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Abstract

Automatic facial expression analysis is a vital compo-
nent of intelligent Human-Computer Interaction (HCI). In
this paper, we present a extensive empirical study on linear
subspace methods for facial expression analysis. Locality
Preserving Projections (LPP) and Orthogonal Neighbor-
hood Preserving Projections (ONPP) are first time applied
to facial expression analysis. We systematically examine a
number of linear subspace methods, and show that, in our
comparative studies, the Supervised LPP (SLPP) is supe-
rior in supervised methods, while ONPP performs best in
unsupervised learning.

1. Introduction

Automatic facial expression analysis is a vital compo-
nent of intelligent Human-Computer Interaction (HCI), and
has attracted much attention in recent years (see, for in-
stance, the surveys [ 14, 6]).

Many techniques have been proposed to analyze fa-
cial expressions, such as Neural Networks [19], Bayesian
Networks [4], and Support Vector Machines [1], to name
just a few. One of the successful classes of methods
is appearance-based statistical methods. Linear subspace
methods including Principal Component Analysis (PCA)
[20], Linear Discriminant Analysis (LDA) [2], and Indepen-
dent Component Analysis (ICA) [5] have been introduced
for facial expression analysis. In Lyons et al’s work [12],
PCA + LDA was adopted to classify facial images based on
the Gabor wavelet features. Donato et al [5] explored PCA,
LDA, ICA, and other techniques for facial action classifica-
tion. Recently some new linear subspace methods [7, 11]
have been developed, and have been applied for face recog-
nition [8, 10]. However, it is still unknown whether they
are powerful for facial expression analysis. Moreover, until
now, there is no comprehensive comparison of these linear
subspace methods for facial expression analysis, although it

is very necessary and important for further study.

In this paper, we survey and compare a number of lin-
ear subspace methods for facial expression analysis, which
include PCA [20], LDA [2], Locality Preserving Projec-
tions (LPP) [7] (unsupervised and supervised manners), and
Orthogonal Neighborhood Preserving Projections (ONPP)
[1 1](unsupervised and supervised manners). These meth-
ods are investigated using different appearance features on
two public databases.

2. Linear Subspace Methods

The generic problem of linear dimensionality reduction
is the following. Given a set x1,22,...,Z,, in R", find
a transformation matrix W that maps these m points to
Y1,Y2, -, Ym in Rl < n), where y; = WTx;.

2.1. Principle Component Analysis

PCA [20] aims to extract a subspace in which the vari-
ance is maximized. The objective function is as follows:

1
max Z(yl —¢y) where y= - Zy2 (1)

The solution can be obtained by taking the eigenvector of
the sample covariance matrix associated with leading eigen-
values.

2.2. Linear Discriminant Analysis

LDA [2] seeks directions that are efficient for discrimi-
nation. Suppose the data samples belong to [ classes, The
objective function is as follows:
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where m is the mean of all the samples, n; is the number
of samples in the ith class, m(* is the average vector of the
(@

ith class, and ; is the jth sample in the ith class.

2.3. Locality Preserving Projections

LPP [7] optimally preserves local neighborhood infor-
mation by building a neighborhood graph. It employs the
same objective function with Laplacian Eigenmaps [3], a
nonlinear technique for dimensionality reduction:

. T T, \2
H‘l;&nZ(W T; — W a:j) S (®))
1,7
where S is the local similarity matrix. The objective func-
tion can be reduced to:

% Z(wai —wlz;)28;; (6)
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= wX(D-8XTw=wIXLXTw (7)

where X = [z1,22,...,2,], L = D — S is a Laplacian
matrix, and D;; = > ; Sji. Matrix D provides a natural
measure on the data points. A constraint is imposed as fol-

lows:
yIDy=1=w'XDXTw=1 (8)

The solution is given by the minimum eigenvalue solution
to the generalized eigenvalue problem:

XLXTw = XDXTw 9)

When class information is available, LPP can be per-
formed in a supervised manner. In our previous work [16],
we proposed a Supervised LPP (SLPP) to encode more
discriminative power than the original LPP for improved
classification capability. SLPP preserves class information
when constructing the neighborhood graph such that the lo-
cal neighborhood of a sample is composed of samples from
the same class only.

