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Abstract

This work studies the generalization issue of face anti-
spoofing (FAS) models on domain gaps, such as image res-
olution, blurriness and sensor variations. Most prior works
regard domain-specific signals as a negative impact, and
apply metric learning or adversarial losses to remove them
from feature representation. Though learning a domain-
invariant feature space is viable for the training data, we
show that the feature shift still exists in an unseen test do-
main, which backfires on the generalizability of the clas-
sifier. In this work, instead of constructing a domain-
invariant feature space, we encourage domain separabil-
ity while aligning the live-to-spoof transition (i.e., the tra-
jectory from live to spoof) to be the same for all domains.
We formulate this FAS strategy of separability and align-
ment (SA-FAS) as a problem of invariant risk minimization
(IRM), and learn domain-variant feature representation but
domain-invariant classifier. We demonstrate the effective-
ness of SA-FAS on challenging cross-domain FAS datasets
and establish state-of-the-art performance. Code is avail-
able at https://github.com/sunyiyou/SAFAS.

1. Introduction
Face recognition (FR) [16] has achieved remarkable suc-

cess and has been widely employed in mobile access control
and electronic payments. Despite the promise, FR systems
still suffer from presentation attacks (PAs), including print
attacks, digital replay, and 3D masks. As a result, face anti-
spoofing (FAS) has been an important topic for almost two
decades [3, 35, 45, 47, 66, 74, 76].

In early systems like building access and border con-
trol with limited variations (e.g., lighting and poses), sim-
ple methods [6, 17, 41] have exhibited promise. These al-
gorithms are designed for the closed-world setting, where
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1In statistics, spurious correlation is a mathematical relationship in

which multiple events or variables are associated but not causally related.
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Figure 1. Cross-domain FAS: (a) Common FAS solutions aim to
remove domain-specific signals and mix domains in one cluster.
However, we empirically show domain-specific signals still exists
in the feature space, and model might pick domain-specific signals
as spurious correlation1 for classification. (b) Our SA-FAS aims
to retain domain signal. Specifically, we train a feature space with
two critical properties: (1) Separability: Samples from differ-
ent domains and live/spoof classes are well-separated; (2) Align-
ment: Live-to-spoof transitions are aligned in the same direction
for all domains. With these two properties, our method keeps the
domain-specific signals invariant to the decision boundary.

the camera and environment are assumed to be the same be-
tween train and test. This assumption, however, rarely holds
for in-the-wild applications, e.g., mobile face unlock and
sensor-invariant ID verification. Face images in those FAS
cases may be acquired from wider angles, complex scenes,
and different devices, where it is hard for training data to
cover all the variations. These differences between training
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and test data are termed domain gaps and the FAS solutions
to tackle the domain gaps are termed cross-domain FAS.

Learning domain-invariant representation is the main ap-
proach in generic domain generalization [70], and has soon
been widely applied to cross-domain FAS [30,43,44,60,67,
72]. Those methods consider domain-specific signals as a
confounding factor for model generalization, and hence aim
to remove domain discrepancy from the feature representa-
tion partially or entirely. Adversarial training is commonly
applied so that upon convergence the domain discriminator
cannot distinguish which domain the features come from.
In addition, some methods apply metric learning to further
regularize the feature space, e.g., triplet loss [67], dual-force
triplet loss [60], and single-side triplet loss [30].

There are two crucial issues that limit the generaliza-
tion ability of these methods [30, 43, 44, 60, 67, 72] with
domain-invariant feature losses. First, these methods posit
a strong assumption that the feature space is perfectly
domain-invariant after removing the domain-specific sig-
nals from training data. However, this assumption is un-
realistic due to the limited size and domain variants of the
training data, on which the loss might easily overfit during
training. As shown in Fig. 7, the test distribution is more
expanded compared to the training one, and the spatial re-
lation between live and spoof has largely deviated from the
learned classifier. Second, feature space becomes ambigu-
ous when domains are mixed together. Note that the domain
can carry information on certain image resolutions, blur-
riness and sensor patterns. If features from different do-
mains are collapsed together [54], the live/spoof classifier
will undesirably leverage spurious correlations to make the
live/spoof predictions as shown in Fig. 1 (a), e.g., compar-
ing live from low-resolution domains to spoof from high-
resolution ones. Such a classifier will unlikely generalize to
a test domain when the correlation does not exist.

In this work, we rethink feature learning for cross-
domain FAS. Instead of constructing a domain-invariant
feature space, we aim to find a generalized classifier while
explicitly maintaining domain-specific signals in the repre-
sentation. Our strategy can be summarized by the following
two properties:

• Separability: We encourage features from different
domains and live/spoof classes to be separated which
facilitates maintaining the domain signal. According
to [4], representations with well-disentangled domain
variation and task-relevant features are more general
and transferable to different domains.

• Alignment: Inspired by [31], we regard spoofing as
the process of transition. For similar PA types2, the
transition process would be similar, regardless of envi-
ronments and sensor variations. With this assumption,

2This work focuses on print and replay attacks.

we regularize the live-to-spoof transition to be aligned
in the same direction for all domains.

We refer to this new learning framework as FAS with sepa-
rability and alignment (dubbed SA-FAS), shown in Fig. 1
(b). To tackle the separability, we leverage Supervised Con-
trastive Learning (SupCon) [33] to learn representations
that force samples from the same domain and the same
live/spoof labels to form a compact cluster. To achieve the
alignment, we devise a novel Projected Gradient optimiza-
tion strategy based on Invariant Risk Minimization (PG-
IRM) to regularize the live-to-spoof transition invariant to
the domain variance. With normalization, the feature space
is naturally divided into two symmetric half-spaces: one for
live and one for spoof (see Fig. 6). Domain variations will
manifest inside the half-spaces but have minimal impact to
the live/spoof classifier.

We summarize our contributions as three-fold:
• We offer a new perspective for cross-domain FAS. In-

stead of removing the domain signal, we propose to
maintain it and design the feature space based on sep-
arability and alignment;

• We first systematically exploit the domain-variant rep-
resentation learning by combining contrastive learn-
ing and effectively optimizing invariant risk minimiza-
tion (IRM) through the projected gradient algorithm
for cross-domain FAS;

• We achieve state-of-the-art performance on widely-
used cross-domain FAS benchmark, and provide in-
depth analysis and insights on how separability and
alignment lead to the performance boost.

