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Abstract All mentioned applications have in common that they
must operate in a user-independent scenario. Current sys-

Research in the field of sign language recognition has tems for sign language recognition achieve excellent per-
not yet addressed the problem of interpersonal variance in formance for signer-dependent operation. But their recog-
large vocabulary on the classification level. Current recog nition rates decrease significantly if the signer’s artitioin
nition systems are designed for signer-dependent operatio deviates from the training data.
Applied to signer-independent tasks, they show poor perfor  Although signer-independence is an essential precondi-
mance even when increasing the number of training signers.tion for future applications, only little investigationse
Better results can be achieved with dedicated adaptationbeen made in this field so far. This unexplored gap in sign
methods. This paper describes a vision-based recognitionlanguage recognition is the subject of this paper.
system that quickly adapts to unknown signers. A combina-

tion of Maximum Likelihood Linear Regression and Max- I . ;
Signlanguage Deafand hearing impaired people use sign

imum A Posteriori estimation was implemented and mod- o A
language for everyday communication. Information is con-

ified to consider the specifics of sign languages, such as
. . . eyed through manual and non-manual means such as the
one-handed signs. An extensive evaluation was performed .

. : ; f5|gner’s hands and facial expressions. The set of signs can
in supervised and unsupervised mode on a vocabulary o

) . . . be subdivided into one-handed and two-handed signs. The
153 isolated signs. The proposed adaptation approach sig- : . ;
e . : hand used for one-handed signs is called the dominant hand.
nificantly increases accuracy even with a small amount of
adaptation data. Supervised adaptation with 80 adaptation
sequences yields a recognition accuracy of 78.6%, which isInterpersonal variability The performance drop in case
a relative improvement of 41.6% compared to the signer- of signer-independent recognition results from the broad
independent baseline. interpersonal variability in production of sign languages
Even within the same dialect, considerable variations are
commonly present. Fig. 1 shows different articulations of
1. Introduction an exemplary sign in British Sign Language.

The development of automatic recognition systems for
sign language has made significant advances in recent year:
Research efforts were mainly focused on the robust extrac-
tion of manual and non-manual features from the signer’s
articulation. Additional attention was paid to classifioat
methods. First implementations proved that using subunit
models has advantages over word models for each whole
sign when recognizing large vocabularies.

The present achievements are the basis for future appli-Figure 1. The sign “tennis” performed five times by two diéfet
cations with the objective of supporting the integration of native signers using the same dialect. Position of the hangls
deaf people into hearing society. Translation systems, use visualized as motion traces for comparison.
interfaces, and automatic indexing of signed videos ate jus
some examples. Further applications arise in the field of Analysis of the hand motion reveals that the variation
human-computer interaction. Multimodal user interfaces between different signers are much higher than within one
and the control of human avatars in virtual environments signer. Other manual features such as hand shape, posture,
could be realized via gesture and mimic recognition. and location exhibit analogue variability.




2. Previous work matches the average face shape. For each pixel, the median
color computed from all input images (which are buffered

This sect|op.g|ves a short overwew_of eX'St"_]g sign Ign- for this purpose) yields a reliable and parameter-free back
guage recognition (SLR) systems. An in-depth introduction ground model. This allows to eliminate static distractors.
to gesture and sign language recognition is found in [6].

Since there is no standardized benchmark the below recog- , ..

nition rates cannot be compared directly. Sequence Ski:z::r’:e'z:::;‘;"n“and | | Classification Egg‘u’f{";“m
Vision-based systems face the problem of noisy and am- Multiple Hypotheses Evaluation Viterbi Search
biguous input data. Most work focuses on this challenge ¥ i
and does not consider interpersonal variance. For isolated Training and Adaptation | (——
signs, recognition rates reach e.g. 98.9% on 229 signs [13] . MLLR, MAP | SignVocabulary
or 92.5% on 439 signs [12]. Datagloves yield more reliable —#1_supervised | unsupenised o Ry Moo
and descriptive features, recognizing vocabularies @ lar
Confidence Measure |

as 5119 signs with 92.8% accuracy [11].

