
SUPER-RESOLUTION TEXTURING FOR ONLINE VIRTUAL GLOBES

By

Diego Rother

Lance Williams

and

Guillermo Sapiro

IMA Preprint Series # 2208

(May 2008)

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

UNIVERSITY OF MINNESOTA

400 Lind Hall
207 Church Street S.E.

Minneapolis, Minnesota 55455–0436
Phone: 612/624-6066 Fax: 612/626-7370

URL: http://www.ima.umn.edu

Abstract

Online virtual globe applications such as Google Earth and

Maps, Microsoft Virtual Earth, and Yahoo! Maps, allow users

to explore realistic models of the Earth. To provide the

ground-level detail of interest to users, it is necessary to serve

and render high resolution images. For planetary coverage at

high resolution, a very large number of images need to be

acquired, stored, and transmitted, with consequent high costs

and difficulty for the application provider, often resulting in

lower than expected performance. In this work we propose a

supplementary approach to render appropriate visual

information in these applications. Using super-resolution

techniques based on the combination and extension of known

texture transfer and synthesis algorithms, we develop a system

to efficiently synthesize fine detail consistent with the textures

served. This approach dramatically reduces the operational

cost of virtual globe displays, which are among the most

image-intensive applications on the Internet, while at the same

time improving their appearance. The proposed framework is

fast and preserves the coherence between corresponding

images at different resolutions, allowing consistent and

responsive interactive zooming and panning operations. The

framework is capable of adapting a library of multiscale

textures to pre-segmented regions in the highest-resolution

texture maps available. We also describe a simple interface to

obtain class label information from contributing users. The

presentation of the constituent techniques is complemented

with examples simulating our framework embedded in Google

Earth.

1. Introduction

Several online virtual globe applications currently allow

users to explore realistic models of the Earth [1]. Examples of

these applications include Google Earth™ [2] and Google

Maps™ [3], Microsoft Virtual Earth™ [4], Yahoo! Maps [5],

Earth Explorer [6] and World Wind [7]. These applications

are supported by some of the largest organized collections of

imagery on the Internet.

Online virtual globes commonly consist of a client

application, which is a special program or simply a web

browser running on the user’s machine, and a server

application, running on the provider’s machine. The client

receives navigation commands from the user and creates the

corresponding display. If the client does not have the

information required to create the display, it issues a request

for this information to the server. To answer the client’s

requests, the server imagery is organized as a clipmap

pyramid [8], containing the lowest resolution image of the

Earth in the highest level, an image of double that resolution

in the next level, and so on, up to the highest resolution image

served.

As the user zooms in, increasingly higher resolution images

(stored in lower levels of the pyramid) need to be accessed

and transmitted to the client. When the stored resolution is

exhausted, the highest-resolution pixels are simply

interpolated, producing vague, blurry vistas, often with a

visible grid structure due to Mach-banding between samples.

Texture-mapped building models may be instanced on the

landscape, but elsewhere, high spatial frequencies useful for

interactive navigation simply vanish. The interpolated imagery

does not have the statistical properties or visual characteristics

of natural imagery; it typically resembles nothing in nature.

On the other hand, much of the surface of Earth exhibits

rapidly changing and/or stereotypical texture, the specific

details of which are not of general interest. Many areas such

as desert sands or snow cover are capable of rapid change,

rendering an expensive high resolution acquisition quickly

outdated; while some areas, such as grasslands or croplands,

have highly predictable or repetitive texture whose exact high

definition details are irrelevant to the average user, in spite of

the relevance of its identity (i.e., distinguishing a cornfield

Super-Resolution Texturing for Online Virtual Globes

Diego Rother
University of Minnesota

diroth@umn.edu

Lance Williams
Google, Inc.

lancew@google.com

Guillermo Sapiro
University of Minnesota

guille@umn.edu

Figure 1: “Powers of two.” This sequence of images illustrates the framework proposed in this article to supplement and enhance

the imagery of virtual globe applications (e.g., Google Earth). The first four images were extracted from Google Earth, the rest

were synthesized with the proposed framework following the user’s zoom-in request. See the corresponding video at [28].

In: Proceedings of the First IEEE Workshop on Internet Vision (held in conjunction with CVPR), 2008.

from a soybean field may be relevant, observing the exact

arrangement of leaves may not). A consistent depiction that

portrays the correct region classes offers the user both

satisfying visual detail, necessary for navigating the surface,

and useful symbolic information. Global literal detail over

some range of scales will never be available.

