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Abstract 
 

Online virtual globe applications such as Google Earth and 

Maps, Microsoft Virtual Earth, and Yahoo! Maps, allow users 

to explore realistic models of the Earth. To provide the 

ground-level detail of interest to users, it is necessary to serve 

and render high resolution images. For planetary coverage at 

high resolution, a very large number of images need to be 

acquired, stored, and transmitted, with consequent high costs 

and difficulty for the application provider, often resulting in 

lower than expected performance. In this work we propose a 

supplementary approach to render appropriate visual 

information in these applications. Using super-resolution 

techniques based on the combination and extension of known 

texture transfer and synthesis algorithms, we develop a system 

to efficiently synthesize fine detail consistent with the textures 

served. This approach dramatically reduces the operational 

cost of virtual globe displays, which are among the most 

image-intensive applications on the Internet, while at the same 

time improving their appearance. The proposed framework is 

fast and preserves the coherence between corresponding 

images at different resolutions, allowing consistent and 

responsive interactive zooming and panning operations. The 

framework is capable of adapting a library of multiscale 

textures to pre-segmented regions in the highest-resolution 

texture maps available. We also describe a simple interface to 

obtain class label information from contributing users. The 

presentation of the constituent techniques is complemented 

with examples simulating our framework embedded in Google 

Earth. 

1. Introduction 

Several online virtual globe applications currently allow 

users to explore realistic models of the Earth [1]. Examples of 

these applications include Google Earth™ [2] and Google 

Maps™ [3], Microsoft Virtual Earth™ [4], Yahoo! Maps [5], 

Earth Explorer [6] and World Wind [7]. These applications 

are supported by some of the largest organized collections of 

imagery on the Internet. 

Online virtual globes commonly consist of a client 

application, which is a special program or simply a web 

browser running on the user’s machine, and a server 

application, running on the provider’s machine. The client 

receives navigation commands from the user and creates the 

corresponding display. If the client does not have the 

information required to create the display, it issues a request 

for this information to the server. To answer the client’s 

requests, the server imagery is organized as a clipmap 

pyramid [8], containing the lowest resolution image of the 

Earth in the highest level, an image of double that resolution 

in the next level, and so on, up to the highest resolution image 

served. 

As the user zooms in, increasingly higher resolution images 

(stored in lower levels of the pyramid) need to be accessed 

and transmitted to the client. When the stored resolution is 

exhausted, the highest-resolution pixels are simply 

interpolated, producing vague, blurry vistas, often with a 

visible grid structure due to Mach-banding between samples. 

Texture-mapped building models may be instanced on the 

landscape, but elsewhere, high spatial frequencies useful for 

interactive navigation simply vanish. The interpolated imagery 

does not have the statistical properties or visual characteristics 

of natural imagery; it typically resembles nothing in nature.  

On the other hand, much of the surface of Earth exhibits 

rapidly changing and/or stereotypical texture, the specific 

details of which are not of general interest. Many areas such 

as desert sands or snow cover are capable of rapid change, 

rendering an expensive high resolution acquisition quickly 

outdated; while some areas, such as grasslands or croplands, 

have highly predictable or repetitive texture whose exact high 

definition details are irrelevant to the average user, in spite of 

the relevance of its identity (i.e., distinguishing a cornfield 
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Figure 1: “Powers of two.” This sequence of images illustrates the framework proposed in this article to supplement and enhance 

the imagery of virtual globe applications (e.g., Google Earth). The first four images were extracted from Google Earth, the rest 

were synthesized with the proposed framework following the user’s zoom-in request. See the corresponding video at [28]. 

In: Proceedings of the First IEEE Workshop on Internet Vision (held in conjunction with CVPR), 2008. 



 

 

from a soybean field may be relevant, observing the exact 

arrangement of leaves may not).  A consistent depiction that 

portrays the correct region classes offers the user both 

satisfying visual detail, necessary for navigating the surface, 

and useful symbolic information. Global literal detail over 

some range of scales will never be available. 

The fact that the surface covered by these 

provisional/predictable areas is by no means negligible, 

emphasizes the importance of augmenting a deep-scan 

approach. Seventy one percent of the planet’s surface is 

covered by water [9]. The remaining 29% is covered as 

follows: 32% forests and woodland, 26% permanent pastures 

[10], and 13.3% arable land (4.7% with permanent crops) [9]. 

By comparison, the size of urban areas (where high-resolution 

scanning generates more useful data) is just 1.5%. In the U.S. 

just four crops (corn, wheat, cotton and soybean) cover 10% 

of the country’s surface [11]. 