2. Related Work
Face Anti-Spoofing Face anti-spoofing attracts growing at-
tention in several thriving directions. Early works exploit
spontaneous human behaviors (e.g., eye blinking, head mo-
tion) [36, 53] or predefined movements (e.g., head-turning,
expression changes) [12]. Later, hand-crafted features are
utilized to describe spoof patterns, e.g., LBP [6, 17], HoG
[17, 75] and SIFT [55] features. Recently, deep neural net-
works have been applied to face anti-spoofing. There are
classification-based methods [47, 66, 74], regression-based
methods [3, 35, 45, 76], and generative models [31, 46, 48,
72]. In addition, the vision transformer also shows promis-
ing performance in tackling FAS [23, 29].
Cross-domain FAS Recently, several works explore learn-
ing FAS models from multiple domains that generalize to
unseen ones. Some methods [15,27,39,69,80] require data
from the target domain to adapt the model (i.e., domain
adaptation), while others [30,34,58,60,63,72] learn shared
features based on adversarial training and triplet loss (i.e.,
domain generalization). A few methods [11,61,71] explore
meta-learning to simulate the domain shift at training time.
Most previous works regard the domain-specific signals as
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a negative impact. Contrastively, our paper first systemati-
cally exploits the explicit usage of domain-specific signals
by invariant risk minimization in cross-domain FAS.
Domain-invariant Classifier Learning a domain-invariant
classifier has always been the focus of machine learning for
decades [8, 9, 28, 64] and is also one of the keys to the suc-
cess of domain generalization. Along this line, kernel-based
methods [5, 18, 24, 26, 40, 51] propose to learn a domain-
invariant kernel from the training data. Domain adversar-
ial learning [19, 20, 25, 30, 40, 42, 56, 60, 72] adversarially
trains the generator and discriminator while the generator is
trained to fool the discriminator to learn domain invariant
feature representations. Recently, Invariant Risk Minimiza-
tion (IRM) and its variants [1, 2, 14, 37, 50, 56, 62] seek to
directly enforce the optimal classifier on top of the represen-
tation space to be the same across all domains. However,
IRM is known to be hard to optimize and can fail in non-
linear optimization [32, 57]. In this paper, we propose an
equivalent objective (PG-IRM) which is easier to optimize
and achieve strong performance.

3. Method
We formally introduce the new learning framework, FAS

with separability and alignment (dubbed SA-FAS). The
goal is to produce a feature space with two critical prop-
erties: (1) Separability: We encourage samples from differ-
ent domains and from different classes to be well-separated;
(2) Alignment: Live-to-spoof transition3 is aligned in the
same direction for all domains. These two properties work
jointly: separability ensures the awareness of domain vari-
ance in the feature space; alignment encourages the domain
variance to be invariant to its live-vs-spoof hyperplane.

This section is structured as follows: Sec. 3.1 describes
the problem setup, followed by the algorithm design of
separability (Sec. 3.2) and alignment (Sec. 3.3). Finally,
Sec. 3.4 summarizes the training and inference processes.

3.1. Problem Setup
We start by defining the setting of the cross-domain

FAS problem. We denote by X = Rd the input space
and Y = {0 (live), 1 (spoof)} the output space. A learner
is given access to a set of training data from E domains
E = {e(1), e(2), .., e(E)} and is evaluated on test domain
e∗. Let ei as the domain label for the i-th sample, we de-
note D = {(xi, yi, ei)}Ni=1 drawn from an unknown joint
data distribution P defined on X × Y × E . Cross-domain
FAS is a special binary classification problem to distinguish
live and spoof faces from an unseen domain. The goal is to
define a decision function:

f : x→ {0 (live), 1 (spoof)},
which classifies whether a sample x from a new domain e∗

is live or spoof.
3The transition can be considered as a path in the high-D manifold.

In our network architecture, function f consists of two
components: (1) a deep neural network encoder φ : X →
Rm that maps the input x to a l2-normalized feature em-
bedding z = φ(x); (2) a classifier (via a weight vector)
β : Rm → R that maps the m-dimensional embedding z to
a scalar value, where a binary cross-entropy loss can be ap-
plied after using a sigmoid function. Because the true distri-
bution of live/spoof data is unknown, the optimization com-
monly relies on an Empirical Risk Minimization (ERM).
Remark on the terminology: β can be considered as a
norm vector of the hyperplane separating live and spoof
samples. In the remaining part of the paper, when we
use “live-vs-spoof hyperplane” or “hyperplane”, it has
the same meaning as β. Note, “live-to-spoof transition”
is an abstract procedure in the image space, while “live-
vs-spoof hyperplane” refers to a concrete classifier in the
feature space.
Preliminary on Empirical Risk Minimization (ERM):
ERM principle [65] is a ubiquitous strategy that merges data
from all training domains and learns a predictor that mini-
mizes an averaged training error. Specifically,

LERM = min
φ,β

1

|E|
∑
e∈E
Re(φ, β), (1)

where the empirical risk function Re(φ, β) for a given en-
vironment e is defined by:

Re(φ, β) , E(xi,yi,ei=e)∼D` (f(xi;φ, β), yi) .

Common choices of the loss function `(·, ·) include cross-
entropy loss [30] and L1 regression loss [22, 45].

However, if samples from different domains are mixed
together, ERM can utilize the easiest difference (image
resolution, blurriness, camera setting) to differentiate live
vs. spoof. Such a classifier will undesirably leverage spuri-
ous correlations to make live/spoof predictions [2]. There-
fore, the naive strategy can hurt the generalization of the
unseen domain. As shown in Fig. 2(a), ERM tends to fit all
training data together and fails to learn a domain-invariant
classifier with the mixed feature space.

3.2. Separability
We characterize the domain separability as supervised

contrastive learning (dubbed SupCon) [33], one of the lat-
est developments for visual representation learning. Unlike
other contrastive learning methods [9,10] that treat the aug-
mented samples as a single class, SupCon aims to learn a
representation space that gathers samples with the same la-
bels while repelling samples from different ones. It natu-
rally suits the need for the cross-domain FAS setting, since
we treat samples with the same domain and with the same
live/spoof label to form a cluster.