The fact that the surface covered by these

provisional/predictable areas is by no means negligible,

emphasizes the importance of augmenting a deep-scan

approach. Seventy one percent of the planet’s surface is

covered by water [9]. The remaining 29% is covered as

follows: 32% forests and woodland, 26% permanent pastures

[10], and 13.3% arable land (4.7% with permanent crops) [9].

By comparison, the size of urban areas (where high-resolution

scanning generates more useful data) is just 1.5%. In the U.S.

just four crops (corn, wheat, cotton and soybean) cover 10%

of the country’s surface [11].

Since online virtual globe applications must be interactive,

the proposed solution has to be fast, on the order of the time

required to download equivalent images from the server, or

faster. In addition, to create the feeling of seamless transition

between layers in the pyramid (zooming in or out), the

coherence between consecutive pyramid levels must be

preserved, each layer integrating to the layer immediately

above.
1

These circumstances lead us to propose in this work a

system for continuation, on the client side, of texture details in

images for the lower pyramid levels. We approach this using

super-resolution image processing methods based on the

extension of available texture synthesis and transfer

algorithms. The proposed texture transfer component of the

framework consists of several passes over the image. In the

first pass, a modified Wei-Levoy texture synthesis algorithm,

[12], primes the data for subsequent passes by linking pixels

in the image to similar pixels in the “training” texture. Next,

several passes based on modifications on Ashikhmin’s

approach, [13], add structure in order to improve the

appearance match to the training image texture. This

combination avoids the relatively high cost and smoothed

results of conventional Wei-Levoy iterations, while improving

coherence between input and output images. In addition to

these extensions and combinations of known techniques, we

propose a novel rule to directly propagate texture down the

pyramid in areas where inter or intra layer coherence conflicts

cannot arise, further improving both the quality of the results

and the computational speed.

The proposed framework dramatically reduces the storage

space required for the clipmap pyramid, the Earth surface area

to be acquired, the acquisition resolution, and the bandwidth

required for transmission of these images to the client, while

at the same time improving the appearance and information

content of the models.

To apply super-resolution techniques and display to the user

a reliable representation, the particular class label (e.g.,

“water,” “grass,” “asphalt,” etc.) of each pixel in the images

must be known. We propose two strategies to obtain these

1 Currently, online virtual globe pyramids may contain layers supplied by

different providers or taken during different seasons, therefore the coherence
between layers may not be preserved at all.

labels: 1) ask contributing users
2
 to provide these labels; and

2) obtain them from agricultural mapping databases (e.g.

[11]), which may in turn obtain this information from ground

level surveys or automatic segmentation and classification of

hyperspectral images. In this article we demonstrate the first

strategy through a simple interface to obtain this information

from users.

In many undertakings, users are enthusiastically providing

the information delivered by the system, Wikipedia serving as

a defining example. Closer to our current interest is

Wikimapia [14], a website where users are encouraged to

mark places and roads to “describe the whole planet Earth,” or

Google SketchUp [15], in which users create 3D models that

are later integrated into Google Earth. In our proposed system,

contributing users are equipped to provide three pieces of

information. First, they can assign class labels for regions of

pixels in the highest resolution image available. To input the

labels in our implementation, we use state-of-the-art

interactive segmentation techniques [16].

Second, for each class label (or material) defined, the user

provides one or more sample “training” images specifying the

appearance of the material at chosen scales. We call these

images keyframes, in analogy to the keyframes of traditional

animation. The supplied images, 𝐾1 , … , 𝐾𝑛 , define the

texture’s appearance at discrete levels of resolution or

keyscales, 𝑆1 , … , 𝑆𝑛 . These images are stored in a texture

pyramid (distinct from the pyramid storing the Earth images

described above). Training images can be easily acquired at

ground level with a standard camera (all the ground-level

textures in this article were acquired by one of the authors,

with an inexpensive conventional camera or downloaded from

the Internet).

Third, for each keyframe texture, the user provides the

approximate true world size represented by a pixel in the

corresponding training image (e.g., in meters/pixel). Each size

is used to place the corresponding training image in the

appropriate level (keyscale) of the texture pyramid. We call

this framework texture keyframing. The system then uses this

information, through the super-resolution specification here

introduced, to synthesize new levels in the texture pyramid.

The last two pieces of information can of course be omitted, if

the virtual globe application provider keeps a library of

previously keyframed textures that the user can select from.