Recognition of continuous signing poses the addi-
tional difficulties of temporal segmentation and transi- Figure 2. Schematic of the adaptive SLR system.
tion/coarticulation effects, but allows to support cléisar
tion through the use of language models. Recognition rates  The remaining hand candidates still allow many inter-
of 93.2% (97 signs) were published for a vision-based sys-pretations. Therefore, multiple tracking hypotheses are p
tem [1], while the glove-based method described in [2] at- sued in parallel. The winner hypothesis is determined only
tains 92.1% with 208 signs. at the end of the sign, using high level knowledge of the hu-

All above values refer to a signer-dependent recognition man body and the signing process to compute the likelihood
task. Only the following three publications specify signer of all hypothesized configurations per frame and all transi-
independent performance. tions between successive frames. This approach explbits al

[2] uses datagloves and reports 85.0% recognition rate@vailable information for the computation of the final track
for sentences comprised of 208 signs. The authors employing result, yielding robustness and facilitating retrajve
a language model; however, they do not specify the degreeerror correction.
of similarity between training and test sentences. Isdlate  Features are computed from the hand candidate border as
signs from the same vocabulary are classified with 88.2%shown in Fig. 3. During periods of overlap, template match-
accuracy. No information is given on the composition of ing is performed to accurately determine the center coor-
the vocabulary. The fact that signer-dependent performanc dinatesz, y using preceding or subsequent unoverlapped
is only 7.1% higher suggests low interpersonal variance.  views. All other features are linearly interpolated.

[13] describes a vision-based system that achieves a

maximum performance of 44.1% on 221 signs. The accu- x i
racy varies with the constellation of the training/teshsics. V‘TZ
In [9] a vocabulary of 20 conceived gestures is recog- 41a
nized on the basis of visual features that reflect aspects of = circumference’
sign language grammar. Bayesian networks and HMMs are ; (Hao=Hoo 4y

Reject Near Misses

used for classification. =
Supervised adaptation to one unknown signer with a set
of all 20 gestures yields 88.5% accuracy.
Feature normalization for signer-independence is only
described in [2, 13]. Except for [9], no publication listed
above or in recent reviews [10] addresses the problem of Hand center coordinatesy are specified relative to the

a
My 4t central moments

Figure 3. Shape-based features computed for each hand.

interpersonal variance on the classification level. corresponding shoulder position, which is estimated from
the widthwy and position of the face. In addition, y are
3. System design normalized bywr, anda by w%. Sincea € [—90°,90°), it

is split intoo; = sin2a andoy = cos « to ensure stability
Fig. 2 shows a schematic of the vision-based adaptiveat the interval borders:, c ande describe the shape’s axis
SLR system described in this paper. The feature extrac-ratio, compactness, and eccentricity. The derivatiyes a
tion stage builds on [13] and is designed to process real-complete the 22-dimensional feature vector
world images. It uses a generic skin color model [5] to
detect hands and face. The segmentation threshold is au-z¢ =[x ¢ y ya @ o1 o2 r ce z &y gy ...] (1)
tomatically chosen so that the resulting face candidate bes loft hand right hand




If the hand is not visible or remains static throughout the mation. Both are employed in current speech recognition

sign, its features are set to zero. systems and have proven to perform excellent in the speech
The classification stage uses HMMs with an average domain.

of 41 states in Bakis topology for the representation of The evaluated approaches are introduced below, along

each sign. Emission probabilities are represented by Gauswith necessary modifications for signer adaptation.

sian mixture models. Training and classification apply the

Viterbi algorithm. 4.2. Maximum Likelihood Linear Regression

The mixture components of the signer-independent

Corpusand baseline The test corpus consists of 153 iso- HMMSs are clustered into a set of regression clagSes:
lated signs from British Sign Language, performed by four 1, ... R such that each Gaussian componertelongs to
native signers five times each, totaling 3060 video clips of one clasg € C. A linear transformatiofi’, for each class
approx. 50 frames. Resolution is 384 x 288 pixels at 25 fps. is then estimated from the adaptation data. Estimationeof th
The vocabulary comprises news items and navigation com-transformation matrices follows the Maximum-Likelihood
mands and was not selected for discernability. To reduceparadigm, so the transformed models best explain the adap-
the amount of noise in the manual features, recordings weretation sequences. Reestimation formulaelar based on
conducted in a controlled environment with diffuse liglgtin  the iterative Expectation-Maximization algorithm areegiv
and a homogeneous background. The signers wear blackn [3].
clothes with long sleeves. The Gaussian mear,, of each component from class

Signer-dependentrecognition rates average 97.9%. Most is then transformed with the corresponding mafiik,
information is carried by:, y and their derivatives, which  yielding the adapted parameter
account for approx. 92%. Signer-independent performance
in a leaving-one-out test with no adaptation sets a baseline fim = We - fim, 2)

of 55.5%. )
0 wherefi,, is the extended mean vector

4. Signer adaptation ah=1[1 pkh] (3)

Selected adaptation methods from speech recognitiony component from a model which has not been observed
are modified for the use in sign language recognition tasksj, adaptation data can thus be transformed based on the ob-
to improve the performance of the signer-independent rec-ggpyed components from the same class.
ognizer. . o _ ~ As proposed in [3], a Regression Class Tree is used to