Since online virtual globe applications must be interactive, 

the proposed solution has to be fast, on the order of the time 

required to download equivalent images from the server, or 

faster. In addition, to create the feeling of seamless transition 

between layers in the pyramid (zooming in or out), the 

coherence between consecutive pyramid levels must be 

preserved, each layer integrating to the layer immediately 

above.
1
 

These circumstances lead us to propose in this work a 

system for continuation, on the client side, of texture details in 

images for the lower pyramid levels. We approach this using 

super-resolution image processing methods based on the 

extension of available texture synthesis and transfer 

algorithms. The proposed texture transfer component of the 

framework consists of several passes over the image. In the 

first pass, a modified Wei-Levoy texture synthesis algorithm, 

[12], primes the data for subsequent passes by linking pixels 

in the image to similar pixels in the “training” texture. Next, 

several passes based on modifications on Ashikhmin’s 

approach, [13], add structure in order to improve the 

appearance match to the training image texture. This 

combination avoids the relatively high cost and smoothed 

results of conventional Wei-Levoy iterations, while improving 

coherence between input and output images. In addition to 

these extensions and combinations of known techniques, we 

propose a novel rule to directly propagate texture down the 

pyramid in areas where inter or intra layer coherence conflicts 

cannot arise, further improving both the quality of the results 

and the computational speed.  

The proposed framework dramatically reduces the storage 

space required for the clipmap pyramid, the Earth surface area 

to be acquired, the acquisition resolution, and the bandwidth 

required for transmission of these images to the client, while 

at the same time improving the appearance and information 

content of the models. 

To apply super-resolution techniques and display to the user 

a reliable representation, the particular class label (e.g., 

“water,” “grass,” “asphalt,” etc.) of each pixel in the images 

must be known. We propose two strategies to obtain these 

 
1 Currently, online virtual globe pyramids may contain layers supplied by 

different providers or taken during different seasons, therefore the coherence 
between layers may not be preserved at all. 

labels: 1) ask contributing users
2
 to provide these labels; and 

2) obtain them from agricultural mapping databases (e.g. 

[11]), which may in turn obtain this information from ground 

level surveys or automatic segmentation and classification of 

hyperspectral images. In this article we demonstrate the first 

strategy through a simple interface to obtain this information 

from users.  

In many undertakings, users are enthusiastically providing 

the information delivered by the system, Wikipedia serving as 

a defining example. Closer to our current interest is 

Wikimapia [14], a website where users are encouraged to 

mark places and roads to “describe the whole planet Earth,” or 

Google SketchUp [15], in which users create 3D models that 

are later integrated into Google Earth. In our proposed system, 

contributing users are equipped to provide three pieces of 

information. First, they can assign class labels for regions of 

pixels in the highest resolution image available. To input the 

labels in our implementation, we use state-of-the-art 

interactive segmentation techniques [16].  

Second, for each class label (or material) defined, the user 

provides one or more sample “training” images specifying the 

appearance of the material at chosen scales. We call these 

images keyframes, in analogy to the keyframes of traditional 

animation. The supplied images, 𝐾1 , … , 𝐾𝑛 , define the 

texture’s appearance at discrete levels of resolution or 

keyscales, 𝑆1 , … , 𝑆𝑛 . These images are stored in a texture 

pyramid (distinct from the pyramid storing the Earth images 

described above). Training images can be easily acquired at 

ground level with a standard camera (all the ground-level 

textures in this article were acquired by one of the authors, 

with an inexpensive conventional camera or downloaded from 

the Internet).  

Third, for each keyframe texture, the user provides the 

approximate true world size represented by a pixel in the 

corresponding training image (e.g., in meters/pixel). Each size 

is used to place the corresponding training image in the 

appropriate level (keyscale) of the texture pyramid. We call 

this framework texture keyframing. The system then uses this 

information, through the super-resolution specification here 

introduced, to synthesize new levels in the texture pyramid. 

The last two pieces of information can of course be omitted, if 

the virtual globe application provider keeps a library of 

previously keyframed textures that the user can select from.  

The remainder of this paper is organized as follows. In 

Section 2 we review in detail the relevant prior texture 

synthesis/transfer techniques that our framework relies on. In 

Section 3 we describe the proposed system and the 

modifications that we developed to adapt and combine these 

fundamental techniques. We include results in Section 4 and 

conclude with a discussion in Section 5. 

2. Previous related work 

Super-resolution
3
 is an image processing operation to 

 
2 It might be useful to distinguish between two different kinds of users 

interacting with the system. Normal users (or just “users”) are those that only 

obtain information from the system. “Contributing users,” on the other hand, 
also provide information to the system, and may require qualification. 

