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Abstract

Although current deep learning techniques have yielded
superior performance on various computer vision tasks, yet
they are still vulnerable to adversarial examples. Adver-
sarial training and its variants have been shown to be the
most effective approaches to defend against adversarial ex-
amples. These methods usually regularize the difference be-
tween output probabilities for an adversarial and its corre-
sponding natural example. However, it may have a negative
impact if the model misclassifies a natural example. To cir-
cumvent this issue, we propose a novel adversarial training
scheme that encourages the model to produce similar out-
puts for an adversarial example and its “inverse adversar-
ial” counterpart. These samples are generated to maximize
the likelihood in the neighborhood of natural examples. Ex-
tensive experiments on various vision datasets and architec-
tures demonstrate that our training method achieves state-
of-the-art robustness as well as natural accuracy. Further-
more, using a universal version of inverse adversarial ex-
amples, we improve the performance of single-step adver-
sarial training techniques at a low computational cost.

1. Introduction

Deep learning has achieved revolutionary progress in nu-
merous computer vision tasks [28, 44, 59] and has emerged
as a promising technique for fundamental research in mul-
tiple disciplines [35, 39, 56]. However, a well-established
study has demonstrated that Deep Neural Networks (DNN5s)
are extremely vulnerable to adversarial examples [12, 46],
which are indistinguishable from natural examples in hu-
man vision. In other words, a visually undetectable per-
turbation to the original example can lead to a significant
disruption of the inference result of DNNs. The stealthiness
of these tailored examples also makes them easy to bypass
manual verification [3, | 8], posing a potential security threat
to the safety of deep learning-based applications. Conse-
quently, adversarial robustness has been considered a new
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Figure 1. Average accuracy under different attack strengths for
two networks trained on natural and adversarial samples. We rank
test examples based on the natural classification accuracy in de-
creasing order and divide them into two equal halves. Note that
the negative e denotes the strength of inverse adversarial pertur-
bation. (a) Naturally trained models are extremely susceptible to
perturbations. (b) For adversarially trained models, the adversar-
ial effect is exacerbated on examples that are more possibly to be
misclassified. The line corresponds to natural examples.

measurement for deep learning security.

Various defense methods have been proposed to improve
the adversarial robustness of DNNs [25,50,52]. As the pri-
mary defense method, adversarial training [12,29,46] im-
proves intrinsic network robustness via adaptively augment-
ing adversarial examples into training examples. Existing
adversarial training methods mainly focus on the distribu-
tion alignment between legitimate examples and adversarial
examples to preserve the consistency of the DNN prediction
results [8, 48, 57]. However, there still exists a consider-
able feature representation gap between natural examples
and their adversarial counterparts, resulting in the undesir-
able decision boundary for the misclassification of natural
examples. The misclassification can further be exacerbated
when confronted with adversarial examples.

The natural intuition is that: most adversarial exam-
ples corresponding to misclassified natural examples are
more possibly to be misclassified. Opposite to adversaries
that are harmful to DNNs, we introduce inverse adversar-



ial examples' that are created via minimizing the objec-
tive function as an inverse procedure of adversary genera-
tion. Specifically, inverse adversarial examples are affilia-
tive to DNNs, which can be more possibly to be correctly
classified. To support this claim, we study the accuracy
of trained classification models on two groups of samples
(see Figure 1). We present the accuracy of adversarial ex-
amples and their inverse counterparts under different attack
strengths. For the adversarially trained model, the robust
accuracy of examples with high loss suffers from a heav-
ier drop than that of examples with low loss under larger
attack strengths. This means that the adversarial counter-
parts of low-confidence or even misclassified examples are
also misclassified. Therefore, the distribution alignment be-
tween two misclassified examples might have an unneces-
sary or even harmful effect on the robustness establishment.

In this paper, beyond the unnecessary or even harmful
matching manner between misclassified examples, we pro-
pose a novel adversarial training framework based on the
inverse version of adversarial examples, dubbed Inverse Ad-
versarial Training (IAT), which implicitly bridges the gap
between adversarial examples and the high-likelihood re-
gion of their belonging classes. Adversarial examples of
a certain category can thus be pulled closer to the high-
likelihood region instead of their original examples. Specif-
ically, we involve an inverse procedure of the standard
adversary generation to obtain the high-likelihood region.
In general, inverse adversarial examples can be viewed as
the regularization of original examples for reducing pre-
diction errors. Considering the multi-class decision sur-
face and computational cost, we design a class-specific
inverse adversary generation paradigm as opposed to the
instance-wise pattern. Furthermore, we establish a momen-
tum mechanism for the prediction of inverse adversaries to
stabilize the training process. A one-off version of the in-
verse adversary generation is also proposed for improving
time efficiency.

Comprehensive experiments demonstrate the effective-
ness and generalizability of our method that can efficiently
obtain a better trade-off between natural accuracy and ro-
bustness. We also show that our method can also be adapted
to larger models with extra generated data for robustness en-
hancement. Besides, the robustness of single-step adversar-
ial training methods can be further improved at a low cost
by incorporating our method.

The main contribution of this paper can be summarized
as follows:

* By analyzing the unnecessary, or even harmful, align-
ment between misclassified examples, we propose a
novel adversarial training framework based on the in-
verse version of adversarial examples, which promotes

I'The formal definition will be given in the following sections.

the aggregation of adversarial examples to the high-
likelihood region of their belonging classes.

* Based on the proposed Inverse Adversarial Training
(IAT) paradigm, we further design a class-specific uni-
versal inverse adversary generation strategy to mitigate
the class-wise imbalance hiding in the decision sur-
face. We also propose a one-off inverse adversary gen-
eration strategy to reduce computational costs with a
negligible performance loss.

