Modeling inter- and intra-patient anatomical variation using a bilinear model
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Abstract

We introduce a novel method for modeling the natural
anatomical variation of an organ along inter-patient and
intra-patient axes using a bilinear model. Bilinear models
are attractive for this purpose since one type of variation
can be explored while the other is held constant. We ap-
ply our model to a total of 204 prostate shapes contoured
from CT imagery of 12 different patients, and show that the
learned bilinear models can fit both training and testing
shapes accurately. We also demonstrate the superior per-
formance of the bilinear model over a linear model with the
same number of parameters in adapting to prostate shapes
from a new patient acquired immediately prior to consecu-
tive fractions of radiation therapy.

1. Introduction

Due to the introduction of imaging technologies such as
CT and MRI and advances in computer vision techniques,
image analysis has come to play an important role in the
medical field [4]. Shape information about an anatomical
object is often helpful for diagnostic and treatment pur-
poses. For example, the shape variation of the organ over
time can indicate the presence or absence of disease. Our
particular interest is in shape variation as it applies to radi-
ation therapy treatment planning. Better shape models can
help localize a target object more precisely so the outcome
of treatment can be improved. In this paper, we suggest a
novel application of a bilinear model to the 3D shape model-
ing of the prostate for the purpose of guidance in radiother-
apy treatment. While bilinear models have been introduced
in other areas of computer vision, to our knowledge they
have rarely been used in biomedical imaging applications.
The advantage of the bilinear shape model is that it can de-
couple the expected variations both across the patient pop-
ulation and within a specific patient (e.g., due to changes in
bodily state). The paper is organized as follows. In Section

2, we briefly review several shape modeling techniques for
anatomical objects. The details of our bilinear shape mod-
eling technique are explained in Section 3. In Section 4, we
describe experimental results that demonstrate the effective
performance of the bilinear model on the task of adapting to
an unseen patient. We summarize and discuss future work
in Section 5.

2. Prior work, landmark selection, and linear
models

There have been many shape modeling methods de-
scribed for medical applications. A good review can be
found in [10]. Here, we mention some of the methods that
are relevant to our work. Huang and Amini [7] applied de-
formable models based on B-splines to calculate the volume
of the brain and heart. Pizer et al. [11] proposed the M-rep
medial representation for the segmentation of medical im-
ages. They extracted medial atoms from the medial plane
of a 3D object and parameterized each atom. They used a
hierarchical approach to control the shape of an object at
various levels (e.g., from global translation to local curva-
ture). The popular Active Shape Model (ASM) proposed
by Cootes et al. [2] has been used to segment medical im-
ages including the heart chamber, prostate, and ventricles of
the brain. The ASM describes shape changes in a statistical
framework by capturing how important points on an object
vary based on training data. We will use the ASM for our
basic comparisons because it can describe shape variation in
a compact form, and is related to the bilinear shape model,
as we explain below.

Both linear and bilinear shape modeling methods are
based on Point Distribution Models (PDMs) [3]. In a PDM,
the shape of an object is expressed as a set of points dis-
tributed along its boundary. These points, or “landmarks”,
can be selected in various ways. Our method of selecting
landmark points suitable for medical tomographic imagery
is summarized in Figure 1, and is based on the method de-
scribed in [6]. The training data is composed of parallel



CT slices. In each slice, an expert has indicated several
points around the boundary of an organ. The difficulty is
that the numbers of slices per scan, the numbers of points
per slice and the relative positions of the points differ from
dataset to dataset, making it difficult to establish correspon-
dence for a shape model. An interpolating surface that goes
through all of the original points in each dataset is con-
structed by fitting a smooth surface to the data points. The
interpolating surface can be found using an implicit func-
tion method such as [14]. The interpolating surface is then
resampled into a new set of parallel slices at uniform inter-
vals and each slice is sampled into a pre-defined number of
points at fixed locations. We select the location of points
on a slice in the following way: from the geometric cen-
troid of each slice, a fixed number of rays (e.g., 20) are
extended until they meet the boundary of the slice. Then,
the points where the rays and the boundary meet are se-
lected as the set of points to be used as the training vector
for the shape model. Let us denote the training data com-
posed of T instances as {x(t),t =1,---,T}, where each
instance is composed of N points at specified locations in
3D: x(t) = [x1,Y1,21,--- TN, YN, ZN]T (i.e. each training
instance is a column vector).