3 This is sometimes referred to as single-frame super-resolution, to avoid 

confusion with other techniques which aggregate information across frames to 
increase the resolution of frames in a sequence.  



 

 

synthetically augment the resolution of an image by 

supplementing its low frequency components with 

“corresponding” high frequency components. Several 

techniques have been proposed to address this operation, see 

[17] for a review. We are particularly interested in a general 

class of successful methods we will call pixel substitution by 

context matching (PSCM). 

PSCM techniques receive in general an input image that has 

to be modified, and a set of “training” (or “example”) images 

specifying some characteristic (or statistic) of the desired 

result. The input image is then modified, one pixel at a time, 

in raster scan order. For each pixel p in the input image, a 

pixel q in one training image is selected such that their 

corresponding neighborhoods (or “contexts”) are “similar,” 

and the color/attribute at q is used to overwrite p. The 

modified input image (the “output” image) is returned as the 

result.  

Important algorithms of this class were introduced by Efros 

and Leung [18] and Wei and Levoy [12], with the goal of 

texture synthesis. In the following, these algorithms will be 

referred to as Efros-Leung and Wei-Levoy, respectively. The 

Efros-Leung algorithm receives an empty image of the desired 

size and an example of the desired texture appearance, and 

fills the image with pixels sampled from the example. To 

obtain the value to place in the current pixel 𝑝, all previously 

synthesized pixels in a square window around 𝑝 (“causal 

context” in the following) are used as the context of 𝑝, 𝐶 𝑝 . 

This context is then compared against contexts similarly 

extracted from the training image, and the pixel 𝑞 that has the 

closest context 𝐶 𝑞  to 𝐶 𝑝  is used to fill 𝑝. Specifically, in a 

straightforward generalization, 𝑞 is selected as 

arg min𝑞 𝑓 𝐶 𝑝  − 𝑓 𝐶 𝑞   
2
, where 𝑓 ∙  is a 

transformation that maps the context to a different space 

containing only its relevant (from a perceptual point of view) 

information. Efros-Leung selected the transformation to be a 

Gaussian weighting of the pixels in the context, so that center 

pixels have higher influence on the distance. 

The Wei-Levoy algorithm follows the same course as 

Efros-Leung, with two important exceptions: 1) the synthesis 

proceeds in a multiresolution fashion, and 2) it uses tree-

structured vector quantization to speed up the search for the 

best context in the training texture. Multiresolution synthesis 

starts by synthesizing a low-resolution version of the texture, 

as in Efros-Leung. The following level, which has double the 

resolution of the previous one, is synthesized next, using as 

context the causal context at the current resolution, 

concatenated with the whole (corresponding) context already 

synthesized at the previous resolution. With this approach, 

smaller contexts can be used, often leading to a faster 

implementation.  

Ashikhmin, [13], suggested a simple but important 

modification to these techniques, further accelerating the 

synthesis, while at the same time improving the results for the 

important class of natural (or even irregular) textures. He 

noted that a potentially good candidate, 𝑞, to fill the current 

pixel 𝑝, can be obtained from the candidate 𝑞′  in the training 

image, used to fill in 𝑝’s neighbor 𝑝′, appropriately shifted by 

𝑝 − 𝑝′ (𝑞 = 𝑞′ +  𝑝 − 𝑝′ ), see Figure 4 in [13]). Since 𝑝′ can 

be any neighbor of 𝑝, all and only the neighbors of 𝑝 are used 

to suggest candidates, avoiding the expensive step of 

searching the training image for an appropriate location to 

copy from. To support this, a matrix 𝑄 storing the original 

location in the training image of each copied pixel has to be 

kept (𝑞 = 𝑄 𝑝 ). This “cloning” variation will be referred to 

as “Ashikhmin” in the following. This approach produces 

irregular patches
4
 that are copied from the training image to 

the resulting texture, avoiding the undesirable smoothing 

sometimes found in Efros-Leung or Wei-Levoy’s results.  

The candidate locations to copy from are set at the start 

when the matrix 𝑄 is initialized. Multiple iterations of this 

algorithm can be performed. Individual patches can grow or 

shrink, or even disappear, at each iteration, but no patches can 

be spontaneously created; whether a patch is included is 

defined when the matrix 𝑄 is initialized. Since patches can be 

eliminated but not created, the total number of patches in the 

image decreases with each iteration, while the average patch 

size increases. These patches have irregular shape, making 

their boundaries generally hard to notice. 