» Extensive experiments demonstrate the effectiveness
of IAT compared with state-of-the-art methods when
using large models with extra synthetic data. Further-
more, we achieve a better trade-off between natural
accuracy and adversarial robustness efficiently. Our
method can also be combined with single-step adver-
sarial training methods as a plug-and-play component
for boosting robustness at a low cost.

Related Works. The lethal vulnerabilities of deep neural
networks against adversarial examples have been witnessed
in [4,12,32,46]. A myriad of attempts have been made to
defend against these tailored examples, including adversar-
ial training [21,29,48,57], adversarial detection [17,47], and
input transformation-based methods [41, 52, 53]. Among
them, adversarial training consistently remains to be the
most effective method [2] to improve intrinsic network ro-
bustness via augmenting the training data with adversarial
examples. In addition, most existing works generally in-
corporate a regularization term to narrow the distribution
difference between natural examples and their adversarial
counterparts [8,48,57], which has been demonstrated to be
beneficial for robustness enhancement. This matching man-
ner seems natural but might be misguided by misclassified
natural examples, as we showed in Figure 1. To circumvent
this issue, several efforts have been devoted to assigning
weights on losses in terms of the intensity of adversarial ex-
amples [10,27,58]. However, they mainly concentrate on
mitigating the imbalance of disturbance effect among ad-
versarial examples, while our primary focus is to prevent
the harmful alignment between misclassified examples by
incorporating inverse adversarial examples.

Inverse adversarial examples were first formally de-
scribed in [40], where Salman et al. studied them in vi-
sion systems to enhance in-distribution performance against
new corruptions. In comparison, we investigate the regular-
ization effect of inverse adversarial examples on the distri-
bution alignment during adversarial training for robustness
enhancement. A concurrent work [26] also exploits the in-
verse version of adversarial examples for adversarial robust-
ness incorporating different distance metrics. However, we
built on class-specific universal inverse adversaries for ad-
versarial training with more efficiency and robustness. We



also involve the feature-level prior knowledge in the inverse
adversary generation for supplementary regularization. Fur-
thermore, we show how our method can be combined with
single-step adversarial training techniques to improve both
the natural performance and robustness.

2. Background

Consider a DNN classifier fg : X — R with pa-
rameters @ that predicts probabilities of C' classes. Spe-
cially, we symbolize the output feature representation of the
penultimate layer (before logits) Fg(x) for a given example
x € X. Adversarial training can be an effective way to
enhance the robustness of DNNs against adversarial pertur-
bations, which adaptively involves adversarial examples in
training as strong data augmentation. For a specific dataset
(x,y) ~ D, the standard adversarial training [29] against
attacks under /,.-norm threat model can be formulated as
the following min-max optimization problem:

max Lce(fo (x+9),y)|, (1
181l <e

mein E(x,y) ~D
where Lcg is the cross-entropy loss and ¢ is the adversarial
perturbation under the /,-norm bound €. The outer min-
imization is to optimize empirical adversarial risk over the
network parameters 6. The inner maximization of adversar-
ial training can be viewed as searching for the most harm-
ful adversarial examples X = x + §, which can be simpli-
fied as an iterative Projected Gradient Descent (PGD) algo-
rithm [29] on the negative loss function.

Besides standard adversarial training, TRADES [57] and
MART [48] proposed to utilize Kullback—Leibler (KL) di-
vergence for distribution matching between natural exam-
ples and their adversarial counterparts. The objective func-
tion of TRADES [57] can be defined as follows:

rnajn ]E(x)y)wp [ECE (fo (x),y)+

we max L. (fo (x) | fo (x+ ) ],

1161l oo <€
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where Lk denotes KL divergence and w is the balancing
parameter for the trade-off of natural accuracy and adver-
sarial robustness. Generally, KL divergence encourages the
predictions of benign examples and adversarial examples to
share the same distribution. Nevertheless, this distribution
alignment can further undermine the adversarial robustness
when benign examples are misclassified, resulting in the
wrong guidance during adversarial training. A major draw-
back in adversarial training is that it costs more consider-
able computing resources than natural training [, 42, 51],
which hinders robust establishment on larger models. In
addition, adversarial training can suffer from more severe
overfitting than the natural training paradigm [38]. Later

in this paper, we will provide some insights related to the
above-mentioned challenges regarding adversarial training.

3. Method

In this section, we first formally define the inverse adver-
sarial example and introduce its class-specific (universal)
variant. We then propose a new adversarial training scheme,
coined as Universal Inverse Adversarial Training (UIAT),
via a regularizer that encourages the prediction alignment
between adversarial examples and the high-likelihood re-
gion of their corresponding classes. Furthermore, the in-
verse adversary momentum is also proposed for the sta-
bilization of the training process. For boosting time effi-
ciency, we design a one-off version of UIAT by computing
inverse adversaries only in one of the epochs without losing
much performance.