A set of adaptation data consisting of isolated signs is improve the clustering of the mixture components, where
collected from the unknown signer, either supervised with the number of regression classes depends on the available
known transcription or unsupervised. In the latter case, th gmount of adaptation data. Each nadef the tree corre-
signer-independent recognizer estimates a transcriptn sponds to a regression class and a transformtiois as-
ing a confidence measure to assess the quality of the recogggciated with the node. The root contains all mixture com-
nition result as shown in Fig. 2. _ ponents, yielding a global transformatidii. The sons of

Based on the adaptation data, the adaptation procesg pode form a partition of the father class, so deeper nodes
reduces the mismatch between signer-independent modelie|q more specialized transformations derived from fewer
and observations from the unknown signer. components. As more adaptation sequences become avail-
able, deeper transformations can be robustly estimated.

If the direct estimation of a transformation for a certain
Various adaptation methods have already been investi-node is not possible for numerical reasons, computatipnall
gated in the context of speech recognition. Due to the obvi- €xpensive techniques as described in [3] can be used. Alter-
ous similarities between speech and sign language recogninatively, the next node on the path to the root can be chosen,

tion, some are applicable for signer adaptation. yielding a more general but numerically stable transform.

While feature-basethethods such as Vocal TractLength ~ The approach is adapted to sign language recognition us-

Normalization require knowledge from the speech produc- ing explicit handling of signs that are only performed with
tion domain,model-basedapproaches are well suited for 0one hand and a method for transforming models that have

adapting the recognition system. not been observed the in the adaptation data.

Model-based adaptation alters the parameters of the un-
derlying HMMs based on the given adaptation data. Two One-hand transformations The corpus contains several
methods are evaluated: Maximum Likelihood Linear Re- signs where only the dominant hand is active during the
gression (MLLR) and Maximum A Posteriori (MAP) esti- whole sequence. Itis presumed that the right hand is always

4.1. Choice of adaptation methods



dominant, as features from left-handed signers are miolrore  Handling of unseen signs  Sign models are calleskenor
Thus the feature extraction yields a feature vector sequenc unseen depending on whether they are observed in adap-

[1,..., 2], where for single-handed signs the entries of tation data or not. The mixture components of an unseen
the non-dominant hand of each feature veatoe RP+P HMM are transformed based on the seen components of
equal zero: the regression class they belong to. Although this works

w=[0 ... 0 z ... D] 4) for large a_nd. general regress_ion classes near the root of the
t &1 D tree, specialized transformations for small classes tdsvar

Here, z; 4 is the d-th feature of the dominant hand. If the tree leaves tend to produce unsatisfying results. As the

HMMs are trained with such sequences, the mean vectorgransformations are highly optimized for the seen compo-

of the resulting mixture components have the same speciahents, the unseen components are not adapted well.

form. As the adapted models should be of the same form, Reducing the tree size would result in broader regres-

dedicatedne-hand transformatiorare introduced. sion classes at the tree leaves and the most special possible

Each class of the Regression Class Tree containing onlytransformations would still be applied to a large amount of
one-hand mixture components is marked as a one-handnixture components. If these general transformations are
class. The sons of such a class again represent one-hangsed even if more adaptation sequences become available,
classes as they form a partition of the father node. Thusthe effect of MLLR saturates after a certain amount of data.
each one-hand class definesrse-hand subtreeontaining Thus a special handling of the unseen components is pro-
only one-hand classes. posed.

A sample Regression Class Tree is shown in Fig. 4. The  Not updating the unseen components at all degrades the
root node contains all components, represented by theirquality of the adapted models in terms of recognition ac-
mean vectors. These are either collected from one-hand okuracy. After the transformation, the mean parameters of
two-hand models. If a created node contains only one-handseen components are much closer to the range of the ob-
means during tree construction, the whole subtree definedservations from the unknown signer than the parameters of
by that node will contain only one-hand classes. Such one-unseen components. Thus the Viterbi score of a model cor-
hand subtrees can make up a large part of the whole Regressesponding to a seen sign is likely to be higher than the score

sion Class Tree. of an unseen model, so the recognizer prefers seen models
in general.
10l lollollo This can be solved by using general transformations only
[RJ [Rz} [Rg] [RJ [RJ for unseen components. The seen components are adapted

using the most special transformation that can be robustly
estimated using the Regression Class Tree, while unseen
components are adapted using a global transformation es-
timated at the root node of the tree.