During the first pass of this algorithm, only pixels that were 

already processed have valid colors and source locations. 

Therefore, in this pass, a causal context is used both in the 

comparison and to suggest candidates. Subsequent passes use 

the whole context to improve the result of the previous passes 

(using a causal context in these passes would ignore previous 

passes and create the image afresh each time). 

Ashikhmin also showed that this basic algorithm can be 

slightly modified to perform not only synthesis but also 

texture transfer, where the input image is modified to “look 

like” the training image. This is done simply by starting with a 

whole (complete neighborhood) context, and initializing the 

matrix of source locations to valid random locations in the 

training image.  

Note that super-resolution can be considered as a special 

case of texture transfer, where the input image is doubled in 

size by interpolation before “transferring” to it the high 

frequency details from the training images (at the desired 

output resolution). If the input image and its corresponding 

super-resolved version are consecutive layers in a pyramid 

[19], as they are in an online virtual globe, special care must 

be taken to guarantee the coherence between the two. To 

improve the performance of texture transfer with respect to 

this critical requirement, in a later article, [20], Ashikhmin 

suggested including, with small probability, an extra candidate 

with a random source location. These extra candidates provide 

additional opportunities to match the contexts in the input 

image, improving the coherence between the input and output 

images. 

Hertzman et al., [21], suggested that to further improve the 

quality of the results, the source context can be selected by a 

rule combining both Ashikhmin and Wei-Levoy: choose the 

best candidate by both methods (qASH and qW&L), and use qASH 

if  
 

 𝑓 𝐶 𝑝  − 𝑓 𝐶 𝑞𝐴𝑆𝐻   
2

< 𝑘.  𝑓 𝐶 𝑝  − 𝑓 𝐶 𝑞𝑊&𝐿   2
, 

 

with 𝑘 > 1, otherwise use qW&L. The rationale behind this rule 

is to favor bigger continuous patches unless they diverge “too 

 
4 Throughout this article “patches” refer to “connected regions in the 

output image that are copied verbatim from connected regions in the training 
image.”  



 

 

much” from the input image. This technique produces better 

results than either Ashikhmin or Wei-Levoy, but has a running 

time on the order of the slowest of the two (Wei-Levoy). 

Hertzman et al., building on earlier work by Dalton, [22], 

showed that rather arbitrary image relationships, including 

“aesthetic imaging transformations” could be implemented as 

PSCM. 

For completeness, we should mention that two other 

important image processing operations were also recently 

shown by Buades et al. to be amenable to a PSCM-type 

implementation: denoising [23] and demosaicing [24]. These 

algorithms generalize the PSCM framework by replacing a 

pixel not with its best match in the training images, but with a 

weighted average of the best matches. The weight of each 

pixel being averaged is computed as a decreasing function of a 

distance between the corresponding contexts. 

Contrary to what appears to be widely believed in the 

community, these algorithms are not sampling from a Markov 

Random Field model of the texture, but from a Bayesian 

Network model, since the processing order of the pixels 

defines a directionality (“causality”) in the link connecting 

two nodes (pixels) in the graphical model that represents the 

texture [25].  

In the next section we introduce the texture transfer 

framework we propose for online virtual globe applications. 

This algorithm runs at least as fast as Ashikhmin, while better 

maintaining the coherence between the pyramid layers that is 

important for our interactive application. 

3. Proposed super-resolution system 

The goal of the proposed algorithm is to “add” new layers 

at the bottom of the clipmap pyramid used to represent the 

Earth, beyond the maximum available resolution. This 

clipmap pyramid contains the lowest resolution image of the 

Earth in the highest level, an image of double that resolution 

in the next level, and so on. Layers in the pyramid are aligned 

so that one pixel is “above” the four (2 × 2) pixels that 

represent it at the next (higher) resolution, in the layer below.  

The new synthetic layers to be added are not stored in the 

server and transmitted upon request, but are generated “on the 

fly” in the client as needed. The procedure to generate one 

layer after the last available one, shown schematically in 

Figure 2, has the following main steps: 1) interpolate the 

image and class labels of the previous layer to double their 

resolution; 2) adjust the scale of a training texture to match the 

scale of the current image; 3) match the colors between the 

image and training textures to improve the fit of the contexts; 

4) transfer the texture from the training textures to the image; 

and 5) undo the color matching to return the image to its 

original appearance. This procedure is performed once for 

each new level “added” to the pyramid. We now provide 

details for each one of these steps. 