To build the standard active shape model as in [3], prin-
cipal component analysis is applied as follows. First, the
mean shape is obtained by averaging the training vectors:
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The covariance matrix of the training data is computed as
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Then, eigenvalue decomposition is carried out for the co-
variance matrix to obtain mode vectors
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where ¢;’s are the eigenvectors ordered according to de-
creasing magnitude of their corresponding eigenvalues ;.
Retaining only L significant eigenvectors has the advan-
tages of 1) reducing the error induced by inconsistent con-
touring, and 2) reducing the dimensionality of the model.
For example, when only a portion a (0 < « < 1) of the to-
tal variance is to be captured in the retained mode vectors,
L can be determined as the minimum [ such that
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The mode vectors express the orthogonal components of

variation from the mean shape in the training data. There-
fore, the resulting shape model can generate shapes in terms
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Figure 1. Illustrating contour resampling. (a) Original contours
arranged in 17 axial slices describe a prostate shape. (b) A smooth
surface interpolating the original contours is constructed. (c¢) The
interpolating surface is resampled into parallel slices and each
slice is resampled at corresponding locations (e.g., 20 slices, 20
points per slice).

of a weighted sum of mode vectors plus the mean shape:
X =X+ ®p. (5)

where p is the vector of model control parameters.

3. Shape modeling using bilinear models

The linear model described in the previous section can be
be thought of as a special case of a bilinear model [8], in-
stances of which have been used in several computer vision
applications in recent years. For example, Marimont and
Wandell [9] used a bilinear model to decouple sensor re-
sponses for collections of varying surfaces and illuminants.
Tenenbaum and Freeman [13] applied bilinear models to
several tasks that have two natural independent variations,
such as images of the same set of faces seen in different
poses or lighting conditions, alphabetical letters in different
fonts, and English vowels spoken by different speakers.

Bilinear and, more generally, multilinear models have
been popularly used for face modeling in particular. Bas-
cle and Blake [1] used a bilinear model to decouple pose
and expression from facial images for facial animation.
Vasilescu and Terzopoulos [15] used a multilinear model to
capture facial pose, illumination, and expression separately.
In the same multilinear framework, Vlasic ef al. [16] built
a generative model for variations in face, expression, and
viseme (mouth articulations related to speech).

Finally, while we do not explore them here, there have
also been approaches to separating two factors using nonlin-
ear models. For example, Elgammal and Lee [5] embedded
the observations from dynamic objects such as gait images
into nonlinear manifolds to separate two factors (e.g., per-
son and body configuration) in a generative model. Soatto
and Yezzi [12] separated motion and deformation to track
deformable objects that are also moving (such as images of
a jellyfish) in a level set framework.

It is customary that the two variations of a bilinear model
are called “style” and “content”. Their roles are mathemati-
cally interchangeable, but there is usually a natural semantic
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Figure 2. Examples of observations of ellipses of varying size and
orientation. “Style’” is defined as the size of the ellipse and “con-
tent’” is defined as the orientation of the ellipse.

interpretation. An example of style and content is illustrated
in Figure 2 for an observation vector composed of 40 points
distributed around an ellipse. In this case, the style and con-
tent are defined as the size and the orientation of the ellipse,
respectively.

In building a bilinear model, basis functions along with
style and content parameters are found such that the result-
ing model minimizes the total squared error between the
model and the given observation vectors in the training set.
Before training, each observation must be classified into a
style category s and a content category c (again, there is usu-
ally a natural semantic basis for this categorization). Sup-
pose there are S total style categories and C' total content
categories. It is not necessary that each style/content com-
bination has an instance in the training set, or that there are
the same number of instances in each category.

The mathematical goal is to find K basis function matri-
ces, denoted {W, € RI*/ k =1,... K}, and vectors of
style and content parameters, {a, € R!,s = 1,..., S} and
{b, € R7,c = 1,...,C} respectively, that minimize the
cost function

T S C K )
Xsc(t) (Xk(t) - agwkbc) ) (6)

t=1 s=1 c=1 k=1

where T is the number of K -dimensional observation vec-
tors in the training set and xs.(t) is an indicator function
which is 1 if x(¢) is in style s and content ¢ and 0 other-
wise. The dimensionality of the style control vector (I) and
content control vector (J) are chosen so that 1 < I < S and
1 < J < C, analogous to the way the number of dominant
modes is chosen in a linear PCA model. The set of matrices
W, plays a similar role to the orthogonal mode matrix ® in
a linear PCA model, and describes the interaction between
the style and content factors.