3.1. Inverse Adversarial Examples

For the image classification task, the adversary gener-
ation can be viewed as a process of crossing the decision
boundary for misclassification. On the contrary, generat-
ing inverse adversarial examples can be regarded as mov-
ing away from the decision boundary to the high-likelihood
region of a certain class. Specifically, this process can be
obtained by iteratively minimizing the classification loss
values of inverse adversarial examples. Formally, inverse
adversarial examples are inputs to machine learning mod-
els, which are tailored to cause the model to obtain more
accurate predictions than corresponding natural examples.
Similar to adversarial examples, inverse adversaries are ob-
tained by adding visually tiny perturbations to natural ones.
We here focus on £,,-norm bound B(x, ¢') with radius ¢’
around natural examples on inverse adversaries. One can
use PGD to generate inverse adversarial perturbations:

X =Tl (X' —a - sign (Ve Linw (X',9))), )

where o is the gradient descent step size, X’ represents ¢t
iteration update, and Ly, denotes the loss function for the
inverse adversary generation. Generally, the cross-entropy
loss can be a good choice for guiding the inverse adversary
generation. Nevertheless, the high-likelihood region of a
certain class is far away from any adjacent decision bound-
aries [22, 49], which means that inverse adversaries are far
away from adversarial examples at the feature level. Mean-
while, natural feature embeddings are also desired to lie on
the high-likelihood region from the geometric perspective.
We thus append a feature-level regularization during the in-
verse adversary generation for supplementary supervision.
Therefore, given a sample x and its adversarial counterpart
X, our inverse adversarial loss can be written as follows:

ﬁlnv (ka y) :['CE (f9 (5() ay)

1B (L1 (Fo (%), Fo (%)) — L1 (Fo (%), Fo R))],



where 3 denotes the weighting factor. Similar to insights
from adversarial feature space analysis [30], our triplet term
on latent representations can further prevent the overfitting
of inverse adversaries from extremely high predictions for
better guidance. The obtained inverse adversarial examples
can then be incorporated into the adversarial training for
robustness enhancement.

3.2. Class-specific Inverse Adversaries

We have introduced the instance-wise inverse adversar-
ial example in the previous section, which is effective in
approximating the high-confidence region in the decision
surface. However, the inverse adversary generation suffers
from a high computational cost due to iterative gradient
computation. In general, the instance-wise inverse adver-
sary generation can take almost the same time as the origi-
nal adversary generation. To reduce the computational cost
of inverse adversary generation, we further design a Class-
Specific Universal inverse adversary generation strategy in-
spired by [31,43]. The universal strategy allows examples
of the same class to share a universal adversarial perturba-
tion. In other words, each class owns a universal inverse ad-
versarial perturbation that can be effective in approaching
its high-likelihood region (lower the objective loss). In this
way, we can find a shared direction to reach high-likelihood
regions, which can also mitigate the individual noise be-
tween different examples. The class-specific universal ad-
versarial perturbation z, for class c can be defined as:

Liny (HIB(xc,e’) (XC + Zc) s yc) < Ly (Xca yc)
for “most” x°¢ ~D°.

&)

We sample natural examples x° and corresponding labels 3¢
from dataset D¢ of category c. The class-specific universal
inverse perturbation z, is effective in most of the examples
from the same class c for reducing the loss. Note that we
keep updating class-specific inverse perturbations through-
out the whole training stage. For a certain batch of data,
we can obtain the updated universal inverse perturbation by
solving the following optimization problem:

N
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where [V, is the number of training samples belonging to
class c of a batch. Specifically, we can further use PGD
to solve the above optimization problem to obtain class-
specific inverse adversarial perturbation z.. For time effi-
ciency, we only conduct a single-step PGD to update the
universal inverse perturbation for a certain category.

3.3. Universal Inverse Adversarial Training

We here show how the universal inverse adversaries can
be used to devise an effective adversarial training algorithm.

The universal inverse adversarial example X can be obtained
by adding the class-specific inverse perturbation to the orig-
inal example x. The loss function of Universal Inverse Ad-
versarial Training (ULAT) can be formulated as below:

Luiar =Lk (fe (5() ,y)Jr)\ - Lxi (P(t) ||f9 (i)) , (D)

where t denotes the current training epoch number. To mit-
igate the oscillations of noisy predictions throughout the
training process, we design a momentum mechanism on
the predicted probability of inverse adversaries via incor-
porating predictions from previous epochs. The momentum
mechanism to obtain aggregate predicted probability p(*)
can thus be described as:

(t) _ fo (5{) )
p o fy . p(tfl) _|_

ift<T 8)
(=) fo(), itt=T
where v is the momentum factor. Note that we start to en-
able the inverse adversary momentum at epoch 7' to stabi-
lize the training process. The main reason is that the learned
representation is unstable during the early training period.
Our UIAT method can thus bridge the gap between adver-
sarial examples and the high-likelihood region of their be-
longing classes for robustness enhancement. The pseudo-
code of our UIAT is provided in Algorithm 1. We can eas-
ily obtain standard IAT by replacing universal inverse ad-
versaries with instance-wise ones. (See Appendix B.1)

To further reduce the computational overhead, we pro-
vide a one-off strategy, which only conducts the inverse ad-
versary generation in a certain epoch 7" instead of generat-
ing inverse adversaries throughout the whole training pro-
cess. Before epoch 7", we replace p(*) in Equation (7) with
fo (x) for adversarial training, which is similar to [48]. Af-
terward, we keep replacing p'*) with the temporary proba-
bility p™") in following epochs ¢ > T". More details of our
one-off strategy are given in Appendix B.2.

4. Experiments

In this section, we conduct extensive experiments to
demonstrate the effectiveness and generalizability of our
method. We first introduce our experimental settings, in-
cluding datasets and implementation details. Next, we com-
pare our method with state-of-the-art adversarial training
methods in various settings, demonstrating the superiority
of our inverse adversarial training. Moreover, we show that
our method can be combined with single-step adversarial
training methods, which meaningfully increases their per-
formance at only a small additional cost.

4.1. Experimental Setups

Datasets. We conduct experiments on three standard
datasets: CIFAR-10, CIFAR-100 [24], and SVHN [34]. De-
tails of datasets are provided in Appendix A.1.