3.1. Image and label interpolation 

The first stage to generate a new level in the clipmap 

pyramid is to double the resolution of the image at the 

previous level, 𝐼 𝑙 − 1 , and the labels provided for this (or a 

higher) image by a contributing user or other “external 

source,” 𝐿 𝑙 − 1 . The contributing user segments the last 

“real” image in the pyramid into classes by drawing a rough 

curve inside the region corresponding to each class. The 

system then uses the real-time interactive segmentation 

algorithm in [16] to obtain the detailed segmentation.
5
  

The image’s resolution is doubled by simple bilinear 

interpolation. To maintain distinct labels separated by 

smoothly curved borders at the new level, the following 

procedure is used to interpolate the labels: 1) a mask     

𝑀𝐶 𝑙 − 1  containing the pixels of the class is created for each 

class C at the previous level; 2) the resolution of each mask 

𝑀𝐶 𝑙 − 1  is doubled, using a Gaussian 2D kernel, obtaining 

𝑀𝐶 𝑙 ; 3) for each pixel in the upsampled image, the class of 

the highest valued mask is selected as the label of the pixel, 

𝐿 𝑙 = arg max𝐶 𝑀𝐶 𝑙 . 

This simple procedure creates region boundaries that seem 

natural, compared to the artificial “blocky” borders obtained 

by simple interpolation and thresholding, as illustrated in 

Figure 3. If desired, these “hard” boundaries can be 

 
5 This could be replaced by automatic segmentation techniques, but we 

restrict ourselves to this semi-automatic approach for the presentation. 
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Figure 2: Block diagram of the proposed technique to 

add one new (higher-resolution) layer to the clipmap 

pyramid. Only the process for the class “grass” is 

shown. See text for details. 



 

 

straightforwardly substituted by sigmoidal transitions to avoid 

aliasing. 

This process produces a color image 𝐼𝐼(𝑙) (the superscript 

“I” stands for “Interpolated”) and an image of class labels 𝐿 𝑙  

of the same size, at the resolution of the new level. The labels 

𝐿 𝑙  are used to transfer the appropriate texture to each part of 

the image. The following steps are performed once for each 

class (label). 

3.2. Selection of the training image 

Since the contributing user may not have provided a 

training texture matching exactly the current level, it is 

necessary to obtain one from the keyframes (training images) 

that were already provided (𝐾1 , … , 𝐾𝑛  at keyscales 𝑆1, … , 𝑆𝑛 ). 

This texture, 𝑇𝐶(𝑙), provides the high frequency details to be 

transferred, so it can only be obtained by downsampling a 

higher resolution image 𝐾𝑖 , in particular, the first training 

image having higher resolution than the current level (𝑆𝑖−1 <
𝑙 ≤ 𝑆𝑖). The maximum zooming level then is given by the 

lowest keyframe in the pyramid, 𝐾𝑛 .
6
  

If two consecutive keyframes are separated by more than 

two levels, the same keyframe (appropriately downsampled) is 

used to transfer texture to more than one image. This is 

exploited, as detailed in Section 3.4 below, to further increase 

the interlayer coherence while improving the intralayer 

quality. 

The downsampling factor is given by the quotient between 

the current level and the keyscale of the keyframe used (𝑙/𝑆𝑖). 

Downsampling is carried out by standard low pass filtering 

followed by resampling. The output of this process is a 

training texture 𝑇𝐶(𝑙) at the appropriate scale, for each 

required class C. 

3.3. Color matching 

If the (color) histograms of the part of the image that 

belongs to the class C, 𝐼𝐶
𝐼 (𝑙), and the training image 𝑇𝐶(𝑙) 

used to add the high frequency details, do not match (e.g., due 

to different illumination conditions during their acquisition), 

the contexts used in the texture transfer would originate only 

in rare areas of the training texture (unless the transformation 

that maps contexts takes this into account, see below). To 

understand this, consider what would happen if a training 

texture with light pebbles is used to super-resolve an image 

with dark pebbles: only the shadow areas between the light 

 
6 The lowest keyframe in the pyramid is the highest resolution keyframe. 

pebbles will be used. This is clearly undesirable.  

To address this problem we simply match the mean color of 

the part of the image belonging to the current class in YIQ 

colorspace, 𝐼𝐶
𝐼 (𝑙)      , with the mean color of the current training 

texture, 𝑇𝐶(𝑙)       , using the translation ∆   = 𝑇𝐶(𝑙)       − 𝐼𝐶
𝐼 (𝑙)      . The 

output of this process is a color corrected image 𝐼𝐶
𝑀(𝑙) 

(“≝ 𝐼𝐶
𝐼  𝑙 + ∆   ”) for the part of the image belonging to each 

class (the superscript “M” stands for “color Matched”).  