Given a training mini-batch {xi, yi, ei}bi=1, we aug-
ment [33] the mini-batch as {x̃i, ỹi, ẽi}2bi=1, using two
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Figure 2. Optimization objectives: Illustration of feature space optimized by different objectives: (a) ERM, (b) ERM+SupCon, (c)
SA-FAS (ours). Circle/cross denotes live/spoof label; different colors indicate different domains. A UMAP visualization for real data is
provided in Appendix (Fig. 8) to support the feature distribution shown in the toy example.

random augmentations x̃2i and x̃2i−1 of inputs xi, with
ỹ2i−1 = ỹ2i=yi, ẽ2i−1 = ẽ2i=ei. These images are fed into
the network, yielding L2-normalized embeddings {zi}2bi=1.
The per-batch SupCon loss (separability loss) is defined as:

Lsep =

2b∑
i=1

−1

|S(i)|
∑
j∈S(i)

log
exp (zi · zj/τ)∑2b

t=1,t6=i exp (zi · zt/τ)
,

(2)
where τ is a temperature parameter, i is the index of a sam-
ple typically called the anchor, S(i) = {j ∈ {1, . . . , 2b} :
j 6= i, ỹj = ỹi, ẽj = ẽi} is the index set of positive samples
that have the same live/spoof labels and belong to the same
domain as the anchor i, and |S(i)| is its cardinality. All
the other samples in the mini-batch are referred to as nega-
tive samples. Since positive samples are pulled together and
negative samples are pushed apart, SupCon in Fig. 2(b) is
capable of providing more distinguishable feature clusters
for different domains and liveness classes, compared to a
typical feature space learned by a vanilla ERM in Fig. 2(a).

3.3. Alignment
Fig. 2(b) also shows that separability alone is not suffi-

cient for improving domain generalization. The separated
feature clusters can be located in any place in the feature
space, and hence the domain-wise optimal hyperplane re-
mains variant. In this case, the global classifier can still
undesirably incorporate the spurious correlation as the de-
ciding factor as we show in Fig. 1. To tackle this, we natu-
rally investigate the following problem:

How do we regularize a global live-vs-spoof hyperplane
to align with domain-wise live-vs-spoof hyperplanes?

We propose to formulate this problem as Invariant Risk
Minimization (IRM) [2], which aims to jointly optimize the
feature space φ and the global live-vs-spoof hyperplane β,
where β is also optimal for each domain, shown in Fig. 2(c).
Preliminary on Invariant Risk Minimization (IRM):
Specifically, the IRM objective can be formulated as the fol-

lowing constrained optimization problem:

min
φ,β∗

1

|E|
∑
e∈E
Re(φ, β∗)→ LIRM (3)

s.t. β∗ ∈ arg min
β
Re(φ, β),∀e ∈ E . (4)

Compared to the ERM (1), IRM enforces an additional
constraint (4) to learn the domain-invariant hyperplanes.
Specifically, if we define the domain-wise optimal hyper-
plane as βe ∈ arg minβRe(φ, β). A sufficient condition
for constraint (4) to hold is βe(1) = ... = βe(E) = β∗, which
requires consistency between the globally optimal hyper-
plane and the domain-wise optimal hyperplanes. However,
IRM is known to be hard to solve [32,57] due to the bi-level
optimization nature of objective (3) and constraint (4).
Projected Gradient Optimization for IRM (PG-IRM):
We leverage Projected Gradient (PG) algorithm [52] to
solve the non-trivial optimization objective (3), termed as
PG-IRM. In PG-IRM, we propose to optimize multiple hy-
perplanes and converge them into a globally one via pro-
jected gradient. In Appendix A.1, we provide detailed proof
of PG-IRM objective being equivalent to IRM. Formally,
the objective is rewritten as:

Theorem 1. (PG-IRM objective) For all α∈(0, 1), the IRM
objective is equivalent to the following objective:

min
φ,β

e(1)
,...,β

e(E)

1

|E|
∑
e∈E
Re(φ, βe)→ Lalign (5)

s.t. ∀e ∈ E ,∃βe ∈ Ωe(φ), βe ∈ Υα(βe),

where the parametric constrained set for each environment
is simplified as Ωe(φ) = arg min

β
Re(φ, β), and we define

the α-adjacency set:

Υα(βe) = {υ| max
e′∈E\e

min
βe′∈Ωe′ (φ)

‖υ − βe′‖2 (6)

≤ α max
e′∈E\e

min
βe′∈Ωe′ (φ)

‖βe − βe′‖2} (7)
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Figure 3. PG-IRM optimization process: An illustration of why a vanilla IRM can suffer from an infeasible solution (a), and how the
proposed PG-IRM algorithm jointly updates the feature space and multiple hyperplanes towards convergence (b)-(d).
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Figure 4. Euclidean projection: Illustration of Euclidean projec-
tion (solid black dot) to the α-adjacency set Υα (βe). Detailed
proof and steps are provided in Alg. 2 in Appendix A.2.

Fig. 3 shows the intuition of the optimization pro-
cess. For a 3-domain case, PG-IRM starts with a shared
feature space φ and 3 separate hyperplanes βe(1) , βe(2) ,
βe(3) for each domain (Fig. 3(b)). After each projected
gradient descent, the hyperplanes move closer with fea-
ture space jointly updated (Fig. 3(c)). Upon convergence,
βe(1) , βe(2) , βe(3) become nearly identical (Fig. 3(d)), satis-
fying the IRM constraint β∗ = βe(1) = βe(2) = βe(3) for all
domains. We provide two main insights of our PG-IRM al-
gorithm (see more details in Appendix A):

1. Optimizing multiple hyperplanes: Compared to the
conventional IRM that optimizes a single hyperplane,
it is easier to converge for PG-IRM that optimizes mul-
tiple hyperplanes (i.e., one for each domain). Shown
in Fig. 3(a-b), for the same feature space from the in-
termediate optimization stage, the solution β∗ to con-
ventional IRM may not exist and the optimization has
to be terminated. In contrast, βe(1) , ..., βe(E) always
exists (Fig. 3(b)) which makes solving for multiple hy-
perplanes more viable.

2. Pushing hyperplanes to be closer: To align βe(1) ,
βe(2) and βe(3) , PG-IRM updates domain-wise hyper-
planes by interpolating with other hyperplanes. It can
be mathematically considered as projecting the param-
eters of a hyperplane into the α-adjacency set Υα(βe)
as we illustrated in Fig. 4.
Remark (why PG is not applicable to IRM): The PG
algorithm can be infeasible for the conventional IRM,

Algorithm 1 Training pipeline for SA-FAS
1: Input: Training data D = {(xi, yi, ei)}Ni=1, network

encoder φ, classifiers βe(1) , ..., βe(E) , learning rate γ,
alignment parameter α, alignment starting epoch Ta.