Algorithm 1 Universal Inverse Adversarial Training (UIAT)

Input: DNN classifier fg; dataset D = {(x,y)} with C classes; batch size m; learning rate 7; radius for adversaries €
and inverse adversaries ¢'; step size o’ for inverse adversary generation; weighting factors \; momentum factor -.

1: Randomly initialize the network parameter 6. Initialize z. ~ 0.001 - N(0,1),for 1 < ¢ < C

2: while not at end of training do

3. for each mini-batch {(x;,y;)}/, do

4: Initialize [§,,, < 0,for1 <c < C

5: forj=1,2,...,mdo

6: X; + PGDATTACK(X;,¥;, fo) > Find PGD adversarial example
7: )V(j “— X; + Zy;

8: o < Uiy + Lo (%5, 5;)

9: end for
10 forc=1,...,Cdo
11 Ze I <o (Ze — & - sign (Vg 15,,)) > Update class-specific inverse adversaries
12: end for
13: Obtain pg-t), for 1 < j < m, by Eq. (8) according to current epoch number ¢ > Inverse adversary momentum
W 0 0—7 Vo {%, Ler(fo(%;)5) + A Law (pNfo (57)) }
15: end for

16: end while
17: return Inverse adversarially trained model fq.

Table 1. Comparison of our methods (UIAT) using ResNet-18 trained on CIFAR-10, CIFAR-100, and SVHN with other adversarial training
methods. The £o-norm adversarial perturbations are restricted in € = 8/255. We report both natural accuracy (%) and robust accuracy

(%). The best result in each column is in bold.

Method CIFAR-10 CIFAR-100 SVHN
Natural PGD CW AA Natural PGD CW AA Natural PGD CW AA
SAT [29] 83.80 5140 50.17 47.68 5739 2836 2629 23.18 9246 5055 5040 46.07
TRADES [57] 82.45 5221 5029 4888 5436 2749 2419 23.14 90.63 58.10 55.13 52.62
MART [48] 8220 5394 5043 48.04 5478 2879 26.15 2458 89.88 5848 5248 48.44
HAT [36] 84.86 52.04 5033 4885 5873 2792 2460 2334 9206 5735 5477 52.06
UIAT 85.01 54.63 51.10 49.11 59.55 30.81 28.05 25.73 93.28 58.18 5549 5245
UIAT (One-off) 84.98 54.79 51.29 49.05 60.01 3049 2756 2545 93.14 5830 5545 5249
Implementation details. Following the setting on Ro- 4.2. Results
bustBench [0], we use ResNet-18 [14], Pre-activation Performance of UIAT. We compare our proposed UIAT

ResNet-18 (PRN-18) [15], and Wide-ResNet-28-10 (WRN-
28-10) [55] as the target networks. For training without
extra data, we set the number of epochs to 100 for CI-
FAR10/100 [24], and 30 for SVHN [34]. We adopt Stochas-
tic Gradient Descent (SGD) optimizer with Nesterov mo-
mentum factor 0.9 [33], cyclic learning rate schedule [45]
with a maximum learning rate of 0.1, and a weight de-
cay factor of 5 x 10~%. We adopt PGD method [29] with
10 steps for adversary generation during the training stage.
The maximum ¢,.-norm of adversarial perturbation is € =
8/255, while the step size « is set as 2/255 for CIFAR-
10/100 and 1/255 for SVHN following common practices.
We set the inverse adversary radius as € = 4/255. The reg-
ularization hyper-parameters 3 and - are set to 1.0 and 0.9
in Equation (4) and Equation (8). More details can be found
in Appendix A.2.

method with state-of-the-art adversarial training schemes as
shown in Table 1. We report the accuracies on natural ex-
amples as well as adversarial examples obtained using three
strong adversarial attacks: PGD [29] with 20 steps (step size
a = 2/255), CW [4], and Auto Attack (AA) [7] for a rig-
orous robustness evaluation. Note that AA is a reliable and
powerful ensemble attack that contains three types of white-
box attack as well as a strong black-box one. Not only does
our method enhance robust accuracy on these three datasets,
but it also achieves a better clean accuracy, hence a smaller
robustness gap. For CIFAR-100, our method significantly
boosts the AA robust accuracy by nearly 2% whilst im-
proving the natural accuracy. Our superior performance on
CIFAR-100 also represents the generalizability of UIAT on
a more complicated dataset with more classes. In addition,
we demonstrate that our UIAT with one-off inverse adver-



Table 2. Time cost comparison of adversarial training methods on
CIFAR-10 dataset with different network architectures. We report
the average training time (min/epoch) of these methods.

Table 4. Comparison of adversarial training methods using differ-
ent networks on CIFAR-10/CIFAR-100 with extra training data.
We report natural accuracy and (Auto-Attack) robust accuracy.

Method ResNet-18  WRN-28 WRN-34
Natural Training 0.35 0.93 1.22
TRADES [57] 2.57 14.13 16.60
HAT [36] 4.02 16.88 18.95
IAT 2.83 15.37 17.82
UIAT 2.20 11.90 14.77
UIAT (One-off) 1.96 10.74 13.36

Table 3. Adversarial robustness results under different attack con-
figurations using ResNet-18 on CIFAR-10. We present natural ac-
curacy and (Auto-Attack) robust accuracy of different attack radii.