The remainder of this paper is organized as follows. In

Section 2 we review in detail the relevant prior texture

synthesis/transfer techniques that our framework relies on. In

Section 3 we describe the proposed system and the

modifications that we developed to adapt and combine these

fundamental techniques. We include results in Section 4 and

conclude with a discussion in Section 5.

2. Previous related work

Super-resolution
3
 is an image processing operation to

2 It might be useful to distinguish between two different kinds of users

interacting with the system. Normal users (or just “users”) are those that only

obtain information from the system. “Contributing users,” on the other hand,
also provide information to the system, and may require qualification.

3 This is sometimes referred to as single-frame super-resolution, to avoid

confusion with other techniques which aggregate information across frames to
increase the resolution of frames in a sequence.

synthetically augment the resolution of an image by

supplementing its low frequency components with

“corresponding” high frequency components. Several

techniques have been proposed to address this operation, see

[17] for a review. We are particularly interested in a general

class of successful methods we will call pixel substitution by

context matching (PSCM).

PSCM techniques receive in general an input image that has

to be modified, and a set of “training” (or “example”) images

specifying some characteristic (or statistic) of the desired

result. The input image is then modified, one pixel at a time,

in raster scan order. For each pixel p in the input image, a

pixel q in one training image is selected such that their

corresponding neighborhoods (or “contexts”) are “similar,”

and the color/attribute at q is used to overwrite p. The

modified input image (the “output” image) is returned as the

result.

Important algorithms of this class were introduced by Efros

and Leung [18] and Wei and Levoy [12], with the goal of

texture synthesis. In the following, these algorithms will be

referred to as Efros-Leung and Wei-Levoy, respectively. The

Efros-Leung algorithm receives an empty image of the desired

size and an example of the desired texture appearance, and

fills the image with pixels sampled from the example. To

obtain the value to place in the current pixel 𝑝, all previously

synthesized pixels in a square window around 𝑝 (“causal

context” in the following) are used as the context of 𝑝, 𝐶 𝑝 .

This context is then compared against contexts similarly

extracted from the training image, and the pixel 𝑞 that has the

closest context 𝐶 𝑞 to 𝐶 𝑝 is used to fill 𝑝. Specifically, in a

straightforward generalization, 𝑞 is selected as

arg min𝑞 𝑓 𝐶 𝑝 − 𝑓 𝐶 𝑞
2
, where 𝑓 ∙ is a

transformation that maps the context to a different space

containing only its relevant (from a perceptual point of view)

information. Efros-Leung selected the transformation to be a

Gaussian weighting of the pixels in the context, so that center

pixels have higher influence on the distance.

The Wei-Levoy algorithm follows the same course as

Efros-Leung, with two important exceptions: 1) the synthesis

proceeds in a multiresolution fashion, and 2) it uses tree-

structured vector quantization to speed up the search for the

best context in the training texture. Multiresolution synthesis

starts by synthesizing a low-resolution version of the texture,

as in Efros-Leung. The following level, which has double the

resolution of the previous one, is synthesized next, using as

context the causal context at the current resolution,

concatenated with the whole (corresponding) context already

synthesized at the previous resolution. With this approach,

smaller contexts can be used, often leading to a faster

implementation.

Ashikhmin, [13], suggested a simple but important

modification to these techniques, further accelerating the

synthesis, while at the same time improving the results for the

important class of natural (or even irregular) textures. He

noted that a potentially good candidate, 𝑞, to fill the current

pixel 𝑝, can be obtained from the candidate 𝑞′ in the training

image, used to fill in 𝑝’s neighbor 𝑝′, appropriately shifted by

𝑝 − 𝑝′ (𝑞 = 𝑞′ + 𝑝 − 𝑝′), see Figure 4 in [13]). Since 𝑝′ can

be any neighbor of 𝑝, all and only the neighbors of 𝑝 are used

to suggest candidates, avoiding the expensive step of

searching the training image for an appropriate location to

copy from. To support this, a matrix 𝑄 storing the original

location in the training image of each copied pixel has to be

kept (𝑞 = 𝑄 𝑝). This “cloning” variation will be referred to

as “Ashikhmin” in the following. This approach produces

irregular patches
4
 that are copied from the training image to

the resulting texture, avoiding the undesirable smoothing

sometimes found in Efros-Leung or Wei-Levoy’s results.