2: for t in 0, 1, ..., T do
3: Data Prep.: Sample and augment a mini-batch.
4: Forward/Backward: Calculate gradient by Lall.
5: for e ∈ E do
6: β̃t+1

e = βte − γ∇βteLall . SGD
7: select βtē with ē = argmax

e′∈E\e
‖β̃t+1

e − βte′‖2
8: α′ = 1− 1t>Ta(1− α) . α′ is 1 when t ≤ Ta
9: βt+1

e = α′β̃t+1
e + (1− α′)βtē . Interpolation

10: end for
11: Update φt+1 = φt − γ∇φtLall. . Update encoder
12: end for

as the solution set for (4) can be empty and is thus non-
projectable. Our PG-IRM objective in Eq. (7) contains
a non-empty α-adjacency set Υα(βe), and guarantees
being projectable by simple linear interpolation.

3.4. Training and inference

Overall losses Considering the contrastive loss Eqn. (2),
the overall objective (dubbed as SA-FAS) can be written as:

min
φ,β

e(1)
,...,β

e(E)

Lalign + λLsep → Lall (8)

s.t. ∀e ∈ E ,∃βe ∈ Ωe(φ), βe ∈ Υα(βe),

where λ is the coefficient for the loss term. The overall
training pipeline is provided in Alg. 1.
Inference At the inference stage, we use the mean hyper-
plane from βe(1) , ..., βe(E) to get the final score. Specifi-
cally, the output is given by

f(x) = Ee∈E [βTe φ(x)].

Note that upon convergence, the cosine distance between
any two of βe(1) , ..., βe(E) is very close to 1, i.e., βe(1)≈ ...≈
βe(E) . This observation is verified in Appendix C, with an
ablation (converged angles vs. different α) in Appendix D.
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Method (%) OCI→M OMI→C OCM→I ICM→O
HTER ↓ AUC ↑ HTER ↓ AUC ↑ HTER ↓ AUC ↑ HTER ↓ AUC ↑

MMD-AAE [40] 27.08 83.19 44.59 58.29 31.58 75.18 40.98 63.08
MADDG [60] 17.69 88.06 24.50 84.51 22.19 84.99 27.98 80.02
SSDG-M [30] 16.67 90.47 23.11 85.45 18.21 94.61 25.17 81.83

DR-MD-Net [68] 17.02 90.10 19.68 87.43 20.87 86.72 25.02 81.47
RFMeta [61] 13.89 93.98 20.27 88.16 17.30 90.48 16.45 91.16

NAS-FAS [77] 19.53 88.63 16.54 90.18 14.51 93.84 13.80 93.43
D2AM [11] 12.70 95.66 20.98 85.58 15.43 91.22 15.27 90.87

SDA [71] 15.40 91.80 24.50 84.40 15.60 90.10 23.10 84.30
DRDG [44] 12.43 95.81 19.05 88.79 15.56 91.79 15.63 91.75
ANRL [43] 10.83 96.75 17.83 89.26 16.03 91.04 15.67 91.90

SSAN-M [72] 10.42 94.76 16.47 90.81 14.00 94.58 19.51 88.17
SSDG-R [30] 7.38 97.17 10.44 95.94 11.71 96.59 15.61 91.54
SSAN-R [72] 6.67 98.75 10.00 96.67 8.88 96.79 13.72 93.63
PatchNet [66] 7.10 98.46 11.33 94.58 13.40 95.67 11.82 95.07

SA-FAS (Ours) 5.95 96.55 8.78 95.37 6.58 97.54 10.00 96.23

Table 1. Comparisons with SoTA
methods: Cross-domain face anti-
spoofing is evaluated among four pop-
ular benchmark datasets: CASIA (C),
Idiap Replay (I), MSU-MFSD (M),
and Oulu-NPU (O). Methods are com-
pared at their best performance follow-
ing the commonly used evaluation pro-
cess [30]. ↑ indicates larger values are
better, and ↓ indicates smaller values
are better.

Method (%) OCI→M OMI→C OCM→I ICM→O
HTER↓ /AUC↑/TPR95↑ HTER↓ /AUC↑/TPR95↑ HTER↓ /AUC↑/TPR95↑ HTER↓ /AUC↑/TPR95↑

SSDG-R [30] 14.65 1.21 / 91.93 1.35 / 53.68 2.56 28.76 0.89 / 80.91 1.10 / 41.47 2.68 22.84 1.14 / 78.67 1.31 / 50.80 5.95 15.83 1.29 / 92.13 0.96 / 66.54 4.00

SSAN-R [72] 21.79 3.68 / 84.06 3.78 / 51.91 4.28 26.44 2.91 / 78.84 2.83 / 45.36 4.29 35.39 8.04 / 70.13 9.03 / 64.00 2.70 25.72 3.74 / 79.37 4.69 / 36.75 5.19

PatchNet [66] 25.92 1.13 / 83.43 0.87 / 38.75 8.31 36.26 1.98 / 71.38 1.89 / 19.22 3.85 29.75 2.76 / 80.53 1.35 / 54.25 2.18 23.49 1.80 / 84.62 1.92 / 39.39 6.83

SA-FAS (Ours) 14.36 1.10 / 92.06 0.53 / 55.71 4.82 19.40 0.66 / 88.69 0.67 / 50.53 3.60 11.48 1.10 / 95.74 0.55 / 77.05 3.26 11.29 0.32 / 95.23 0.24 / 73.38 1.64

Table 2. Evaluation upon convergence: Evaluation of cross-domain face anti-spoofing among CASIA (C), Idiap Replay (I), MSU-MFSD
(M), and Oulu-NPU (O) databases. Methods are compared at their mean/std performance based on the last 10 epochs.

4. Experiments
4.1. Experimental setups

Datasets and protocols We evaluate on four widely used
datasets: Oulu-NPU (O) [7], CASIA (C) [79], Idiap
Replay attack (I) [13], and MSU-MFSD (M) [73]. Fol-
lowing prior works, we treat each dataset as one domain and
apply the leave-one-out test protocol to evaluate their cross-
domain generalization. Specifically, we refer OCI→M to
be the protocol that trains on Oulu-NPU, CASIA, Idiap
Replay attack and tests on MSU-MFSD. OMI→C,
OCM→I and ICM→O are defined in a similar fashion.

Implementation details The input images are cropped us-
ing MTCNN [78] and resized to 256×256. For fair com-
parisons with SoTA methods [30, 66, 72], we use the same
ResNet-18 backbone. We train the network with SGD opti-
mizer and an initial learning rate of 5e-3, which is decayed
by 2 at epoch 40 and 80 and the total training epoch is 100
in most set-ups4. We set the weight decay as 5e-4 and the
batch size as 96 for each training domain. For SA-FAS hy-
perparameters, we set α=0.995, λ=0.1 and Ta=20.

Evaluation metrics We evaluate the model performance
using three standard metrics: Half Total Error Rate (HTER),
Area Under Curve (AUC), and True Positive Rate (TPR95)
at a False Positive Rate (FPR) 5%. While HTER and AUC
assess the theoretical performance, TPR at a certain FPR is
adept at reflecting how well the model performs in practice.