(b)
Figure 3. New observations generated using a bilinear model built
from the observations in Figure 2. (a) Varying the style control
parameter with content control parameter fixed. (b) Varying the
content parameter with style control parameter fixed.

Once basis function matrices and control parameters that
minimize the total squared error are calculated, the gener-
ative bilinear model for a new style vector a and content
vector b is simply

%, = aT W;b. (7

The procedure to estimate the parameters of the model
uses either iterative-SVD (Singular Value Decomposition)
or direct minimization, depending on how the training ob-
servations are distributed in each style and content class.
For a more detailed explanation for the building and fitting
of the bilinear model, see [13]. New observations generated
from a bilinear model with / = S =3and J = C = 4
for the ellipse example are shown in Figure 3. Observations
in a new style (i.e., size) and content (i.e., orientation) are
shown in the figure. In each case, examples unobserved (but
consistent with) the training set can be generated.

In this paper, the underlying motivation for using a bilin-
ear model is that there are two general types of variation
inherent in images of the same organ: intra-patient vari-
ation caused by changes in a fixed patient’s bodily state,
and inter-patient variation caused by differences between
patients across the population. The idea is that we can ef-
fectively decouple these two factors in a dataset contain-
ing many different scans from each of many different pa-
tients - something that is not possible with the linear model.
Thus, we define “style” as patient ID and “content” as the
bodily state within a patient. The parameter vector a con-
trols the inter-patient variation and the parameter vector
b controls the intra-patient variation. Consequently, the
model can adapt to a new patient by estimating the inter-
patient (style) control parameter a using a few scans and the
adapted model should behave consistently with the training
data by varying the intra-patient (content) control parameter
b. The mathematical approach is the following:

1. Assemble a training database of organ shapes from
many patients observed at multiple times.



Figure 4. Axial CT images with manually-outlined prostates from
Patient 1 (top row) and Patient 2 (bottom row) on two different
days.

Set number | Total shapes | Slices per shape
1 17 11-13
2 17 10-12
3 19 9-18
4 19 9-15
5 13 8-9
6 14 6-14
7 18 11-21
8 18 10-17
9 18 9-18
10 17 9-15
11 17 8-14
12 17 7-15

Table 1. Summary of the dataset used for the experiment.

2. Sort each scan into a style category and a content cat-
egory (see Section 4.1 below).

3. Learn the basis matrices Wj, € R’*/ by minimizing

(6).

4. For M scans of a previously unseen patient,

{x(m),m =1,--- , M}, estimate the fixed style vec-
tor a and the content vectors {by, ..., b/} by mini-
mizing

M K
> Ixk(m) —a" Wby, |12, ®)

m=1 k=1
Recall that the W, are fixed after the training process.
5. Generate a style-specific model for the new patient by
fixing W and a and varying b as in (7).
4. Datasets and experiments
4.1. Training

Our training dataset is composed of prostate shapes from
99 3D CT images of the male pelvis from 6 patients. The

Figure 5. Original sets of points describing prostates from Patient
1 (top row) and Patient 2 (bottom row) on two different days.

images from each patient were acquired immediately prior
to consecutive fractions of radiation treatment. An expert
planner manually contoured the prostate in every slice of
each dataset; several examples of contoured images are
shown in Figure 4. The corresponding prostate contour
points arranged in axial slices (prior to resampling) are
shown in Figure 5. The original sets of points are resam-
pled to yield 400 points (20 slices per shape, 20 points per
slice) following the procedure described in Section 2, re-
sulting in the shapes illustrated in Figure 6. The resampled
points are converted into column vectors and used to build
and test the linear and bilinear models. Our testing dataset
is composed of 105 prostate shapes from a different set of
six patients. The number of shapes and original number of
slices per shape in both datasets are shown in Table 1. Sets
1-6 were used for model building and sets 7-12 were used
for model fitting.

Building a linear shape model with this data is straight-
forward as described in Section 2. However, to build the
bilinear model, we need to categorize shapes in the training
data into different style and content classes. Style is simply
defined as patient ID, so there are 6 styles in our training
data (and we choose the style vector to be 6-dimensional).
However, content categories are more difficult to define, be-
cause there is no obvious way to parameterize the inherent
variation of the prostate independent of personal variation.'

In the experiment reported here, we defined the con-
tent classes based on the relative volume of each patient’s
prostate as follows. For all the datasets from a given pa-
tient, the volume of the prostate is measured and normalized
so that the maximum volume has value 1 and the minimum

I'This task would be easier, for example, in the lung, in which content
classes could be naturally defined as phases in the breath cycle.