An alternative approach is to include the color 

compensation in the transformation function 𝑓 ∙  (e.g., by 

normalizing the norm of the context). We found that this 

“local compensation” approach tends to match contexts that 

should not be matched and therefore does not perform as well. 

In addition, it is slower, since normalization is computed for 

each context processed. On the other hand, our proposed 

“global compensation” could fail in cases where there are 

several textures, with different histograms, mixed in different 

proportions (e.g., sky with one big cloud and sky with one 

small cloud), since the global histogram would depend on the 

mixture proportions. This could be addressed by standard 

region-based histogram matching techniques [26]. The results 

in this paper were achieved using only class labels to handle 

mixtures of textures, and the very simple color-matching 

scheme described. More sophisticated color matching 

techniques may provide further refinement.  

3.4. Texture transfer 

The next step is to transfer, for each class, the texture’s high 

frequency details from the scaled training texture 𝑇𝐶(𝑙) to the 

color corrected part of the image 𝐼𝐶
𝑀(𝑙). If this image is the 

highest in the pyramid that receives texture from a keyframe, 

this process has three main steps, detailed in Section 3.4.1. 

Otherwise a different process, presented in Section 3.4.2, is 

followed.  

3.4.1 Texture transfer for the highest level 

The first step in the texture transfer procedure for the 

highest level in the pyramid that receives texture from a 

keyframe, similar to a Wei-Levoy pass, finds for each pixel in 

the image a candidate in the training texture that has a similar 

context. These candidates are used to initialize the matrix of 

locations 𝑄 to valid locations in the training texture, and to 

copy the colors of those locations from 𝑇𝐶(𝑙) to 𝐼𝐶
𝑀(𝑙).  

Wei-Levoy is relatively slow since an expensive tree search 

is required for every pixel in 𝐼𝐶
𝑀 𝑙 . 7 We avoid this high cost 

(recall that it is important in our application to synthesize 

pixels roughly as fast as the server otherwise could provide 

them), by perceptually-appropriate dimensionality reduction 

of the contexts. The transformation in this step, 𝑓1 𝐶1 , acts on 

a 3 × 3 downsampled context centered at the current pixel 

(see Figure 4, first row). The contexts extracted from the 

image in this pass still lack high frequency details, therefore 

using the original context (not downsampled) would bias the 

candidate selection towards candidates whose contexts lack 

high frequencies. We define 𝑓1 𝐶1  to be the weighted mean 

 
7 The performance of a kd-tree degrades rapidly with the dimension of the 

data, being virtually equivalent to exhaustive search for dimensions greater 
than 10. 

Figure 3: Comparison of two algorithms to interpolate the 

labels, after two consecutive interpolations. Left: 

interpolation followed by thresholding. Right: our proposed 

simple approach. 



 

 

(in the YIQ colorspace) of the context, concatenated with the 

gradient of the luminance (Y color channel). Since the 

dimension of the transformed context is only five (3 +  2 

components), tree queries are solved extremely fast, avoiding 

vector quantization of the texture data, that often compromises 

the output texture appearance; we use instead a simple kd-tree 

to answer nearest-neighbor queries. This step produces an 

image that has the right local structure (colors and edges in the 

right locations), necessary to enforce interlevel coherence with 

the upper level image, but still lacks the higher-level structure 

of the texture. 

The next step, an Ashikhmin pass, enlarges the patches, 

adding the higher-level structure required to increase the 

intralevel coherence. To do this, the transformation in this 

step, 𝑓2 𝐶2 , acts on a bigger context, 𝐶2, that is 6 × 6 (see 

Figure 4, second row). The contexts extracted from the image 

in this pass only have high frequency details in their causal 

part (the pixels that were already modified). Therefore, using 

the whole 𝐶2 context would bias the selection towards 

candidates whose contexts do not have high frequencies in 

their non-causal neighborhoods. To avoid this, only 

downsampled, non-causal pixels from 𝐶2 are considered by 𝑓2. 

Furthermore, since human subjects are less sensitive to high 

frequencies in the chroma (I and Q) channels [21] [27], 𝑓2 

does not consider high frequency information from the 

chroma channels of 𝐶2. Lastly, since humans are not equally 

sensitive to all color channels [27], we weight the channels of 

𝐶2 accordingly. The function 𝑓2 thereby is a concatenation of: 

1) the causal part of the Y channel; 2) the non-causal, 

downsampled, part of the Y channel; and 3) the whole 

downsampled and weighted I and Q channels. 