4Due to the smaller training data size of ICM, we let the ICM→O to
train for 300 epochs and decay at epoch 120 and 240.

4.2. Cross-domain performance

Tab. 1 summarizes our comparison with an extensive
collection of recent studies, including SoTA methods:
PatchNet [66], SSAN [72] and SSDG [30]. SA-FAS out-
performs the rivals by a significant margin on cross-domain
FAS benchmarks. In particular, we improve upon the best
baseline [72] by 2.30% in HTER in the setting OCM→I,
which is more than 25% improvement.

Comparison upon convergence Note that the performance
in Tab. 1 follows the convention in [30], which is reported
on the training snapshot (e.g., epoch 16) with the lowest test
error. While this setting may manifest the best performance
from the model, the results can significantly fluctuate on the
test set and hard to reflect the generalization performance
when a test set is unavailable (shown in Appendix B). To
provide a more fair setting, we propose to report the av-
erage performance from the last 10 epochs upon conver-
gence. In our case, the stopping criterion is either (1) the
binary classification loss for live/spoof is smaller than 1e-3
for consecutive 10 epochs, or (2) the epoch number reaches
max limit, whichever comes first.

In Tab. 2, we compare with SoTA methods in this set-
ting, and provide three key observations: (1) The numbers
are way worse than the ones in Tab. 1 across all methods,
indicating the best model selected by conventional lowest
test errors [30] has large randomness. This also shows that
cross-domain FAS is far less-solved than expected. (2) The
standard deviation in Tab. 2 denotes how stable each method
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Method Average
HTER↓ AUC↑ TPR95↑

SimCLR [9] 22.53 1.31 84.42 1.04 51.14 3.44

SimSiam [10] 18.89 0.97 89.93 0.80 56.62 2.88

Triplet [59] 18.75 2.31 88.11 2.30 50.53 8.76

SupCon (SSDG) [30] 17.91 1.05 90.10 0.68 61.98 2.87

SupCon [33] 17.03 1.73 90.68 1.29 56.72 5.06

ERM 17.22 1.26 90.21 1.38 58.62 3.77

DANN [21] 17.93 1.02 90.66 0.56 58.66 3.14

IRM-v1 [2] 17.41 0.77 91.16 0.52 60.98 2.10

VREx [38] 25.02 1.92 80.65 2.20 45.12 3.78

IB-IRM [1] 17.57 0.74 91.71 0.51 62.16 2.35

PG-IRM (Ours) 15.58 0.96 92.03 0.62 63.31 2.59

SA-FAS (Ours) 14.25 0.79 92.93 0.49 64.16 3.33

Table 3. Ablation study: The averaged performance is computed
over all four cross-domain settings.

performs. Most methods can converge to a relatively stable
status, while methods with an adversarial loss (e.g., [72])
have a relatively larger standard deviation, indicating adver-
sarial loss might trigger more unstable training. (3) In our
setting, SA-FAS still largely outperforms SoTA [30,66,72],
which further validates the superiority of our method. Our
method is also the most stable compared to SoTA, with the
smallest standard deviation. We proceed by analyzing why
traditional methods are less favorable in cross-domain FAS
and why our methods perform better.

5. Ablation and Discussion
5.1. Effectiveness of loss components

Our overall objective function Eq. (8) consists of two
parts: (a) Separability loss (Lsep) for feature space; and (b)
Alignment loss (Lalign) for regularizing the classifier. We
ablate the contribution of each component in Tab. 3.

Separability loss We consider the two most common
strategies used in the contrastive learning community (i.e.,
SimCLR [9], SimSiam [9]) and one in face recogni-
tion (i.e., Triplet loss [59]). We also provide the
comparison of SupCon with the clustering policy used in
SSDG [30]5. All losses are directly applied on the penulti-
mate layer’s feature φ(x) with the same hyper-parameters,
and all final classifications are supervised by ERM. We ob-
serve that the SupCon loss used in our framework outper-
forms other rivals. This validates the effectiveness of the
domain-wise separable feature space for cross-domain FAS.

Alignment loss IRM objective is known to be hard to op-
timize. Other than the proposed PG-IRM, existing works
IRM-v1 [2], IB-IRM [1], and VRex [37] alternatively
consider a Lagrangian form:

min
φ,β∗

1

|E|
∑
e∈E

[
Re(φ, β∗) + λ ‖∇β∗Re(φ, β∗)‖22

]
. (9)

5SSDG assumes live samples in all domains form one cluster, and spoof
samples in each domain respectively form the other three clusters.

(a) Correlation Between 
AUC and Alignment 

(b) Correlation Between 
AUC and Separability 

AU
C

AU
C

Figure 5. Correlation of performance and SA-FAS:: Correla-
tion between the test performance AUC and two properties mea-
sure (Salign/Ssep). Each dot represents one snapshot during the
training stage in all four cross-domain settings. We provide sepa-
rate figures for each setting in Appendix (Fig. 13).

In Tab. 3, we compare PG-IRM with the baseline ERM as
well as other IRM alternatives, and our method shows a bet-
ter overall performance. This shows further evidence that
the Lagrangian penalty term can be ineffective, especially
in the non-linear case [32,57]. In comparison, PG-IRM op-
timizes the IRM objective directly with Projected Gradient,
which clearly distinguishes it from existing methods.

Overall, the ablation studies suggest all components in
our framework are indispensable to enhancing the general-
ization ability of cross-domain spoof detection.

5.2. Separability and alignment analysis
SA-FAS aims to produce a feature space with two critical

properties: Separability and Alignment. In this section, we
empirically investigate if these two properties can lead to a
better generalization performance. Specifically, we provide
two corresponding measures based on the learned classifiers
and the extracted feature vector z of samples from the test
domain. We define the separability score as:

Ssep = 1− cos(Espoof [z],Elive[z]),

where we measure the cosine angle between the center of
live/spoof features. A separated feature space naturally
leads to a small cosine value and thus a larger Ssep score.
For the alignment score, we define:

Salign = Ee∈E [cos(βe, Espoof [z]− Elive[z]) )], (10)

where the trajectory from the center of spoof to live is
treated as an oracle vector, which we measure how close
it is with the norm vector of β of the learned hyperplane.

oracle vector

With the measure of two properties, we show their cor-
relation to the generalization performance (i.e., AUC) in
Fig. 5. We see that Ssep and Salign are positively related
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Live samples from CASIA/MSU/REPLAY/OULU Spoof samples from CASIA/MSU/REPLAY/OULU  XXX X

 Train on CASIA/MSU/REPLAY 
Test on OULU  

 Train on CASIA/OULU/REPLAY 
Test on MSU 

 Train on OULU/MSU/REPLAY 
Test on CASIA  

 Train on CASIA/OULU/MSU
Test on REPLAY

OCI -> M OMI -> C OCM -> I ICM -> O

Live-vs-spoof hyperplane

Figure 6. Feature learned in different domains: UMAP [49] projection of the penultimate layer of ResNet-18 trained with SA-FAS in the
cross-test setting of face anti-spoofing datasets. The dotted line shows the decision boundary derived from training samples in 2D space.