The candidate locations to copy from are set at the start

when the matrix 𝑄 is initialized. Multiple iterations of this

algorithm can be performed. Individual patches can grow or

shrink, or even disappear, at each iteration, but no patches can

be spontaneously created; whether a patch is included is

defined when the matrix 𝑄 is initialized. Since patches can be

eliminated but not created, the total number of patches in the

image decreases with each iteration, while the average patch

size increases. These patches have irregular shape, making

their boundaries generally hard to notice.

During the first pass of this algorithm, only pixels that were

already processed have valid colors and source locations.

Therefore, in this pass, a causal context is used both in the

comparison and to suggest candidates. Subsequent passes use

the whole context to improve the result of the previous passes

(using a causal context in these passes would ignore previous

passes and create the image afresh each time).

Ashikhmin also showed that this basic algorithm can be

slightly modified to perform not only synthesis but also

texture transfer, where the input image is modified to “look

like” the training image. This is done simply by starting with a

whole (complete neighborhood) context, and initializing the

matrix of source locations to valid random locations in the

training image.

Note that super-resolution can be considered as a special

case of texture transfer, where the input image is doubled in

size by interpolation before “transferring” to it the high

frequency details from the training images (at the desired

output resolution). If the input image and its corresponding

super-resolved version are consecutive layers in a pyramid

[19], as they are in an online virtual globe, special care must

be taken to guarantee the coherence between the two. To

improve the performance of texture transfer with respect to

this critical requirement, in a later article, [20], Ashikhmin

suggested including, with small probability, an extra candidate

with a random source location. These extra candidates provide

additional opportunities to match the contexts in the input

image, improving the coherence between the input and output

images.

Hertzman et al., [21], suggested that to further improve the

quality of the results, the source context can be selected by a

rule combining both Ashikhmin and Wei-Levoy: choose the

best candidate by both methods (qASH and qW&L), and use qASH

if

 𝑓 𝐶 𝑝 − 𝑓 𝐶 𝑞𝐴𝑆𝐻
2

< 𝑘. 𝑓 𝐶 𝑝 − 𝑓 𝐶 𝑞𝑊&𝐿 2
,

with 𝑘 > 1, otherwise use qW&L. The rationale behind this rule

is to favor bigger continuous patches unless they diverge “too

4 Throughout this article “patches” refer to “connected regions in the

output image that are copied verbatim from connected regions in the training
image.”

much” from the input image. This technique produces better

results than either Ashikhmin or Wei-Levoy, but has a running

time on the order of the slowest of the two (Wei-Levoy).

Hertzman et al., building on earlier work by Dalton, [22],

showed that rather arbitrary image relationships, including

“aesthetic imaging transformations” could be implemented as

PSCM.

For completeness, we should mention that two other

important image processing operations were also recently

shown by Buades et al. to be amenable to a PSCM-type

implementation: denoising [23] and demosaicing [24]. These

algorithms generalize the PSCM framework by replacing a

pixel not with its best match in the training images, but with a

weighted average of the best matches. The weight of each

pixel being averaged is computed as a decreasing function of a

distance between the corresponding contexts.

Contrary to what appears to be widely believed in the

community, these algorithms are not sampling from a Markov

Random Field model of the texture, but from a Bayesian

Network model, since the processing order of the pixels

defines a directionality (“causality”) in the link connecting

two nodes (pixels) in the graphical model that represents the

texture [25].

In the next section we introduce the texture transfer

framework we propose for online virtual globe applications.

This algorithm runs at least as fast as Ashikhmin, while better

maintaining the coherence between the pyramid layers that is

important for our interactive application.

3. Proposed super-resolution system

The goal of the proposed algorithm is to “add” new layers

at the bottom of the clipmap pyramid used to represent the

Earth, beyond the maximum available resolution. This

clipmap pyramid contains the lowest resolution image of the

Earth in the highest level, an image of double that resolution

in the next level, and so on. Layers in the pyramid are aligned

so that one pixel is “above” the four (2 × 2) pixels that

represent it at the next (higher) resolution, in the layer below.

The new synthetic layers to be added are not stored in the

server and transmitted upon request, but are generated “on the

fly” in the client as needed. The procedure to generate one

layer after the last available one, shown schematically in

Figure 2, has the following main steps: 1) interpolate the

image and class labels of the previous layer to double their

resolution; 2) adjust the scale of a training texture to match the

scale of the current image; 3) match the colors between the

image and training textures to improve the fit of the contexts;

4) transfer the texture from the training textures to the image;

and 5) undo the color matching to return the image to its

original appearance. This procedure is performed once for

each new level “added” to the pyramid. We now provide

details for each one of these steps.