2.4. Orthogonal Neighborhood Preserving Projec-
tions

OONP [11] aims to preserve the intrinsic geometry of
the local neighborhoods, as does Locally Linear Embed-
ding (LLE) [15], a nonlinear dimensionality reduction tech-
nique. In the first step, ONPP constructs a weighted k-
nearest neighbor graph which models explicitly the data
topology, and computes the optimal weights in each neigh-
borhood. Each data sample x; is reconstructed by a linear
combination of its k£ nearest neighbors. The reconstruction
errors are measured by minimizing the objective function

(V)= o= Y Vijai| (10)
i J

In the second step, ONPP computes an explicit linear
mapping from the input space to the reduced space. ONPP
imposes the constraint that each data sample in the re-
duced space is reconstructed from its neighbors by the same
weights used in the input space. This leads to the solu-
tion of the following optimization problem, where ¥ =
[y1: 2, ym] and M = (I = VT)(I = V)

miny |y = > Vigy, | (1)
i J

= mmi/n\WTX(IfVT)F (12)
= r%ifntr(WTXMXTW) (13)

By imposing the additional constraint that the columns of
W are orthonormal, the solution to the above optimization
problem is the basis of the eigenvectors associated with the
d smallest eigenvalues of X M X 7.

ONPP can performed in either an unsupervised or a su-
pervised setting [ 1]. In the supervised setting, the adjacent
data samples in the nearest neighbor graph belong to the
same class. So there is no need to set parameter k, and the
supervised ONPP (SONPP) becomes fully automatic.

3. Experiments
3.1. Data Set

We conducted experiments on two public databases: (1)
The Cohn-Kanade Database [9] consists of 100 university
students in age from 18 to 30 years, of which 65% were fe-
male, 15% were African-American, and 3% were Asian or
Latino. Subjects were instructed to perform a series of 23
facial displays, six of which were prototypic emotions. Im-
age sequences from neutral face to target display were digi-
tized into 640x490 pixel arrays. (2) The JAFFE Database
[12] consists of 213 images of Japanese female facial ex-
pression. Ten expressers posed 3 or 4 examples for each of
the seven basic expressions (six emotional expressions plus
neutral face). The image size is 256 X256 pixels.

Three data sets were constructed: (1) S1: 320 image
sequences were selected from the Cohn-Kanade Database.
The only selection criterion is that a sequence can be labeled
as one of the six basic emotions. The sequences come from
96 subjects, with 1 to 6 emotions per subject. The three
peak frames of each sequence were used. (2) S2: for the se-
lected 320 image sequences, the neutral face and three peak
frames of each sequence were used. (3) S3: all 213 images
of the JAFFE database were used. The three data sets are
summarized in Table 1. As S3 has much fewer images than
S1 and S2, we will investigate the effect of the training set
size in our experiment.

Following the methodology of Tian [1&], we normalized
the faces to a fixed distance between the two eyes. Fa-
cial images of 110x 150 pixels were cropped from original
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Data Set  Images  Subjects  Expressions
S1 960 96 six
S2 1280 96 seven
S3 213 10 seven

Table 1. Three data sets for facial expression analysis.

frames based on the two eyes location. No further align-
ment of facial features such as alignment of mouth, or re-
moval of illumination changes [!8] was performed in our
experiments.

3.2. Appearance Features

To perform facial expression analysis, it is necessary to
derive an effective facial representation from original face
images. Gabor-wavelet representations have been widely
adopted to describe appearance changes of faces [12, 18, 1].
However, the computation is both time and memory inten-
sive. We previously introduced boosted Local Binary Pat-
terns (LBP) features as low-cost appearance features for fa-
cial expression analysis [17]. The most important properties
of the LBP operator [13] are its tolerance against illumina-
tion changes and its computational simplicity.