Live samples@training domain MSU/REPLAY/OULU 
Spoof samples@training domain MSU/REPLAY/OULU  XX X

Live samples@test domain CASIA
X Spoof samples@test domain CASIA

DANN SSDG (a) (b)

Figure 7. Features of DANN vs. SSDG: UMAP [49] visualization
of the penultimate layer of ResNet-18 trained with DANN [21] and
SSDG [30] in the cross-test setting of OMI→C.

to their test performance. It validates that these two proper-
ties are beneficial for a domain-invariant classifier. Specif-
ically, Fig. 5(a) compares the setting with and without PG-
IRM. Using PG-IRM leads to a higher alignment score and
AUC, which verifies that PG-IRM can better align the live-
vs-spoof hyperplanes for the unseen domain and improve
the generalization ability. Similarly, Fig. 5(b) compares the
setting with and without SupCon. The results validate that
SupCon can lead to better separability in the feature space
which benefits the classification.

5.3. UMAP visualization
Fig. 6 first provides UMAP [49] visualization of SA-FAS

feature space from the penultimate layer. We see that the
hyperplane between live samples and spoof samples is con-
sistent across different training domains and also transfer-
able to unseen test domains. For instance, in the setting of
OMI→C, the test live samples in blue circles can be sepa-
rated from the test spoof samples in blue crosses by the hy-
perplane. Another interesting finding is that some CASIA
samples in blue are closer to OULU with high resolution
and some are closer to MSU or REPLAY with low resolu-
tion, which reflects the fact that CASIA is a mixed dataset
with both low and high resolution images. These findings
validate that the domain gap (resolution) manifests in a way
that is invariant to the live-vs-spoof hyperplane.

Beyond numerical and visual results, the superiority of

domain-variant feature space can also be validated by theo-
retical support. Specifically, the estimated error bound for
binary classification in domain generalization [5] becomes
larger if (M,n) is replaced with (1,Mn), where M is the
domain number and n is the training set size per domain.
It indicates that separately training datasets from different
domains is better than pooling them into one mixed dataset.
DANN [21] and SSDG [30] visualization We also com-
pare the feature space of methods that aim to remove
domain-specific signals from its feature representation.
DANN [21] leverages the adversarial loss to encourage the
backbone to provide a domain-invariant feature. Fig. 7(a)
shows that the domain gap yet still broadly exists, especially
for the test data from an unseen domain, which backfires on
the generalizability of the classifier. Similarly, SSDG [30]
learns a partial domain-invariant feature space where all live
samples are clustered in one group while spoof samples are
kept to be domain-dispersed. Although the degradation di-
rection aligns better between train and test, compared to
DANN, the domain gap still exists for live training sam-
ples as shown in Fig. 7(b). These findings further validate
the necessity of regularizing the live-vs-spoof hyperplanes
to be consistent across different domains.

6. Conclusion
This paper provides a new learning framework SA-FAS

that learns domain-variant features but domain-invariant
decision boundaries for cross-domain FAS. Our frame-
work is naturally motivated, which facilitates invariant de-
cision boundaries and learning distinguishable representa-
tions. We provide important theoretical insights that IRM
objectives can be equivalently optimized by the PG with
an alternative objective. Experiments show that SA-FAS
can notably improve performance compared to the current
best methods, establishing state-of-the-art. We also discuss
the limitation of our work in Appendix E. We hope this pa-
per will inspire more future works in incorporating domain-
specific signals in FAS feature representation, and also ex-
tending this idea to broader domain generalization tasks.

8



References
[1] Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-

Christophe Gagnon-Audet, Yoshua Bengio, Ioannis
Mitliagkas, and Irina Rish. Invariance principle meets
information bottleneck for out-of-distribution generaliza-
tion. Advances in Neural Information Processing Systems,
34:3438–3450, 2021. 3, 7
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Gyemin Lee, and Clayton Scott. Domain generalization by
marginal transfer learning. The Journal of Machine Learning
Research, 22(1):46–100, 2021. 3, 8

[6] Zinelabidine Boulkenafet, Jukka Komulainen, and Abdenour
Hadid. Face anti-spoofing based on color texture analysis.
In 2015 IEEE international conference on image processing
(ICIP), pages 2636–2640. IEEE, 2015. 1, 2

[7] Zinelabinde Boulkenafet, Jukka Komulainen, Lei Li, Xiaoyi
Feng, and Abdenour Hadid. Oulu-npu: A mobile face pre-
sentation attack database with real-world variations. In 2017
12th IEEE international conference on automatic face &
gesture recognition (FG 2017), pages 612–618. IEEE, 2017.
6

[8] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. Pro-
ceedings of Advances in Neural Information Processing Sys-
tems, 2020. 3

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In Proceedings of the international
conference on machine learning, pages 1597–1607. PMLR,
2020. 3, 7

[10] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15750–15758, 2021. 3, 7

[11] Zhihong Chen, Taiping Yao, Kekai Sheng, Shouhong Ding,
Ying Tai, Jilin Li, Feiyue Huang, and Xinyu Jin. General-
izable representation learning for mixture domain face anti-
spoofing. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 35, pages 1132–1139, 2021. 2,
6

[12] Girija Chetty. Biometric liveness checking using multimodal
fuzzy fusion. In International Conference on Fuzzy Systems,
pages 1–8. IEEE, 2010. 2

[13] Ivana Chingovska, André Anjos, and Sébastien Marcel.
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A. Detailed Proof
In the main paper, we propose to use a project gradient

algorithm to efficiently optimize the hard IRM objective. In
this section, we provide a formal proof composed of two
main steps: (1) We show in Section A.1 that the original
IRM objective is equivalent to the PG-IRM objective shown
in Theorem 1. (2) In Section A.2, we show that the PG-
IRM objective can be efficiently optimized by the project
gradient descent algorithm illustrated in Alg. 2.