3.1. Image and label interpolation

The first stage to generate a new level in the clipmap

pyramid is to double the resolution of the image at the

previous level, 𝐼 𝑙 − 1 , and the labels provided for this (or a

higher) image by a contributing user or other “external

source,” 𝐿 𝑙 − 1 . The contributing user segments the last

“real” image in the pyramid into classes by drawing a rough

curve inside the region corresponding to each class. The

system then uses the real-time interactive segmentation

algorithm in [16] to obtain the detailed segmentation.
5

The image’s resolution is doubled by simple bilinear

interpolation. To maintain distinct labels separated by

smoothly curved borders at the new level, the following

procedure is used to interpolate the labels: 1) a mask

𝑀𝐶 𝑙 − 1 containing the pixels of the class is created for each

class C at the previous level; 2) the resolution of each mask

𝑀𝐶 𝑙 − 1 is doubled, using a Gaussian 2D kernel, obtaining

𝑀𝐶 𝑙 ; 3) for each pixel in the upsampled image, the class of

the highest valued mask is selected as the label of the pixel,

𝐿 𝑙 = arg max𝐶 𝑀𝐶 𝑙 .

This simple procedure creates region boundaries that seem

natural, compared to the artificial “blocky” borders obtained

by simple interpolation and thresholding, as illustrated in

Figure 3. If desired, these “hard” boundaries can be

5 This could be replaced by automatic segmentation techniques, but we

restrict ourselves to this semi-automatic approach for the presentation.

𝐾1

Pyramid of

Training Textures

Color

Matching
Texture

Transfer

Undo
Color

Matching

𝐼 𝑙

𝐿 𝑙

Interpolation

𝐿 𝑙 − 1 𝐿 𝑙

𝐼𝐶
𝑀 𝑙 𝐼𝐶

𝑇 𝑙

Interpolation

𝐼 𝑙 − 1 𝐼𝐼 𝑙

𝑇𝐶 𝑙

𝐾2

Selection of the

Training Image

Figure 2: Block diagram of the proposed technique to

add one new (higher-resolution) layer to the clipmap

pyramid. Only the process for the class “grass” is

shown. See text for details.

straightforwardly substituted by sigmoidal transitions to avoid

aliasing.

This process produces a color image 𝐼𝐼(𝑙) (the superscript

“I” stands for “Interpolated”) and an image of class labels 𝐿 𝑙

of the same size, at the resolution of the new level. The labels

𝐿 𝑙 are used to transfer the appropriate texture to each part of

the image. The following steps are performed once for each

class (label).

3.2. Selection of the training image

Since the contributing user may not have provided a

training texture matching exactly the current level, it is

necessary to obtain one from the keyframes (training images)

that were already provided (𝐾1 , … , 𝐾𝑛 at keyscales 𝑆1, … , 𝑆𝑛).

This texture, 𝑇𝐶(𝑙), provides the high frequency details to be

transferred, so it can only be obtained by downsampling a

higher resolution image 𝐾𝑖 , in particular, the first training

image having higher resolution than the current level (𝑆𝑖−1 <
𝑙 ≤ 𝑆𝑖). The maximum zooming level then is given by the

lowest keyframe in the pyramid, 𝐾𝑛 .
6

If two consecutive keyframes are separated by more than

two levels, the same keyframe (appropriately downsampled) is

used to transfer texture to more than one image. This is

exploited, as detailed in Section 3.4 below, to further increase

the interlayer coherence while improving the intralayer

quality.

The downsampling factor is given by the quotient between

the current level and the keyscale of the keyframe used (𝑙/𝑆𝑖).

Downsampling is carried out by standard low pass filtering

followed by resampling. The output of this process is a

training texture 𝑇𝐶(𝑙) at the appropriate scale, for each

required class C.

3.3. Color matching

If the (color) histograms of the part of the image that

belongs to the class C, 𝐼𝐶
𝐼 (𝑙), and the training image 𝑇𝐶(𝑙)

used to add the high frequency details, do not match (e.g., due

to different illumination conditions during their acquisition),

the contexts used in the texture transfer would originate only

in rare areas of the training texture (unless the transformation

that maps contexts takes this into account, see below). To

understand this, consider what would happen if a training

texture with light pebbles is used to super-resolve an image

with dark pebbles: only the shadow areas between the light

6 The lowest keyframe in the pyramid is the highest resolution keyframe.

pebbles will be used. This is clearly undesirable.