In our experiments, three kinds of appearance features
were compared: raw image data IMG), LBP features ex-
tracted from equally divided sub-regions (LBP) [17], and
Boosted LBP features (BoostLBP) [17]. On IMG features,
for computational efficiency, we down-sampled face im-
ages to 55x75 pixels, and represented each image with a
4,125(55x75)-dimensional vector. For LBP features, we
divided facial images into 42 sub-regions in total. The 59-
bin LBPg% operator [17] was applied to each sub-region;
so each image was represented by a LBP histogram with
length of 2,478(59 x 42). With regard to BoostLBP fea-
tures, by shifting and scaling a sub-window, 16,640 LBP
features in total were extracted from each face image; then
AdaBoost was adopted to select the effective LBP features.
AdaBoost training continued until the classifier output dis-
tribution for the positive and negative samples were com-
pletely separated (See Fig. 1 for the selected LBP features
in S1).

Figure 1. The LBP features selected by AdaBoost for each basic
emotion: Anger, Disgust, Fear, Joy, Sadness, and Surprise.

3.3. Experimental Results

We applied PCA, LPP, ONPP, LDA, SLPP, and SONPP
to learn the subspace of facial expression in the feature
space of IMG, LBP and BoostLBP. The 2D visualization of
embedded subspaces are shown in Fig. 2 - Fig. 4. It is ob-
served that different expressions are heavily overlapped in

the 2D subspaces generated by unsupervised methods PCA,
LPP, and ONPP (with all three facial features). It is eas-
ily understood that the projections of PCA are spread out
since PCA aims at maximizing the variance. With regard to
LPP and ONPP, although they preserve local neighborhood
information, as expression images contain complex varia-
tions and significant overlapping among different classes, it
is difficult for them to yield meaningful projections in the
absence of class information. For supervised methods, it
is surprising to observe that different expressions are still
heavily overlapped in the 2D subspace derived by SONPP.
In contrast, LDA and SLPP yields much meaningful pro-
jections since images of the same class are mapped close
to each other. SLPP seems to provide the best projections
since different classes are well separated. This is because
SLPP preserves the locality and class information simulta-
neously in the projections. On the other hand, LDA discov-
ers only the Euclidean structure, and can not see the under-
lying nonlinear manifold that expression images lie on; so
its discriminating power is limited. The results obtained by
SLPP also reflect the human observation that Joy and Sur-
prise can be clearly separated, but Anger, Disgust, Fear and
Sadness are easily confused, and so reenforce the findings
of other published work [18, 4]. On comparing appearance
features, BoostLBP seems to provide the best performance,
as the clusters appear more cohesive and clear in the SLPP
subspace, while IMG’s performance is worst.

For facial expression recognition, we adopted the
nearest-neighbor classifier for its simplicity. The Euclidean
metric was used as our distance measure. The number of
nearest neighbors was set to be 7 or 11 according to the
size of the training set. To evaluate the algorithms’ gener-
alization ability, we adopted a 10-fold cross-validation test
scheme. The average recognition results (with the standard
deviation) are shown in Table 2 - Table 4. Note that, for
LDA, the dimension of the reduced subspace is at most
¢ — 1, where c is the number of classes. In general, the
performance of the PCA, LPP, ONPP, SLPP and SONPP
methods varies with the dimension of subspace. We show
the best results obtained by these methods. It is observed
that on the three data sets, for unsupervised methods, ONPP
performs much better than PCA and LPP, and PCA outper-
forms LPP, with all three facial features. With regard to
supervised methods, on the three data sets with the three fa-
cial representations, it is seen that SLPP is the best method,
with a clear margin of superiority over LDA (12-38% bet-
ter) and SONPP (11-64% better), while LDA’s performance
is 4-19% better than SONPP (an exception is that SONPP
performs 2% better than LDA with BoostLBP features on
S3). It is observed that SONPP does not always work better
than ONPP, e.g., SONPP has inferior performance to ONPP
on S1 (with LBP and BoostLLBP features) and S2. This reen-
forces the observation on the embedded subspaces shown in
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Figure 2. Images of S1 are mapped into the 2D embedding spaces. (In Fig. 2 - Fig. 4, different expressions are represented by different
color: red circle: Anger; yellow x-mark: Disgust; blue square: Fear; magenta point: Joy; cyan star: Sadness; green plus: Surprise; black
pentagram: Neutral. Top row: IMG; Middle row: LBP; Bottom row: BoostLBP. )
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Figure 4. Images of S3 are mapped into the 2D embedding spaces.
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Fig 2 - Fig. 4. We can draw the conclusion that the label
information used in SONPP does not provide it with more
discriminative power than ONPP for facial expression anal-
ysis. In contrast, LDA and SLPP performs robustly better
than the unsupervised methods PCA, LPP, and ONPP (LDA
and ONPP perform comparably on S3).