Figure 6. Resampled sets of points describing prostates from Pa-
tient 1 (top row) and Patient 2 (bottom row) on two different days.
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Figure 7. Mean training shapes assigned to each style and con-
tent class (there is one blank entry for a class that has no assigned
training shapes).
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volume has value 0, i.e., the normalized volume is calcu-
lated as ;
7 _ V" — Umin
Unormalized Vmaz — Umin . (9)
The samples from each patient are then binned with respect
to the normalized volume. We varied the number of content
bins from 1 to 6. Figure 7 shows the mean shapes of each
style and content class for S = 6 and C = 5. The train-
ing shapes labeled with corresponding style and content are
used to build the bilinear model as described in Section 3.
The bilinear model with / = S = 6 and J = C = 5 using
the training set can generate new shapes as shown in Figure
8. The effect of varying the content for a fixed style is easy
to interpret, but it is more difficult to characterize in words
the style variation for fixed content.
We must turn to more quantitative measures of how
faithfully each model can approximate a test shape. The
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Figure 8. New observations generated using the prostate bilinear
model. (a) Varying the style control parameter with content con-
trol parameter fixed. (b) Varying the content parameter with style
control parameter fixed.

average Euclidean distance is used as a distance measure
between a test shape and its projected model. That is,
for a set of N points in 3D describing a shape, x =

{z1,y1,21,...,ZN, YN, 2N}, the approximation error is
defined as
1N T Ty
E=x> || v — | ¥n - (10)
n=1 Zn Zn

test approximated

For the linear model specified by (X, ®), the minimum
squared error approximation of a test shape x is carried out
by projecting it into the model space via

X=X+ ‘I’pprojecteda (1 1)
where
Pyprojected = q)T (Xtest - i) . (12)

To approximate a test shape x using the bilinear model spec-
ified by W, optimum model parameters are found that min-
imize the modeling error, i.e.

%, =a’ Wb (13)
where

{a,b} = arg min |x; —a” W, b|%. (14)
{a,b}

We measure the accuracy in three situations: accuracy over
all training data, accuracy over all testing data, and accuracy
in an adaptation experiment that reflects how the models
might actually be used in a fractioned radiotherapy context.



# parameters | Training err (mm) | Testing err (mm)
10 1.43 1.52
11 1.30 1.40
12 1.23 1.32

Table 2. Modeling accuracy: projection error.

4.2. Training and testing accuracy

First, we measured the training accuracy by evaluating
the bilinear model over the same 99 shapes used to build it.
The results are shown in the second column of Table 2, giv-
ing the average Euclidean distance between corresponding
points across all the shapes in the training sets. The training
prostates can be all enclosed in a cube with side length of 5
cm. The dimension of the bilinear model is equal to 6 (the
dimension of style control parameter) + J (the dimension
of the content control parameter, which was set to be equal
to the number of contents, (). The results show that for
J = 4,5, 6, the bilinear model fits the data quite well (i.e.
to within 1.5 mm).

Next, the 105 prostate shapes from the 6 patients that
were not included in building the bilinear model building
were approximated. This test determines how well the
model generalizes to unseen data. The results are shown in
the third column of Table 2. The results show the same trend
as in the first test, and the errors are only slightly higher.

4.3. Adaptation accuracy

In this experiment, we test the adaptability of the bilin-
ear model to a new patient. We imagine that the model is
applied in the following scenario. A new patient enters the
clinic for radiation treatment (usually spaced over 20+ days,
or “fractions”). The first M scans from the new patient
are used to estimate the style parameter a and content para-
meters (by,...,bys) based on the bilinear model matrices
‘W, previously estimated offline. Subsequently, the patient-
specific model with fixed a and W, is used to approximate
the shape at the remaining fractions. In our experiments, we
learned the bilinear model matrices W, from the 6 train-
ing patients, and then did 6 adaptation experiments, using
the first M scans from each testing patient to estimate the
style parameters. The accuracy is measured as the average
approximation error over the remaining shapes for each pa-
tient.

The dimension of the bilinear model is equal to the num-
ber of content control parameters, since the style control pa-
rameter is fixed after adaptation. Generally, we expect there
to be an elbow point in approximation error as the number
of adaptation datasets increases. That is, the modeling ac-
curacy will increase as more shapes are used for the estima-
tion of the style parameter, until there is relatively little to be
gained by seeing new examples. For example, for different

numbers of content bins, Figure 9 shows how the projection
error changes as the number of adaptation datasets increases
for testing patient 12. In the figure, the elbow points occur
at around M = 4 for models of dimensionality J = 4, 5, 6.
This means that reasonable adaptation can be made using
the first 4 new scans for this patient.