A.1. PG-IRM objective is equivalent to IRM

As a recap of our learning setting, a learner is given ac-
cess to a set of training data from E environments E =
{e(1), e(2), .., e(E)} and the IRM objective is the following
constrained optimization problem:

min
φ,β∗

1

|E|
∑
e∈E
Re(φ, β∗) (11)

s.t. β∗ ∈ arg min
β
Re(φ, β) ∀e ∈ E , (12)

where the risk function for a given domain/distribution e is:

Re(φ, β)
.
= E(xi,yi,ei=e)∼D` (f(xi;φ, β), yi) .

Theorem. (Recap of Theorem 1) For all α ∈ (0, 1), the
IRM objective is equivalent to the following objective:

min
φ,β

e(1)
,...,β

e(E)

1

|E|
∑
e∈E
Re(φ, βe) (13)

s.t. ∀e ∈ E ,∃βe ∈ Ωe(φ), βe ∈ Υα(βe), (14)

where the parametric constrained set for each environment
is simplified as

Ωe(φ) = arg min
β
Re(φ, β),

and we define

Υα(βe) = {υ| min
∀e′∈E\e,βe′∈Ωe′ (φ)

‖υ − βe′‖2

≤ α min
∀e′∈E\e,βe′∈Ωe′ (φ)

‖βe − βe′‖2}
(15)

Proof. The constraint (12) means that the β∗ is the optimal
linear classifier at all environments, which is equivalent to
saying that β∗ lies in the joint of the optimal solution set
in each environment. Equivalently, we can formularize the
optimization target (11) as a parametric constrained opti-
mization problem with constrain:

β∗ ∈ ∩
e∈E

Ωe(φ) , (16)

arg min
β
Re(φ, β)

where the parametric constrained set for each environ-
ment is Ωe(φ) = arg min

β
Re(φ, β) (Note that Ωe(φ) can be

a set with cardinality bigger than 1, since the optimal linear
classifier may not be unique). The constraint (16) implies
that β∗ lies in the joint set of Ωe(φ), which also means that
there is an element in each Ωe(φ) equal to β∗. We refer to
such element to be βe ∈ Ωe(φ), and we have the alternative
form:

∀e ∈ E ,∃βe ∈ Ωe(φ), β∗ = βe (17)

Equivalently,

∀e ∈ E ,∃βe ∈ Ωe(φ), βe ∈ ∩
e′∈E\e

Ωe′(φ) (18)

by (16) and (17)

The interpretation of constraint (18) is that — for all en-
vironments, there is a hyperplane in the optimal set Ωe(φ)
that also lies in the intersection of other environments’ op-
timal set ( ∩

e′∈E\e
Ωe′(φ)). Now we rewrite the optimization

target (3) as:

min
φ,β

e(1)
,...,βeE

1

|E|
∑
e∈E
Re(φ, βe) (19)

s.t. ∀e ∈ E ,∃βe ∈ Ωe(φ), βe ∈ ∩
e′∈E\e

Ωe′(φ) (20)

In this way, we can get rid of finding a unique β∗, but
instead optimizing multiple linear classifiers βe(1) , ..., βeE ,
which is easier to optimize in a relaxed form as we will
show next.

One key challenge for this optimization problem is that
there is no guarantee that ∩

e′∈E\e
Ωe′(φ) is non-empty for a

feature extractor φ and βe. We therefore relax the optimiza-
tion target as:

min
φ,ε,β

e(1)
,...,βeE

1

|E|
∑
e∈E
Re(φ, βe) (21)

s.t. ∀e ∈ E ,∃βe ∈ Ωe(φ), max
e′∈E\e

‖βe − Ωe′(φ)‖2 ≤ ε ,

(22)relax βe ∈ ∩
e′∈E\e

Ωe′(φ)

where we define the l2 distance between a vector β and
a set Ω as : ‖β − Ω‖2 = min

υ∈Ω
‖β − υ‖2.

Practically, ε can be set to be any variable converging to 0
during the optimization stage. Without losing the generality,
we change the constraint (22) to the following form:

∀e ∈ E ,∃βe ∈ Ωe(φ),

max
e′∈E\e

min
βe′∈Ωe′ (φ)

‖βe − βe′‖2 ≤

α max
e′∈E\e

min
βe′∈Ωe′ (φ)

‖βe − βe′‖2,
(23)
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Toy Example

Real Data
Visualization 

Live training domain CASIA/MSU/REPLAY Spoof trainging domain CASIA/MSU/REPLAY X X X

Alignment
Separability
Alignment Alignment

Feature Localization 
When Training Loss ≈ 0

Separability Separability

SA-FAS ERM + SupConERM(a) (b) (c)

Live training domain e   /e   /e    Spoof trainging domain e   /e   /e    (1) (2) (3) (1) (2) (3)

global live-vs-spoof hyperplane domain-wise live-vs-spoof hyperplane

Figure 8. Illustration of feature space with three optimization objectives (ERM/ERM+SupCon/SA-FAS). For each objective, the first row
shows the feasible solution in toy examples where each domain with a live/spoof label is represented by one circle/cross. The second role
shows the visualization of real data via linear projection. The visualization is conducted by inserting and scattering the features from a
2-dimensional hidden layer between the penultimate layer and the final output layer.

where α ∈ (0, 1). Note that constraint (23) will be sat-
isfied only when max

e′∈E\e
min

βe′∈Ωe′ (φ)
‖βe − βe′‖2 = 0. There-

fore, constraint (23) is equivalent to constraint (18), and
thus equivalent to the original constraint (12).

If we let the set

Υα(βe) = {υ| max
e′∈E\e

min
βe′∈Ωe′ (φ)

‖υ − βe′‖2

≤ α max
e′∈E\e

min
βe′∈Ωe′ (φ)

‖βe − βe′‖2}
(24)

Then the constraint (23) can be simplified to

∀e ∈ E ,∃βe ∈ Ωe(φ), βe ∈ Υα(βe) (25)

A.2. Projected Gradient Optimization for PG-IRM
objective

We proceed with introducing how the Projected Gradient
Descent can effectively optimize the PG-IRM objective. We
start by introducing the background of the Projected Gradi-
ent Descent algorithm.

