. Up or down? adap-
tive rounding for post-training quantization. In International
Conference on Machine Learning, pages 7197-7206. PMLR,
2020. 2,4, 6, 12

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yely-
sei Bondarenko, Mart van Baalen, and Tijmen Blankevoort.
A white paper on neural network quantization.
preprint arXiv:2106.08295, 2021. 1

Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii
Zheltonozhskii, Ron Banner, Alex M Bronstein, and Avi
Mendelson. Loss aware post-training quantization. Machine
Learning, 110(11):3245-3262, 2021. 6

Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. Value-aware
quantization for training and inference of neural networks.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 580-595, 2018. 1

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: Anim-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
6

Tomaso Poggio, Kenji Kawaguchi, Qianli Liao, Brando Mi-
randa, Lorenzo Rosasco, Xavier Boix, Jack Hidary, and
Hrushikesh Mhaskar. Theory of deep learning iii: explaining
the non-overfitting puzzle. arXiv preprint arXiv:1801.00173,
2017. 4

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model
compression via distillation and quantization. arXiv preprint
arXiv:1802.05668, 2018. 2

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dolldr. Designing network design
spaces. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 10428-10436,
2020. 4,6

arXiv

10

(39]

(40]

(41]

[42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

[50]

(51]

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211-252, 2015. 4, 6

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510-4520, 2018. 6, 11

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2820-2828, 2019. 6,
11

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347-10357. PMLR, 2021. 11

Changbao Wang, DanDan Zheng, Yuanliu Liu, and Liang Li.
Leveraging inter-layer dependency for post-training quanti-
zation. In Advances in Neural Information Processing Sys-
tems. 2

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.
Haq: Hardware-aware automated quantization with mixed
precision. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8612—
8620, 2019. 2

Lin Wang and Kuk-Jin Yoon. Knowledge distillation and
student-teacher learning for visual intelligence: A review
and new outlooks. [EEE Transactions on Pattern Analysis
and Machine Intelligence, 2021. 2

Peisong Wang, Qiang Chen, Xiangyu He, and Jian Cheng.
Towards accurate post-training network quantization via bit-
split and stitching. In International Conference on Machine
Learning, pages 9847-9856. PMLR, 2020. 2, 6

Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and
Fengwei Yu. Qdrop: Randomly dropping quantization for
extremely low-bit post-training quantization. arXiv preprint
arXiv:2203.05740,2022. 1, 2,4,5,6,7, 12

Ross Wightman. Pytorch image models. https:
//github . com/ rwightman /pytorch - image —
models, 2019. 11

Di Wu, Qi Tang, Yongle Zhao, Ming Zhang, Ying Fu, and
Debing Zhang. Easyquant: Post-training quantization via
scale optimization. arXiv preprint arXiv:2006.16669, 2020.
1,2,3

Shoukai Xu, Haokun Li, Bohan Zhuang, Jing Liu, Jiezhang
Cao, Chuangrun Liang, and Mingkui Tan. Generative low-
bitwidth data free quantization. In European Conference on
Computer Vision, pages 1-17. Springer, 2020. 2

Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqgiang Li,
Bing Deng, Jiangiang Huang, and Xian-sheng Hua. Quan-
tization networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7308-7316, 2019. 2

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

[52] Hongyi Yao, Pu Li, Jian Cao, Xiangcheng Liu, Cheny-
ing Xie, and Bingzhang Wang. Rapq: Rescuing accuracy
for power-of-two low-bit post-training quantization. arXiv
preprint arXiv:2204.12322,2022. 4,7

Zhihang Yuan, Chenhao Xue, Yigi Chen, Qiang Wu, and
Guangyu Sun. Ptq4vit: Post-training quantization for vision
transformers with twin uniform quantization. In European
Conference on Computer Vision, pages 191-207. Springer,
2022. 11,12

Dongqing Zhang, Jiaolong Yang, Dongqgiangzi Ye, and Gang
Hua. Lg-nets: Learned quantization for highly accurate and
compact deep neural networks. In Proceedings of the Eu-
ropean conference on computer vision (ECCV), pages 365—
382,2018. 2

Xiangguo Zhang, Haotong Qin, Yifu Ding, Ruihao Gong,
Qinghua Yan, Renshuai Tao, Yuhang Li, Fengwei Yu, and
Xianglong Liu. Diversifying sample generation for accu-
rate data-free quantization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15658-15667, 2021. 2

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and
Zhiru Zhang. Improving neural network quantization with-
out retraining using outlier channel splitting. In International
conference on machine learning, pages 7543-7552. PMLR,
2019. 2

Yunshan Zhong, Mingbao Lin, Gongrui Nan, Jianzhuang
Liu, Baochang Zhang, Yonghong Tian, and Rongrong Ji. In-
traq: Learning synthetic images with intra-class heterogene-
ity for zero-shot network quantization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12339-12348, 2022. 2

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016. 2

Michael Zhu and Suyog Gupta. To prune, or not to prune: ex-
ploring the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878, 2017. 2

(53]

[54]

[55]

[56]

(571

(58]

[59]

11

Appendix

A. More Details of CNN models Implementa-
tions

This section will add more experimental details for CNN
models. We apply different hyper-parameters A, and \. for
different types of networks. The regularization parameter
Ay is set to 0.2 for ResNet-18 and ResNet-50 [16] and 0.1
for other CNN architectures. Moreover, we set the hyper-
parameter A\, for DC to 0.005 for MobileNetV2 [40], 0.001
for MNasNet [41], and 0.02 for other CNN architectures.