The next and last step in the texture transfer stage, an 

additional Ashikhmin pass, adds more details, enlarging the 

patches even more. In this iteration, both the causal and non-

causal parts of the context have high frequencies. Moreover, 

since we do not want this pass to overwrite the high 

frequencies added in the previous pass, the whole context is 

considered. Hence, 𝑓3 is a concatenation of: 1) the whole Y 

channel; and 2) the downsampled and weighted I and Q 

channels (see Figure 4, third row).  

Each Ashikhmin pass drives the appearance of the image 

closer to the training texture, while slowly drifting away from 

the image in the level above. We found that the best 

compromise between intra and interlevel coherence was 

obtained with two iterations of this last step. 

3.4.2 Texture transfer for subsequent levels 

If for the class 𝐶 being processed, the current color 

corrected image, 𝐼𝐶
𝑀(𝑙), and the image above, 𝐼𝐶

𝑀(𝑙 − 1), 

receive texture from the same keyframe (appropriately 

downsampled in each case), the patches in the image above 

can be directly super-resolved, avoiding the first step of the 

texture transfer algorithm altogether. Recall that a patch 𝑅𝑙−1 

in 𝐼𝐶
𝑀(𝑙 − 1) is (by definition) copied verbatim from𝑇𝐶(𝑙 − 1). 

Since 𝑇𝐶(𝑙 − 1) and 𝑇𝐶(𝑙) were both downsampled from the 

same keyframe, there exist a super-resolved version of 𝑅𝑙−1 

(𝑅𝑙) in 𝑇𝐶(𝑙). Therefore, 𝑅𝑙  can be used to super-resolve 𝑅𝑙−1, 

by simply propagating the locations inside 𝑅𝑙−1 in the layer 

above to 𝑅𝑙  in the layer below (transformed by a simple 

formula to account for the change of scale). 

This process guarantees that the coherence between levels 

is completely preserved within patches (since 𝑅𝑙−1 was 

downsampled from 𝑅𝑙), but does not guarantee a seamless 

integration between patches in the same level. To mask the 

seams between these patches, candidates suggested in the first 

step above are used to fill-in pixels that lie next to a patch 

boundary (see Figure 5). This increases the number of 

candidates considered near patch boundaries, making more 

likely that a candidate that better masks the seam would be 

found. In addition, this process creates increasingly larger 

patches (note that 𝑅𝑙  has four times more pixels than 𝑅𝑙−1), as 

subsequent images receive texture from the same keyframe 

(more on this in Section 4 below), further improving the 

global appearance of the current level. 

To conclude this section, the proposed texture transfer 

algorithm combines small patches in the highest level 

receiving texture from a keyframe, to ensure that the global 

Figure 4: Context pixels considered in each one of the passes 

(rows), and each of the color channels (columns). Each 

context shows two layers: the current level below, and the 

downsampled current level above (do not confuse with the 

level above in the clipmap pyramid). Only pixels in gray are 

considered by the transformation function. The current pixel 

is marked with an “x”. See text for details. 

 

Color 

Channel 
Pass 

2nd 
ASH 

 

3rd and 4th   

ASH 

Y 

(luminance) 

I and Q 

(chrominance) 

1st  

W&L 
 

Mean and Gradient 

 

Only Mean 

 

Figure 5: Propagation of the locations in two patches (in 

green and violet) to the next level. The locations in the 

colored pixels of the lower level are computed from the 

corresponding locations in the upper level. The locations in 

the white pixels, lying near the patch boundary, are initialized 

using a tree search as detailed in the text.   

 



 

 

appearance of the previous level is preserved. In each 

subsequent level, the patches are enlarged, and their 

boundaries are refined to better hide the seams. 

3.5. Undo color matching 

Before storing the final image in the new (deepest) level of 

the clipmap pyramid, the color transformation has to be 

undone to restore the original appearance of the image, 

matching the histograms of the levels above.  

This concludes the description of the proposed method. In 

the next section we show results obtained with it. 

4. Results 

To illustrate the proposed framework, we now present some 

examples. The reader is encouraged to check the movies at 

[28] in order to see additional examples and fully appreciate 

the technique. 

In Figure 1, the proposed framework was used to add 

details to the grass of the Maracanã stadium in Rio de Janeiro, 

Brazil. The first four images, extracted from Google Earth, are 

shown unchanged and represent the maximum resolution 

available in Google Earth for this part of the world. The rest of 

the images were synthesized by super-resolving the center 

square of the previous image (dashed), following the 

framework here proposed. The real world size of the images 

(stated in the lower-left corner) is halved in each step. Note 

that the general appearance of the previous image is respected, 

while the texture is transferred to each image; in particular 

look at the grass tone bands in the fifth image. 