The best result of 94.7% in 6-class expression recog-
nition, achieved by BoostLBP based SLPP, is the best
performance reported so far on the database. Previously
Tian achieved 94% performance using a three-layer neu-
ral networks when combining geometric features and Ga-
bor wavelet features [18]. With regard to 7-class expres-
sion, BoostLBP based SLPP achieves the best performance
of 92.0%, which is also very encouraging given that previ-
ously published recognition rates on this database were 81-
83% [4]. The confusion matrix of 7-class facial expression
on S2 is shown in Table 5, which shows that most confusion
occurs between Anger, Fear, Sadness, and Neutral.

Anger | Disgust | Fear Joy Sadness | Surprise | Neutral
Anger 843% | 2.8% 0 0 5.5% 0 7.4%
Disgust 0 97.5% | 2.5% 0 0 0 0
Fear 0 0 76.8% | 13.1% 1.0% 2.0% 7.1%
Joy 0 0 0 96.5% 0 0 3.5%
Sadness | 2.4% 0 0.8% 0 83.3% 0 13.5%
Surprise 0 0 1.3% 0 0.4% 95.6% 2.7%
Neutral 0.8% 0 0 2.0% 2.4% 0 94.8%

Table 5. Confusion matrix of 7-class expression recognition on S2.

Recognition performance on S3 is much poorer than that
on S1 and S2, as there are fewer images in the data set re-
sulting in a poor sampling of the underlying latent space.
The effect of the training set size is also reflected on the
standard deviation of 10-fold cross-validation. The standard
deviations of S3 are much larger than those of S1 and S2.
So the recognition performance of linear subspace methods
on the small training sets is not robust and reliable. On com-
paring the standard deviation of 10-fold cross validation on
S1 and S2, SLPP produces the smallest deviation (an excep-
tion is LDA has the smallest deviation with IMG features on
S2). This demonstrates that SLPP is much robust than other
methods on the relatively large data set.

On comparing facial features, as shown in Fig. 5, Boost-
LBP features performs consistently and robustly better than
LBP and IMG features. LBP features outperforms IMG fea-
ture; however, an exception is that, in LPP subspaces, IMG
features have slightly better performance than LBP features.

The plots in Fig. 6 show the averaged recognition rates
versus dimensionality reduction of different subspace meth-
ods with BoostLBP features. The performance difference
between SLPP and LDA are conspicuous when the dimen-
sion of subspace is small. But when the dimension con-
tinues increasing, their performance become similar. For
PCA, ONPP, and SONPP, when the dimension continues
increasing, their performance become stable, and gradually
converge to nearly the same level. LPP’s performance de-

grades when dimension increases, and is the worst overall.
The plots of S3 has greater variations compared to those
of S1 and S2, and this may be due to the small size of the
training set.

4. Conclusions

This paper presented a comprehensive study on a
number of linear subspace methods for facial expression
analysis. We first time applied LPP, SLPP, ONPP, and
SONPP to facial expression analysis. In our comparative
studies, SLPP was shown to perform best in supervised
methods for facial expression analysis, while in unsuper-
vised methods, ONPP produces the best results.

Acknowledgement — The authors would like to thank E.
Kokiopoulou for providing the source code of ONPP.
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Table 2. The averaged recognition results (with the standard deviation) of 6-class expression recognition on S1.

PCA (%) | LPP(%) | ONPP (%) | LDA (%) | SLPP (%) | SONPP (%)
IMG 414(7.0) | 379384) | 54.1(59) | 595(5.4) | 82.2(62) | 50.0(6.8)
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Table 3. The averaged recognition results (with the standard deviation) of 7-class expression recognition on S2.
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Table 4. The averaged recognition results (with the standard deviation) of 7-class expression recognition on S3.
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