€ Method Natural Robust
TRADES [57] 82.28 38.55
HAT [36] 81.94 40.12
107255 UIAT 82.79 40.61
UIAT (One-off)  82.76 41.16

TRADES [57] 79.37 31.84

HAT [36] 79.43 33.28

12/255 UIAT 79.50 34.32
UIAT (One-off)  79.30 34.61
TRADES [57] 74.89 18.70

HAT [36] 74.45 19.42

16/255 UIAT 74.29 21.82

UIAT (One-off)  74.86 21.96

sary generation can also obtain a similar performance as the
standard version of UIAT. In other words, the freezing of
well-learned class-specific perturbations can still facilitate
the distribution alignment for robustness improvement.

Computational cost comparison. In addition to outper-
forming state-of-the-art adversarial training methods on
natural accuracy and robustness, our UIAT method also has
a faster training speed. We compare the average training
time (min/epoch) of our methods against other adversar-
ial training methods, as presented in Table 2. For a fair
comparison, we conduct all the training experiments on a
single NVIDIA Tesla A100 GPU with the same batch size
m = 128 on the CIFAR-10 dataset using three different
network architectures. It can be seen that our one-off UIAT
method has an additional 51% time efficiency gain with re-
spect to the state-of-the-art adversarial training method, i.e.,
HAT [36] with ResNet-18. Note that the major time gap be-
tween IAT and UIAT comes from the difference in iteration
times. IAT requires an instance-wise iterative inverse adver-
sary generation manner, whilst UIAT only performs a single
gradient descent step on each example.

Adversarial training on large e. Besides the frequently-
used attack configuration, we also train ResNet-18 with our
UIAT method for larger e. Specifically, we report the ro-

Dataset Architecture Method Natural Robust
Rebuffi et al. [37]  83.53 56.66

HAT [36] 86.86 57.09

PRN-18 UIAT 87.34 58.46

CIFAR-10 UIAT (One-off) 87.10 58.15
Rebuffi et al. [37] 85.97 60.73

HAT [36] 88.16 60.97

WRN-28-10 UIAT 88.93  61.32

UIAT (One-off) 88.50 61.40

Rebuffi et al. [37]  56.87 28.50

PRN-18 HAT [36] 61.50 28.88

UIAT 62.20 29.40

CIFAR-100 UIAT (One-off) 61.54 28.90
Rebuffi et al. [37]  59.18 30.81

WRN-28-10 HAT [36] 62.21 31.16

UIAT 63.26 31.18

UIAT (One-off) 62.45 31.43

bustness results of the one-off version of the UIAT method
on CIFAR-10 under different ¢..-norm radii: 10/255;
12/255; 16/255. As shown in Table 3, we observe that our
UIAT method can achieve better robustness results while
preserving a comparable natural accuracy as HAT [36]
when facing stronger adversarial attacks.

Adversarial training with additional data. Following
the experimental settings of [13, 36, 37], we also conduct
several experiments to measure the generalizability of our
method with extra data. Particularly, we present the ro-
bustness results using different model architectures trained
on CIFAR-10 and CIFAR-100 with 1M synthetic images
produced by the Denoising Diffusion Probabilistic Model
(DDPM) [19] as the additional data. We compare our UIAT
method and its one-off variant version with state-of-the-
art approaches in Table 4. Note that we do not apply the
CutMix operation [54] following [36]. As observed, our
method obtains better robust accuracy while maintaining
the same or even better natural accuracy.

4.3. Single-Step Adversarial Training

The computational cost for multi-step adversarial train-
ing is expensive, which has become prohibitive to adversar-
ially train on larger models/datasets. In comparison, single-
step methods try to approximate the most harmful adversar-
ial examples with a single gradient ascent step [1,9,23,51]
during training. Nevertheless, there still exists a consider-
able robustness gap between single-step adversarial training
methods and multi-step ones.

In this section, we combine the one-off version of our
UIAT method with state-of-the-art single-step adversarial
training approaches to demonstrate the generalizability and
the low time cost of our methods. For time efficiency, we
set 8 = 0 for Equation (4), which means that we only use
cross-entropy loss for inverse adversary generation. More



Table 5. Robustness results of single-step adversarial training methods combined with our one-off UIAT approach on CIFAR-10. We
conduct single-step adversarial training with various adversarial radii for comprehensive evaluation. We present the natural accuracy,

(Auto-Attack) robust accuracy, and the average time for training an epoch.

Method \ e =6/255 e = 8/255 e =10/255 Time(s)
Natural Robust Natural Robust Natural Robust
N-FGSM [9] 84.66 56.36 80.29 48.24 75.59 41.54 48.4
N-FGSM + UIAT 85.53 58.21 81.85 49.84 77.85 42.77 57.3
RS-FGSM [51] 86.72 55.28 84.07 46.15 86.32 0.00 324
RS-FGSM + UIAT | 87.60 55.85 85.18 46.31 88.29 0.00 40.7
GradAlign [1] 83.85 55.25 80.17 46.57 76.46 39.85 96.0
GradAlign + UIAT | 85.52 55.46 82.31 46.74 79.11 39.56 107.8
Table 6. Ablation study using ResNet-18 of three componentmod- - s S Qi (e
ules of UIAT for adversarially robust accuracy (%) on CIFAR-10. 10 10
‘ UAG FR IAM Natural PGD-20 AA 081\ 08,
1 83.97 5398 4833 500 \ 50|\
2| v 85.19 5356  47.63 o4 \\\ Boa \\
3 vV 85.11  54.13 4847 02 0 iemeny
4| v v 8485 5429 4883 0 b 00 ~
0 50 100 150 200 0 50 100 150 200
50/ v v v 8501 5463 4911 Epochs Epochs
(a) PGD-AT (b) UIAT (one-off)

UAG: Universal Adversary Generation.
FR: Feature-level Regularization.
IAM: Inverse Adversary Momentum.

details about how to combine our UIAT method with single-
step adversarial training can be found in Appendix B.3. As
shown in Table 5, we can observe that UIAT can serve as
a plug-and-play component for boosting both natural and
robust accuracy. Moreover, we show that our method can
effectively adapt to various adversarial training radii for bet-
ter performance. The additional computational cost for the
UIAT method is also acceptable. For instance, in the case of
N-FGSM [9], our method can further improve nearly 1.5%
for both natural accuracy and adversarially robust accuracy
(e = 8/255) with only about an additional 9 seconds time
cost for each training epoch.