Projected Gradient Descent is commonly applied in con-
strained optimization, which aims to find a point θ achiev-
ing the smallest value of some loss function L subject to the

requirement that θ is contained in the feasible set Ω. For-
mally, the objective can be written as:

min
θ∈Ω
L(θ)

If we minimize the objective L(θ) by gradient descent,
we have

(GD) θ := θ − γ∇L(θ),

where γ is the step size. However, it is not guaranteed that
the updated θ still falls into the set Ω. The projected gradient
descent (PGD) algorithm is designed to project the solution
back in the feasible set. Formally,

(PGD) θ := PΩ(θ − γ∇L(θ)),

where the PΩ(·) is defined as the Euclidean Projection:

PΩ(u) = arg min
v∈Ω

‖u− v‖2

In the PG-IRM objective, we have the constraint set
Ω = Υα(βe), we show in the next Lemma 2 that the Eu-
clidean Projection from βe to Υα(βe) is equivalent to the
linear interpolation between βe and the farthest hyperplane
βē for environment ē.

Lemma 2. Given that
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Algorithm 2 PG-IRM
Initialize φ, βe(1) , ..., βe(E) , learning rate γ, alignment pa-
rameter α, alignment starting epoch Ta.
for t in 0, 1, ..., do

Run forward pass and calculate the gradient.
for e ∈ E do

β̃t+1
e = βte − γ∇βteLPG-IRM

α′ := 1− 1t>Ta(1− α)
select βtē with ē = argmax

e′∈E\e
‖β̃t+1

e − βte′‖2

βt+1
e = α′β̃t+1

e + (1− α′)βtē
end for
Update φt+1 = φt − γ∇φtLPG-IRM.

end for

Υα(βe) = {υ| max
e′∈E\e

min
βe′∈Ωe′ (φ)

‖υ − βe′‖2

≤ α max
e′∈E\e

min
βe′∈Ωe′ (φ)

‖βe − βe′‖2}

We have:

PΥα(βe)(βe) = αβe + (1− α)βē,

where βē is selected with ē = argmax
e′∈E\e

‖βe − βe′‖2.

Proof. We give the proof in an intuitive way shown in Fig-
ure 9. Specifically, the feasible region Υα(βe) can be re-
garded as an intersection of several hyper-spheres centered
with all domain-wise live-vs-spoof hyperplanes βe′ . The
radius is given by the α multiplying the distance to the far-
thest hyperplane βē. Therefore the Euclidean projection of
βe to the feasible set simultaneously lies on the surface of
the hypersphere and the line segments between βe and βē.
It can be easily verified that

PΥα(βe)(βe) = αβe + (1− α)βē,

satisfies the given criteria.
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Figure 9. Illustration of the Euclidean projection results (solid
black dot) to the feasible set Υα (βe).

Main results. When we have the projected form on the
constraint set, deriving the optimization strategy is thus
straightforward. As shown in Alg. 2, we first calculate the
gradient of hyperplanes for all domains

β̃t+1
e = βte − γ∇βteLPG-IRM.

We then select the farthest domain-wise hyperplanes βē
from other environments. The final projection results are
thus given by

βt+1
e = α′βt+1

e + (1− α′)βē,

as we demonstrated in Lemma 2.

Remark on the Ta. In the first Ta epochs, we let the fea-
ture encoder φ and domain-wise hyperplanes βe trained in a
standard way. The goal is to ensure that the hyperplanes βe
will reach or be close to the minimum of the domain-wise
empirical risk, and we have:

βe ∈ Ωe(φ).

In Alg. 2, we use an additional parameter α′ to manifest this
procedure:

α′ := 1− 1t>Ta(1− α)

Specifically, when t < Ta, α′ = 1, which means the orig-
inal gradient descent algorithm is applied. When t < Ta,
alpha′ = α, the projected gradient descent takes charge.

B. Why do we need a fair setting?
By visualizing the line plot of the HTER performance

over 100 training epochs in Fig. 10, we realize the test per-
formance on the unseen domain is highly testset-dependent
and unstable especially in the early epochs. Therefore, the
best number reported commonly adopted in existing liter-
ature [30, 66, 72] usually happens in an unpredictable ear-
lier epoch. Such “best” snapshot is also hard to be selected
by validation strategy because we have zero information re-
garding the test domain. As an alternative, we noticed that
the test performance is more stable in the last 10 epochs
upon convergence, which motivates us to propose using a
fairer comparison strategy introduced in Section 4.

C. Convergence of PG-IRM
Recall that in PG-IRM, we optimize multiple linear clas-

sifiers simultaneously βe(1) , βe(2) , βe(3) and gradually align
them during training. In this section, we would like to ver-
ify if PG-IRM indeed regularizes domain classifiers to be
close to each other and finally converges to the same one
β∗ = βe(1) = βe(2) = βe(3) . Empirically, we use the aver-
aged cosine distance between domain classifiers to measure
the distance between them:
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Figure 10. The line plot of the HTER performance tested on MSU
dataset when trained on CASIA, Replay and OULU with SSDG-
R [30] and SA-FAS over 100 training epochs.

Scos = Ee,e′∈E,e6=e′ [cos(βe, βe′)]

As shown in Fig. 11, the averaged cosine value between
domain classifiers diminishes gradually and finally con-
verges to 1, which suggests that they converge to a β∗ that
is aligned for all domains.

Training Epochs

Figure 11. The line plot of the Scos when trained on CASIA,
Replay and OULU with PG-IRM over 100 training epochs.

D. Sensitivity Analysis

In this section, we perform the sensitivity analysis of
hyper-parameter settings for SA-FAS in Fig. 12. The
performance comparison in the bar plot for each hyper-
parameter is reported by fixing other hyper-parameters. In
the figure, we observe that the performance of SA-FAS is
less sensitive to the learning rate and the alignment start-
ing epoch compared with the maximum gap of 1.2% in the
given range. We also notice that choosing the right align-
ment parameter α is more important, since a proper α en-
sures the domain-wise decision boundaries are aligned not
too fast and not too slow. In the extreme case, if α = 0, it
degenerates to the ERM after epoch Ta and if α = 1, the
domain-wise boundaries will never get aligned with each
other. In summary, our algorithm does not require heavy

hyper-parameter tuning as long as it falls into a reasonable
range.

E. Limitation
Our work has two limitations. Firstly, our framework

assumes the dataset collected from each domain contains
both live and spoof data. For example, SA-FAS can not
handle the training data with live samples only from domain
A and spoof samples only from domain B. Secondly, SA-
FAS may cause extra computation costs when the domain
amount is very large since we set up one hyperplane for
each domain.
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Figure 12. Sensitivity analysis of hyper-parameters: learning rate γ, alignment parameter α, alignment starting epoch Ta. The HTER is
reported on the mean performance based on the last 10 epochs. The middle bar in each plot corresponds to the hyperparameter value used
in our main experiments.
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Figure 13. Correlation between the test performance AUC and two properties measure. Each dot represents one snap-shot during the
training stage in four cross-domain settings.
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