To address this problem we simply match the mean color of

the part of the image belonging to the current class in YIQ

colorspace, 𝐼𝐶
𝐼 (𝑙) , with the mean color of the current training

texture, 𝑇𝐶(𝑙) , using the translation ∆ = 𝑇𝐶(𝑙) − 𝐼𝐶
𝐼 (𝑙) . The

output of this process is a color corrected image 𝐼𝐶
𝑀(𝑙)

(“≝ 𝐼𝐶
𝐼 𝑙 + ∆ ”) for the part of the image belonging to each

class (the superscript “M” stands for “color Matched”).

An alternative approach is to include the color

compensation in the transformation function 𝑓 ∙ (e.g., by

normalizing the norm of the context). We found that this

“local compensation” approach tends to match contexts that

should not be matched and therefore does not perform as well.

In addition, it is slower, since normalization is computed for

each context processed. On the other hand, our proposed

“global compensation” could fail in cases where there are

several textures, with different histograms, mixed in different

proportions (e.g., sky with one big cloud and sky with one

small cloud), since the global histogram would depend on the

mixture proportions. This could be addressed by standard

region-based histogram matching techniques [26]. The results

in this paper were achieved using only class labels to handle

mixtures of textures, and the very simple color-matching

scheme described. More sophisticated color matching

techniques may provide further refinement.

3.4. Texture transfer

The next step is to transfer, for each class, the texture’s high

frequency details from the scaled training texture 𝑇𝐶(𝑙) to the

color corrected part of the image 𝐼𝐶
𝑀(𝑙). If this image is the

highest in the pyramid that receives texture from a keyframe,

this process has three main steps, detailed in Section 3.4.1.

Otherwise a different process, presented in Section 3.4.2, is

followed.

3.4.1 Texture transfer for the highest level

The first step in the texture transfer procedure for the

highest level in the pyramid that receives texture from a

keyframe, similar to a Wei-Levoy pass, finds for each pixel in

the image a candidate in the training texture that has a similar

context. These candidates are used to initialize the matrix of

locations 𝑄 to valid locations in the training texture, and to

copy the colors of those locations from 𝑇𝐶(𝑙) to 𝐼𝐶
𝑀(𝑙).

Wei-Levoy is relatively slow since an expensive tree search

is required for every pixel in 𝐼𝐶
𝑀 𝑙 . 7 We avoid this high cost

(recall that it is important in our application to synthesize

pixels roughly as fast as the server otherwise could provide

them), by perceptually-appropriate dimensionality reduction

of the contexts. The transformation in this step, 𝑓1 𝐶1 , acts on

a 3 × 3 downsampled context centered at the current pixel

(see Figure 4, first row). The contexts extracted from the

image in this pass still lack high frequency details, therefore

using the original context (not downsampled) would bias the

candidate selection towards candidates whose contexts lack

high frequencies. We define 𝑓1 𝐶1 to be the weighted mean

7 The performance of a kd-tree degrades rapidly with the dimension of the

data, being virtually equivalent to exhaustive search for dimensions greater
than 10.

Figure 3: Comparison of two algorithms to interpolate the

labels, after two consecutive interpolations. Left:

interpolation followed by thresholding. Right: our proposed

simple approach.

(in the YIQ colorspace) of the context, concatenated with the

gradient of the luminance (Y color channel). Since the

dimension of the transformed context is only five (3 + 2

components), tree queries are solved extremely fast, avoiding

vector quantization of the texture data, that often compromises

the output texture appearance; we use instead a simple kd-tree

to answer nearest-neighbor queries. This step produces an

image that has the right local structure (colors and edges in the

right locations), necessary to enforce interlevel coherence with

the upper level image, but still lacks the higher-level structure

of the texture.

The next step, an Ashikhmin pass, enlarges the patches,

adding the higher-level structure required to increase the

intralevel coherence. To do this, the transformation in this

step, 𝑓2 𝐶2 , acts on a bigger context, 𝐶2, that is 6 × 6 (see

Figure 4, second row). The contexts extracted from the image

in this pass only have high frequency details in their causal

part (the pixels that were already modified). Therefore, using

the whole 𝐶2 context would bias the selection towards

candidates whose contexts do not have high frequencies in

their non-causal neighborhoods. To avoid this, only

downsampled, non-causal pixels from 𝐶2 are considered by 𝑓2.