][]

4.3. Maximum A Posteriori estimation

The Maximum A Posteriori estimafayap for the Gaus-
sian mean,, of a mixture component. is a linear interpo-
[J Two-hand Class L : Left hand part of mean lation between a-priori knowledge derived from the signer-
O One-hand Class R : Right hand part of mean independent model and the observations from the adapta-
tion sequences. During Viterbi alignment of an adaptation
sequence with its corresponding model, the feature vectors
mapped to a certain component can be recorded, yielding

The first half of a Gaussian parameter corresponding to ath€ empirical mea,,, of the mapped vectors. According
one-hand mixture component contains only zero entries and© [7]: the MAP estimate is
is therefore ignored during the adaptation process. Trans- -
formations for classes that are part of a one-hand subteee ar HmMAP = v Hom + <1 —
estimated from the one-hand versions of the corresponding
Gaussian parameters, consisting only of the second half ofwhere V is the number of feature vectors aligned to com-
mean and variance. ponentmn andr is a weight for the influence of the a-priori
The use of one-hand transformations guarantees that th&nowledge. IfN approaches infinity, the influence of the
features for the passive hand remain passive after the transsigner-independent model approaches zero and the adapted
formation. Complexity of the estimation process is halved parameter equals the empirical mean. Thus MAP performs
in the one-hand case due to the dimensionality reduction. well on large sets of adaptation data, but its pure form can

Figure 4. One-hand classes as part of the Regression Cless Tr

-
T+ N

) S (5)



only be used to update seen components. This can be solved 100 . . . . .
by using the MLLR-adapted model as prior knowledge, re-
placing the signer-independent mean by the already trans-
formed mean.

5. Experimental results

The adaptation experiments were carried out on the cor-
pus described in section 3. Three signers are used for train-
ing the signer-independent model, one signer is used for
testing. All results given are average values from the four
possible combinations.

Only the Gaussian means were updated by MAP and 0 . : . : .

. . . . 50 100 150 200 250
MLLR, variances and mixture weights remain unchanged Number of signs in adaptation data
as the mean covers most of the variability between the
speakers [8]. The results below are derived using Gaussiarrigure 5. Handling of unseen signs, supervised MLLR adaptat
single densities, experiments with Gaussian mixtures show
the same behavior due to the small training population.

Explicit one-hand transformations were used in all
MLLR experiments. The conventional full-dimensional
approach cannot estimate transformations for one-hand
classes without using computationally expensive pseudo-
inverses. Moreover, full-dimensional transformation of a
one-hand parameter would yield a two-hand mean due to
the translation of the whole vector.

40 Global MLLR transform for unseen signs
No adaptation for unseen signs -------
Regression Class Tree for unseen signs --------
Signer-independent baseling -~

Recognition rate on 153 signs / %

40 - MAP, MLLR-adapted model as prior T

MAP, signer-independent model as prior -—-—----
Signer-independent baseline --------

20 —

5.1. Supervised adaptation

Recognition rate on 153 signs / %

For the supervised experiments, variations 1 to 4 were
used for static adaptation with different amounts of adapta . . . . .
tion data while variation O was reserved for testing. 0 50 100 150 200 250

Fig. 5 illustrates the effect of the proposed methods for Number of signs in adaptation data
handling mixture components from unseen signs. Seen
components were adapted with the most special transformfigure 6. Supervised MAP: Signer-independent vs. MLLR-
from the Regression Class Tree in all three experiments 2dapted model as prior.

As described, transforming the unseen components with

a global transformation outperforms the conventional ap- Recognition rate / % on 153 signs
proach and is superior to ignoring the unseen components| Method Number of adaptation utterances
during adaptation. Thus the MLLR approach is suited for 80 160 320
rapid signer adaptation using only a small amount of adap- | Signer-Dep. | 97.9 97.9 97.9
tation data. Signer-Indep. | 55.5 55.5 55.5

The combination of modified MLLR and standard MAP | MAP 70.1 93.8 95.9
as shown in Fig. 6 results in the same effect which has been | MLLR 77.8 89.5 91.7
observed in speech recognition: the rapid adaptation using | MLLR—MAP | 78.6 94.6 96.9
MLLR is preserved, while its saturation is compensated by . .
MAP. Table 1. Supervised adaptation.

Table 1 summarizes the supervised adaptation exper-
iments, shpwing th_e recognition performance of adapted5_2_ Unsupervised adaptation
models using the different methods. MLLR followed by
MAP vyields the best models, regardless of the number Unsupervised experiments were carried out using all five
of adaptation sequences. Using class-based MLLR, rapidvariations from the testing signer as both adaptation and
adaptation to an unknown signer is possible without cov- testing data. Each recognized transcription was stored for
ering the whole vocabulary during adaptation as describedadaptation together with the input feature sequence. Fhe in
in [9], which only applies MAP adaptation. cremental adaptation of the models was then performed at
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