For comparison, we also did 6 adaptation experiments
using a linear PCA model (i.e. using the 99 training datasets
plus the first M shapes from each testing dataset) using the
same number of control parameters as in the bilinear model.
We compared the adaptability of both the linear and bilinear
models for patient 12 in Figure 10, using a 4-dimensional
parameter vector for each. The performance of the bilinear
model improves as the the number of adaptation datasets
increases, while the performance of the linear model does
not improve much. This confirms the potential effectiveness
of the bilinear model for adapting to a new patient. We also
performed the adaptation experiment using M = 1 — 8 for
the bilinear model with J = 4 (4 content bins) using testing
sets 7—12. The point at which the minimum projection error
occurs with respect to the number of sets used for adaptation
is summarized as a histogram in Figure 11. It can be seen
that adaptation after 4 to 6 scans seems to be reasonable
based on this dataset.

4.4. Segmentation of medical images using the bi-
linear model

Finally, we applied the bilinear shape model to the seg-
mentation of CT images for prostate localization. The bi-
linear prostate model with / = 6 and J = 4 was built using
the 6 training datasets and then was adapted to a new pa-
tient (Set 12) using the first 4 contoured image sets. Thus,
the dimension of the adapted model is J = 4, the num-
ber of content control parameters. The remaining image
sets were segmented using the 3D model-based algorithm
we described in [6]. This algorithm evolves the segment-
ing surface, parameterized by the bilinear content vector, to
minimize the difference between the histogram of pixel in-
tensities inside the surface and a desired histogram learned
from training data. The surface is initialized as the aver-
age of the first 4 shapes used for adaptation. We find the
best content vector by minimizing the histogram-matching
cost function, and the segmentation result is the shape de-
fined by the optimal content vector. See [6] for more details
about the appearance model, cost function, and optimiza-
tion methods used in the segmentation process. An exam-
ple result for one patient’s scan is shown in Figure 12, as
2D slices of the full 3D segmentation. The yellow line is the
hand-labeled contour by a physician and the black line is the
automatic segmentation result. Our preliminary tests indi-
cate that the bilinear shape model with 4 control parameters
can be effectively used to segment prostate CT images.
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Figure 9. Projection error versus the number of shapes used for
adaptation (* indicates the minimum projection error in each case).
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Figure 10. Adaptation accuracy of linear and style-adapted bilinear
models, both with 4 control parameters.

5. Conclusions and future work

We demonstrated a novel application of bilinear models
to the shape modeling of anatomical objects. The experi-
mental results on prostate contours showed that the bilinear
shape model performs well in fitting both training and test-
ing shapes. In adaptation tests, the bilinear shape model
performed better than a linear shape model using the same
number of parameters. The results show the potential of bi-
linear models to compactly represent medical datasets that
have two inherent types of variation. Our initial tests indi-
cate that the adapted bilinear model can be used as an effec-
tive shape constraint in the segmentation of medical images.

When adapting the bilinear model to a new patient, it is
not guaranteed that the control parameter estimation prob-
lem converges (or converges to a global minimum). How-
ever, the parameters always converged in our experiments

Occurrences of minimum projection error

3 4 5 6 7 8
# of adaptation datasets
Figure 11. Histogram of minimum projection error occurrences
w.r.t. the number of adaptation datasets for bilinear model with 4
control parameters.

Figure 12. 2D axial slices of the 3D segmentation result of one
set of images from Patient 12 using the bilinear model (yellow:
hand-labeled, black: segmentation result).

when the new patient showed similar variations as those in
the training data. We believe a better shape model using
the bilinear model is possible, since the assignment of con-
tent classes plays an important role in the bilinear model
and could be improved. Specifically, we plan to investigate
new ways of defining content and selecting content classes
such that the bilinear shape model consistently outperforms
linear shape models. Although we assumed two variations
in our dataset, the number of true inherent variation axes
may be more than two. In such case, a multilinear model
[15] may express the variation better than bilinear model,
although the difficulty of defining good content classes still
remains. Finally, we plan to investigate the application of
nonlinear multi-factor methods such as [5], although some
such methods may be difficult to apply with very limited
training data.
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