5. Analysis
5.1. Ablation Study

In this section, we thoroughly investigate the contribu-
tions of three components in our UIAT method: 1) Uni-
versal Adversary Generation (UAG) in Equation (6), 2)
Feature-level Regularization (FR) in Equation (4), and 3)
Inverse Adversary Momentum (IAM) in Equation (8). We
report both natural accuracy and robust accuracy on CIFAR-
10 using ResNet-18 during the ablation study in Table 6.

Our baseline method (The first row in Table 6) is the
instance-wise Inverse Adversarial Training (IAT), which
has already achieved a competitive robustness performance
compared to other methods. It can be seen that the univer-
sal inverse adversary generation can effectively improve the

Figure 2. The learning curves show the natural and robust accuracy
(under PGD-20) on the training/test set of CIFAR-10. Note that (a)
represents PGD-AT [29], while (b) is our one-off UIAT method.

performance on natural accuracy, while the robust accuracy
slightly drops. Both the feature-level regularization and the
inverse adversarial momentum contribute to enhancing the
adversarially robust accuracy. We can obtain our UIAT
method by integrating these three components, which can
effectively improve natural accuracy and robustness.

5.2. Robust Overfitting

Recent research has demonstrated that adversarial train-
ing methods primarily suffer from the robust overfitting is-
sue [38], resulting in the robustness plunge. The robust
overfitting induces an irreversible robustness drop (on the
test set) after adversarial training for several epochs, espe-
cially after the learning rate decay operation. We illustrate
the learning curves of standard adversarial training and our
one-off version of UIAT in Fig. 2.

For better visualization, we increase the number of train-
ing epochs to 200. We can easily observe that the PGD-
based Adversarial Training (PGD-AT) [29] severely suffers
from the robust overfitting issue. In comparison, our one-
off UIAT method can largely mitigate the robust overfitting
issue, that is our method does not suffer from a sharp ro-
bustness reduction during adversarial training. It can po-
tentially be explained by the observation made in [I1],
which demonstrates that the robust overfitting comes from
the large-loss data during adversarial training. However,
our UIAT method implicitly regularizes the large-loss data,
a.k.a., misclassified examples to obtain the high-likelihood
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Figure 3. Parameter sensitivity of our one-off UIAT method by
tuning the hyper-parameter \. We report both natural accuracy
and (Auto-Attack) robust accuracy.
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Figure 4. Average accuracy under different attack strengths (per-
formed by PGD-20). Note that the experimental settings are the
same as Figure 1. We further annotate the robust accuracy gap

between two groups under the attack strength ¢ = 8/255.

region of their true classes, which can thus mitigate the ro-
bust overfitting problem. Furthermore, our inverse adver-
sary momentum can also stabilize the training stage by mit-
igating the oscillations of noisy predictions.

5.3. Trade-off

The trade-off between natural accuracy and robust accu-
racy during adversarial training has been widely explored
[36,57]. We study the effect of hyper-parameter A\, which
can further induce a trade-off between robustness and natu-
ral accuracy, as shown in Figure 3. We can observe that the
robust accuracy improves when X increases, while the natu-
ral accuracy decreases. Oppositely, the natural accuracy im-
proves when we lower the \ value. Note that our trade-off
is different from [57] that balances the importance of cross-
entropy of natural examples and KL divergence, whilst our
UIAT method optimizes the cross-entropy of adversarial ex-
amples and the regularized distribution matching. We also
provide an analysis of the effect of other hyper-parameters
in Appendix D.

5.4. Why our method is effective?

In this section, we mainly discuss the underlying rea-
son why our method is effective. In other words, we would
like to explore what we have gained from inverse adversar-
ial training. Similar to the setting in Figure 1, we also pro-
vide the average accuracy under different attack strengths of
our UIAT method compared with TRADES [57], as shown
in Figure 4. It can be seen that our method can bridge

Difference of Robust Accuracy (%)

0 2 4 6 8 10 12 14 16
€

Figure 5. Difference of Auto-Attack (AA) robust accuracy under
different attack strengths between our UIAT (One-off) method and
TRADES [57]. The red lines are used for reference.

the robust accuracy gap more effectively compared with
TRADES [57]. Precisely, our UIAT can effectively enhance
the robust accuracy of the bottom 50% group. In addition,
we observe that the inverse adversarial examples of UIAT
are prone to be classified correctly, which means that our
robust model is easily affected by inverse adversaries. On
the contrary, our robust model is less susceptible to adver-
sarial examples compared with TRADES [57].
Furthermore, we present the comparison of Auto-Attack
(AA) robust accuracy under different attack strengths be-
tween our UIAT (One-off) method and TRADES [57], as
shown in Figure 5. It can be easily observed that our method
outperforms TRADES [57] at weak attack strengths (e <
8/255). However, TRADES [57] obtains better robustness
than our method when confronted with strong adversarial
perturbations (¢ > 8/255). In other words, our method sac-
rifices the adversarial robustness against larger visual per-
turbations to enhance the robustness against smaller ones.
This is also in line with the definition and intuition that ad-
versarial perturbations are visually undetectable. Recall that
we can also obtain better robustness against larger perturba-
tions when training with larger € as discussed in Section 4.2.