Figure 6 shows the texture pyramid, with only two 

keyframes, used to synthesize the images in Figure 1 (no 

texture was transferred in the first four images). As detailed in 

Section 3.2, these two keyframes are downsampled to produce 

the texture at all the levels required by this example. When a 

keyframe is downsampled by 2 (to obtain a texture one whole 

level higher in the pyramid), the number of pixels in the 

training texture is reduced by four. Therefore, having two 

keyframes separated by n levels implies that it may be 

necessary to downsample the lower texture by 2𝑛−1. The 

keyframe then must be large enough to allow a 4𝑛−1–fold 

reduction in size, while still being large enough to serve as a 

training texture (this explains why the images labeled “4m” 

and “2m” are smaller in Figure 6). We found it impractical to 

have keyframes more than 6-7 levels apart. 

The original location, in the training texture, of each pixel 

transferred to the images in Figure 1 is shown in Figure 7. The 

vertical and horizontal pixel indices are encoded in the red and 

blue channels of the images, respectively. Note how the size 

of the patches increases in the sequence of images with texture 

transferred from the same keyframe. In particular, note that 

the last image of the sequence was almost transferred “in one 

piece.” The rest of the images were assembled using many 

patches, yet the seams between patches are virtually 

impossible to notice. This phenomenon of increasing patch 

size suggests the use of keyframes as separated as possible, 

subject to the upper limit mentioned above. 

All the images in this example contain 256 × 256 pixels, 

and each one of them was generated in 1 to 3 seconds 

(depending on the average patch size at the level and the size 

of the training texture), in a 1.8Ghz Turion machine. The 

algorithms, implemented part in C++ and part in Matlab, are 

not optimized for speed but for ease of experimentation. If 

desired, a speedup of at least an order of magnitude can be 

achieved, or even more if exploiting a GPU. 

An additional example in a rural setting is included in 

Figure 8. Given the abundance of easily-segmentable large 

uniform regions, this setting is ideal for our framework. 

5. Conclusions and future work 

In this work we introduced an approach to satisfy the user’s 

constant demand for higher resolution images in virtual globe 

applications. The proposed framework reduces the operational 

cost of such Internet applications, while at the same time 

improving the quality of the displayed images and augmenting 

their information content. This is achieved by state-of-the-art 

image processing techniques. 

The proposed framework can be further improved or 

extended in a number of ways. First, the coherence between 

layers of the pyramid can be increased, while reducing the on-

line computing cost, by off-line pre-computing a list of 

appropriately downsampled similar neighborhoods between 

consecutive keyframes of the texture pyramid. Since this step 

is carried out off-line, these neighborhoods can be larger than 

the ones used in this work, and an increase in the coherence 

between layers is expected. This step is similar to the analysis 

phase proposed in the Jump Map method [29], although in this 

case, similar neighborhoods are computed between textures in 

consecutive pyramid keyframes rather than within the same 

texture. 

Figure 6: The texture pyramid used to generate Figure 1. This pyramid 

contains only two keyframes (labeled “8m” and “6.25cm”), the rest are 

obtained by downsampling from these two. The world length (and 

width) of each frame is specified in its lower left corner. See text for 

details. 



 

 

Secondly, the boundaries between classes currently 

produced by the proposed approach can be abrupt (see the 

videos at [28]), misrepresenting the distinctive transitions 

actually observed between two particular classes (e.g., grass 

and sand, or sand and sea). A better way to handle these 

transitions is to include exemplars of them in the texture 

training set, and use the texture transfer algorithm for their 

reconstruction. As mentioned in Sec 3.3, mixtures of textures 

are not satisfactorily handled by the simple color matching 

essayed here, which must be replaced by a more sophisticated 

algorithm to pursue this approach. 

Thirdly, the proposed framework could be extended to 

generate the texture pyramids needed to render textured 

surfaces at different scales in video games and virtual worlds. 

Essentially, the proposed framework would act like a 

procedural texture generator [30], where textures are defined 

and controlled directly and intuitively by the keyframe images 

rather than indirectly, by other than visual means. Results in 

these directions will be reported elsewhere. 
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Figure 7: The location, in the training texture, of each pixel copied to the 

images in Figure 1. The vertical and horizontal pixel indices are encoded 

in the red and blue channels respectively. The size of the patches 

increases in each sequence of images with texture transferred from the 

same keyframe. 

Figure 8: Example in a rural setting, a field in Iowa. See the corresponding video at [28]. 
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