Furthermore, since human subjects are less sensitive to high

frequencies in the chroma (I and Q) channels [21] [27], 𝑓2

does not consider high frequency information from the

chroma channels of 𝐶2. Lastly, since humans are not equally

sensitive to all color channels [27], we weight the channels of

𝐶2 accordingly. The function 𝑓2 thereby is a concatenation of:

1) the causal part of the Y channel; 2) the non-causal,

downsampled, part of the Y channel; and 3) the whole

downsampled and weighted I and Q channels.

The next and last step in the texture transfer stage, an

additional Ashikhmin pass, adds more details, enlarging the

patches even more. In this iteration, both the causal and non-

causal parts of the context have high frequencies. Moreover,

since we do not want this pass to overwrite the high

frequencies added in the previous pass, the whole context is

considered. Hence, 𝑓3 is a concatenation of: 1) the whole Y

channel; and 2) the downsampled and weighted I and Q

channels (see Figure 4, third row).

Each Ashikhmin pass drives the appearance of the image

closer to the training texture, while slowly drifting away from

the image in the level above. We found that the best

compromise between intra and interlevel coherence was

obtained with two iterations of this last step.

3.4.2 Texture transfer for subsequent levels

If for the class 𝐶 being processed, the current color

corrected image, 𝐼𝐶
𝑀(𝑙), and the image above, 𝐼𝐶

𝑀(𝑙 − 1),

receive texture from the same keyframe (appropriately

downsampled in each case), the patches in the image above

can be directly super-resolved, avoiding the first step of the

texture transfer algorithm altogether. Recall that a patch 𝑅𝑙−1

in 𝐼𝐶
𝑀(𝑙 − 1) is (by definition) copied verbatim from𝑇𝐶(𝑙 − 1).

Since 𝑇𝐶(𝑙 − 1) and 𝑇𝐶(𝑙) were both downsampled from the

same keyframe, there exist a super-resolved version of 𝑅𝑙−1

(𝑅𝑙) in 𝑇𝐶(𝑙). Therefore, 𝑅𝑙 can be used to super-resolve 𝑅𝑙−1,

by simply propagating the locations inside 𝑅𝑙−1 in the layer

above to 𝑅𝑙 in the layer below (transformed by a simple

formula to account for the change of scale).

This process guarantees that the coherence between levels

is completely preserved within patches (since 𝑅𝑙−1 was

downsampled from 𝑅𝑙), but does not guarantee a seamless

integration between patches in the same level. To mask the

seams between these patches, candidates suggested in the first

step above are used to fill-in pixels that lie next to a patch

boundary (see Figure 5). This increases the number of

candidates considered near patch boundaries, making more

likely that a candidate that better masks the seam would be

found. In addition, this process creates increasingly larger

patches (note that 𝑅𝑙 has four times more pixels than 𝑅𝑙−1), as

subsequent images receive texture from the same keyframe

(more on this in Section 4 below), further improving the

global appearance of the current level.

To conclude this section, the proposed texture transfer

algorithm combines small patches in the highest level

receiving texture from a keyframe, to ensure that the global

Figure 4: Context pixels considered in each one of the passes

(rows), and each of the color channels (columns). Each

context shows two layers: the current level below, and the

downsampled current level above (do not confuse with the

level above in the clipmap pyramid). Only pixels in gray are

considered by the transformation function. The current pixel

is marked with an “x”. See text for details.

Color

Channel
Pass

2nd
ASH

3rd and 4th

ASH

Y

(luminance)

I and Q

(chrominance)

1st

W&L

Mean and Gradient

Only Mean

Figure 5: Propagation of the locations in two patches (in

green and violet) to the next level. The locations in the

colored pixels of the lower level are computed from the

corresponding locations in the upper level. The locations in

the white pixels, lying near the patch boundary, are initialized

using a tree search as detailed in the text.

appearance of the previous level is preserved. In each

subsequent level, the patches are enlarged, and their

boundaries are refined to better hide the seams.

3.5. Undo color matching

Before storing the final image in the new (deepest) level of

the clipmap pyramid, the color transformation has to be

undone to restore the original appearance of the image,

matching the histograms of the levels above.

This concludes the description of the proposed method. In

the next section we show results obtained with it.