6. Conclusion

In this paper, we explore the unnecessary alignment be-
tween misclassified examples and propose a new adversar-
ial training paradigm incorporating the inverse adversarial
examples. Furthermore, we design a universal inverse ad-
versary generation strategy to mitigate the class-wise imbal-
ance hiding in the decision surface and accelerate our meth-
ods. Extensive experiments demonstrate that our method
can efficiently obtain better robustness results without com-
promising natural accuracy in diverse settings on larger
datasets. Moreover, we can obtain a trade-off between nat-
ural accuracy and robust accuracy to adapt to different sce-
narios. Our UIAT method can also be combined with state-
of-the-art single-step adversarial training methods for ro-
bustness enhancement at a low cost. Finally, we analyze
the reason why our method is effective and verify that our
UIAT method can potentially bridge the accuracy gap be-
tween high-accuracy examples and low-accuracy examples,
thus benefiting the robustness.
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Appendix

A. Experimental Settings

In this section, we provide detailed settings of used
databases and our method.

A.1. Datasets

We conduct all our experiments on CIFAR-10/100 [24]
and SVHN [34]. The CIFAR-10 dataset contains 60,000
color images with the size of 32 x 32 in 10 classes. The
CIFAR-100 dataset shares the same setting as CIFAR-10,
except it owns 100 classes consisting of 600 images each.
In CIFAR-10/CIFAR-100 dataset, 50,000 images are for
training, and 10,000 images are for testing the performance.
SVHN is a dataset of street view house numbers, which in-
cludes 73,257 examples for training and 26,032 examples
for evaluation. For training with additional data, we also in-
clude 1M synthetic images generated by the Denoising Dif-
fusion Probabilistic Model (DDPM) [ 19] for CIFAR-10/100
following the setting of [36,37].

A.2. Implementation Details

Following the hyper-parameters setting from [5, 36], we
use Stochastic Gradient Descent (SGD) optimizer with Nes-
terov momentum factor 0.9 [33] cyclic learning rate sched-
ule [45] with the batch size of 128, the maximum learning
rate of 0.1, and a weight decay factor of 5 x 10—, For train-
ing without extra data, our model is trained for 100 epochs
for CIFAR-10/100 and 30 epochs for SVHN.

For training with synthetic DDPM-generated data [37]
on CIFAR-10/100, we train models for 400 CIFAR-10-
equivalent epochs (the same amount of training examples
as standard CIFAR-10 in an epoch) with the batch size of
512. The original-to-generated ratio (e.g., a ratio of 0.3
means that we include 7 synthetic images for every 3 orig-
inal images) is 0.3 for CIFAR-10 and 0.4 for CIFAR-100.
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We also adopt the cyclic learning rate strategy with a max-
imum learning rate of 0.2. Following the training setup
from [36, 37], we use SiLU activation function [16] with
Pre-activation ResNet-18 (PRN-18) [15] and Wide-ResNet-
28-10 (WRN-28-10) [55]. We further use model weight av-
eraging [20] with a decay factor of 0.995.

For computing adversarial examples during training, we
adopt the iterative Projected Gradient Descent (PGD) algo-
rithm [29] on the cross-entropy loss function for 10 steps
with the step size @« = 2/255 for CIAFR-10/100 and
a = 1/255 for SVHN. We mainly consider the /,-norm
threat model with the maximum adversarial perturbation ra-
dius € = 8/255. We set the inverse perturbation radius as
¢/ = 4/255. The iteration steps for instance-wise inverse
perturbation is 5 times with the step size of o/ = 2/255,
whilst we conduct single-step gradient descent on universal
inverse perturbation with the step size of o/ = 4/255. We
choose the trade-off factor A = 3.5 for CIFAR10/100 and
A = 3.0 for SVHN. The regularization hyper-parameters
is set to 1.0. We pick the inverse momentum factor v = 0.9
for our standard inverse adversarial training method except
for the one-off setting. We do not involve the inverse mo-
mentum when adopting the one-off strategy. The momen-
tum mechanism starts at epoch 7' = 75 when training for
100 epochs and starts at epoch 7' = 350 when training for
400 epochs. The one-off epoch choice is T/ = 80 for 100
training epochs and 7" = 320 for 400 training epochs.

B. Details of Inverse Adversarial Training
B.1. Instance-wise Inverse Adversarial Training

We have introduced how to generate instance-wise in-
verse adversaries in the main body of this paper. In this
section, we give more details about combining inverse ad-
versarial examples with adversarial training. In general,
we generate inverse adversarial perturbation for each nat-
ural example via the PGD method optimized on the in-
verse adversarial loss. The instance-wise Inverse Adversar-
ial Training (IAT) is quite similar to Universal Inverse Ad-
versarial Training (UIAT) we have introduced in detail. We
can easily obtain IAT by replacing universal inverse adver-
saries with instance-wise inverse adversaries. We provide
the pseudo-code of IAT in Algorithm 2.

B.2. One-off Strategy

In this section, we provide more details about the one-
off strategy and how it can be combined with our method.
The one-off strategy means generating inverse adversarial
examples for only one certain epoch 7" instead of through-
out the whole training stage. During the standard inverse
adversarial training, we mainly optimize cross-entropy loss
of adversarial examples and Kullback-Leibler (KL) diver-
gence between inverse adversaries and adversarial exam-



Algorithm 2 Inverse Adversarial Training (IAT)

Input: DNN classifier fg; dataset D = {(x,y)} with C classes; batch size m; learning rate 7; radius for adversaries €
and inverse adversaries ¢'; iteration times n and step size o’ for inverse adversary generation; weighting factors \, 3.