B. Effects on different calibration data sizes

We conduct experiments on 256, 1024, and 4096 calibra-
tion data sizes. Tab. 11 shows that PD is effective on cali-
bration data of different sizes. The effect of DC decreases as
the size of calibration sets increases because the calibration
set’s distribution is getting closer to the training set.

Model ResNet-18 MobileNetV2
Size 256 1024 4096 256 1024 4096
QDrop 4622 5142 5448 7.53 10.28 10.88
PD 46.76 5274 5530 929 1349 1647
PD+DC 47.28 53.08 5533 948 14.17 16.55

Table 11. Effects on different calibration dataset sizes for PD-
Quant. All the results in the table are quantized to W2A2.

C. PD Loss on Transformer Models

Besides CNN, we further extend the proposed method to
Transformer models. We evaluate our PD-Quant on both
ViT [8] and DeiT [42] at different bit settings.

C.1. Implementation Details

We keep most parameter settings the same as in CNN,
including the learning rate, iterations, and calibration data
numbers. However, we set the batch size to 16 and regu-
larization parameters A, to 0.1 for Transformer models. We
did not apply DC to the quantization of Transformer models
because there are no batch normalization layers.

We quantize all the weights and inputs for the fully-
connect layers, including the first projection layer and the
last head layer. The two input matrices for the matrix mul-
tiplications in the self-attention modules are also quantized.
Moreover, the inputs of the softmax layers and the normal-
ization layers are not quantized, the same as in previous
work [30,53].

We still take QDrop as the baseline method and define
the encoder in Transformer models as the block. Our imple-
mentation for Transformer models is based on open-source
code, and the pre-trained FP models are all from [48].

Model Method Bits (W/A) Acc (%)
PTQ4ViT* [53] 70.72
QDrop* [47] W6A6 70.25
PD-Quant 70.84
PTQ4ViT* [53] 53.55
ViT-S/16/224 QDrop* [47] W4A6 67.57
74.65 PD-Quant 68.64
PTQ4ViT* [53] 0.31
QDrop* [47] W2A6 45.16
PD-Quant 48.13
PTQ4ViT* [53] 74.24
QDrop* [47] WO6A6 75.76
PD-Quant 75.82
PTQ4ViT* [53] 52.97
ViT-B/16/224 QDrop* [47] W4A6 75.51
78.01 PD-Quant 75.52
PTQ4ViT* [53] 0.24
QDrop* [47] W2A6 63.74
PD-Quant 64.51
PTQ4ViT* [53] 76.83
QDrop* [47] W6A6 77.95
PD-Quant 78.33
PTQ4ViT* [53] 74.17
DeiT-S/16/224 QDrop* [47] W4A6 77.66
79.71 PD-Quant 77.88
PTQ4ViT* [53] 3.79
QDrop* [47] W2A6 65.76
PD-Quant 67.53

Table 12. Comparison on PD-Quant for Transformer models.
* represents our implementation with open-source code. ViT-
S/16/224 denotes patch size is 16 X 16 the input resolution is
224 x 224. All the results listed are the top-1 accuracy (%).

C.2. Performance Comparison

We compare our proposed PD-Quant with QDrop [47]
and PTQ4ViT [53] for both ViT and DeiT. PQT4ViT is a
post-training quantization framework designed for Trans-
former model quantization. Moreover, it shows the state-
of-the-art results among all transformer quantization algo-
rithms in W6A6. We keep the same quantization environ-
ment and use the same pre-trained model for comparison.

As seen in Sec. C.1, PD-Quant can improve the results
of QDrop, similar to the effects in CNN models. We imple-
mented PTQ4ViT based on open-source code.

D. Optimization of Activation Scaling Factors
and Rounding values

QAT method LSQ [9] first optimizes activation scaling
factors (5,) by final objective. Since only limited unlabeled

12

data is available in PTQ, we propose PD loss to optimize
Sa. When optimizing only S,, the gradients are given by

aﬁp[) X
— —_— >
0 dmacx [dmazx
8£p]_‘) o 8£pD T X X
3Sa - a‘% (I_Sa] Sa) dmin < Sa < dmaz >
6£pD x
= . < .
a‘% q"nn a — q"nn

@)
where STE [2] calculates the gradients of the round func-
tion.

When optimizing rounding values (#), we follow [31] to
adopt a sigmoid-like function o (6) deciding weight round-
ing up or down. The minimization problem for 6 conver-
gence is given by

i 1—|20(0) —1/° 8

argmin) (1~ [20(0) - 1/%), ®)

where o(f) = 0 means weight rounds down and () = 1
means weight rounds up.

	1 . Introduction
	2 . Related Work and Background
	2.1 . Quantization-aware training
	2.2 . Post-training quantization

	3 . Methodology
	3.1 . Prediction Difference Loss
	3.2 . Prediction Difference Loss with Regularization
	3.3 . Distribution Correction for Regularization

	4 . Experimental Results
	4.1 . Experimental Environments
	4.2 . Performance Comparison
	4.3 . Ablation Study
	4.4 . Hyperparameters Analysis

	5 . Discussion
	5.1 . Weight Quantization Scaling Factor With PD Loss
	5.2 . Determination of PD loss
	5.3 . Limitations

	6 . Conclusion
	A . More Details of CNN models Implementations
	B . Effects on different calibration data sizes
	C . PD Loss on Transformer Models
	C.1 . Implementation Details
	C.2 . Performance Comparison

	D . Optimization of Activation Scaling Factors and Rounding values