> Find PGD adversarial example

> Update instance-wise inverse adversaries

1: Randomly initialize the network parameter 6

2: while not at end of training do

3. for each mini-batch (x,y) = {(x;,y;)} -, do

4: for j=1,2,...,mdo

5: Initialize Inverse adversarial perturbation z; ~ 0.001 - A/(0, 1)
6: X; + PGDATTACK(X;,y;, fo)

7: )V(j — X; + Z;

8: fort=1,2,...,ndo

9: )v(j = HB(x7e’) (}v(j —a - sign (V,V(J Liny ()v(j, y)))
10: end for
11: end for
12: 06— Vo {5, Ler(fo (%)) + A L1 (fo (%) llfo ()}
13: end for

14: end while
15: return Inverse adversarially trained model fy.

ples. However, the one-off strategy mainly focuses on the
substitution of the inverse adversaries throughout the adver-
sarial training, which can reduce the computational over-
head effectively. The loss function for the One-Off version
of inverse adversarial training can be formulated as below:

0% =Lon (fo (%)) +A- Lxce (PELI0 (%) )

where x is the adversarial example. p(ot)o denotes the one-

off output probability that mainly depends on the current
training epoch ¢, which can be obtained by:

fo(x), ift<T
Pob =< fo (%), ift=T" (10)
pld, ift> T

where x denotes the inverse adversarial example and 7" is
the only epoch for generating inverse adversarial examples.
Before epoch T”, we replace inverse adversaries with nat-
ural examples during adversarial training, which is simi-
lar to [48]. We generate inverse adversarial examples and
use them for distribution alignment during epoch T”. After
epoch T, we use the output probability of inverse adver-
saries at epoch T instead of recomputing inverse adversarial
examples. The motivation is that the feature representation
tends to be stable at a later stage of training, thus we can
consistently obtain the high-likelihood region with inverse
adversarial examples. Therefore, it is reasonable to con-
tinue to use the previously computed inverse adversaries
to represent the high-likelihood region during the current
training epoch.

12

B.3. Single-step Adversarial Training

In this section, we give more details about how our
method can be combined with single-step adversarial train-
ing methods [1,9,51]. When using £.,-norm threat model,
we can formalize the adversarial training [29] as the follow-
ing min-max optimization problem:

(fe (X + (SSGL) 7y):| )

(1)
where Lo is the cross-entropy loss and 9§ is the adversarial
perturbation under the /,.-norm bound €. The inner max-
imization of adversarial training can be viewed as search-
ing for the most harmful adversarial examples X°¢L =
x+6%C¢L, Particularly, most single-step adversarial training
methods approximate the worst-case perturbation by solv-
ing the inner maximization in Equation (11) with the fol-
lowing form:

max Lcg

min E ~D
o Y L6|x<e

855 = (m+ a-sign (VuLon(folx +m).1)) )

(12)
where 1) is a projection operator onto the ¢,.-norm ball and
7 is drawn from a certain distribution €2 that can be typ-
ically a uniform distribution between [—¢, ¢]. When com-
bining our UIAT method with these single-step adversarial
training methods, we do not modify the inner maximiza-
tion to obtain adversarial perturbations & SGL we primarily
focus on outer minimization, where we add an additional
KL divergence term between universal inverse adversaries
% and adversarial examples 5. Hence, a general form of
the loss function for single-step adversarial training (outer
minimization) can be defined as below:
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Figure 6. Visualization of both inverse adversaries and class-specific universal inverse adversaries. Their corresponding inverse adversarial

perturbations are also presented.
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Figure 7. Hyper-parameter sensitivity of our UIAT method on nat-
ural accuracy and (Auto-Attack) robust accuracy using ResNet-18
on CIFAR-10. We report the hyper-parameters adjustment of 3 in
(a), v in (b). The tuning for the starting epoch of momentum 7" is
in (c), and the one-off epoch 1" is in (d)

Lo = Lo (fo (R),y)+ ALk (fo (%) [ fo (X°97)),

(13)
where X denotes the universal inverse adversarial example
that is also obtained by single-step gradient descent on the
inverse adversarial loss. Note that we do not apply the
feature-level regularization during inverse adversary gener-
ation for efficiency, which means we only use cross-entropy
loss for inverse adversary generation. In general, we ef-
ficiently combine our method with single-step adversarial
training by paying only three additional forward propaga-
tion times and one backward propagation time.
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C. Visualization

We visualize both the (universal) inverse adversarial ex-
amples and their inverse perturbations in Figure 6. It can
be seen that class-specific universal inverse adversaries can
obtain a similar inverse effect to the original inverse adver-
saries. These inverse examples are also visually indistin-
guishable from natural examples.

D. Hyper-parameter Analysis

To comprehensively analyze the contribution of each
component, we report natural accuracy and robust accuracy
when tuning component weights, as shown in Figure 7. It
can be seen that enlarging the momentum factor + can fur-
ther improve the adversarially robust accuracy. In addition,
choosing the start epoch 7" for enabling inverse adversarial
momentum during the second half of training can benefit
both natural accuracy and adversarial robustness. In partic-
ular, we can observe that the choice for the one-off epoch
T’ is essential and there exists a huge performance variance
when tuning this hyper-parameter. Similar to the start epoch
for momentum, it is beneficial to adopt the output probabil-
ity of inverse adversaries during the second half of training.
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