4. Results

To illustrate the proposed framework, we now present some

examples. The reader is encouraged to check the movies at

[28] in order to see additional examples and fully appreciate

the technique.

In Figure 1, the proposed framework was used to add

details to the grass of the Maracanã stadium in Rio de Janeiro,

Brazil. The first four images, extracted from Google Earth, are

shown unchanged and represent the maximum resolution

available in Google Earth for this part of the world. The rest of

the images were synthesized by super-resolving the center

square of the previous image (dashed), following the

framework here proposed. The real world size of the images

(stated in the lower-left corner) is halved in each step. Note

that the general appearance of the previous image is respected,

while the texture is transferred to each image; in particular

look at the grass tone bands in the fifth image.

Figure 6 shows the texture pyramid, with only two

keyframes, used to synthesize the images in Figure 1 (no

texture was transferred in the first four images). As detailed in

Section 3.2, these two keyframes are downsampled to produce

the texture at all the levels required by this example. When a

keyframe is downsampled by 2 (to obtain a texture one whole

level higher in the pyramid), the number of pixels in the

training texture is reduced by four. Therefore, having two

keyframes separated by n levels implies that it may be

necessary to downsample the lower texture by 2𝑛−1. The

keyframe then must be large enough to allow a 4𝑛−1–fold

reduction in size, while still being large enough to serve as a

training texture (this explains why the images labeled “4m”

and “2m” are smaller in Figure 6). We found it impractical to

have keyframes more than 6-7 levels apart.

The original location, in the training texture, of each pixel

transferred to the images in Figure 1 is shown in Figure 7. The

vertical and horizontal pixel indices are encoded in the red and

blue channels of the images, respectively. Note how the size

of the patches increases in the sequence of images with texture

transferred from the same keyframe. In particular, note that

the last image of the sequence was almost transferred “in one

piece.” The rest of the images were assembled using many

patches, yet the seams between patches are virtually

impossible to notice. This phenomenon of increasing patch

size suggests the use of keyframes as separated as possible,

subject to the upper limit mentioned above.

All the images in this example contain 256 × 256 pixels,

and each one of them was generated in 1 to 3 seconds

(depending on the average patch size at the level and the size

of the training texture), in a 1.8Ghz Turion machine. The

algorithms, implemented part in C++ and part in Matlab, are

not optimized for speed but for ease of experimentation. If

desired, a speedup of at least an order of magnitude can be

achieved, or even more if exploiting a GPU.

An additional example in a rural setting is included in

Figure 8. Given the abundance of easily-segmentable large

uniform regions, this setting is ideal for our framework.

5. Conclusions and future work

In this work we introduced an approach to satisfy the user’s

constant demand for higher resolution images in virtual globe

applications. The proposed framework reduces the operational

cost of such Internet applications, while at the same time

improving the quality of the displayed images and augmenting

their information content. This is achieved by state-of-the-art

image processing techniques.

The proposed framework can be further improved or

extended in a number of ways. First, the coherence between

layers of the pyramid can be increased, while reducing the on-

line computing cost, by off-line pre-computing a list of

appropriately downsampled similar neighborhoods between

consecutive keyframes of the texture pyramid. Since this step

is carried out off-line, these neighborhoods can be larger than

the ones used in this work, and an increase in the coherence

between layers is expected. This step is similar to the analysis

phase proposed in the Jump Map method [29], although in this

case, similar neighborhoods are computed between textures in

consecutive pyramid keyframes rather than within the same

texture.

Figure 6: The texture pyramid used to generate Figure 1. This pyramid

contains only two keyframes (labeled “8m” and “6.25cm”), the rest are

obtained by downsampling from these two. The world length (and

width) of each frame is specified in its lower left corner. See text for

details.

Secondly, the boundaries between classes currently

produced by the proposed approach can be abrupt (see the

videos at [28]), misrepresenting the distinctive transitions

actually observed between two particular classes (e.g., grass

and sand, or sand and sea). A better way to handle these

transitions is to include exemplars of them in the texture

training set, and use the texture transfer algorithm for their

reconstruction. As mentioned in Sec 3.3, mixtures of textures

are not satisfactorily handled by the simple color matching

essayed here, which must be replaced by a more sophisticated

algorithm to pursue this approach.

Thirdly, the proposed framework could be extended to

generate the texture pyramids needed to render textured

surfaces at different scales in video games and virtual worlds.

Essentially, the proposed framework would act like a

procedural texture generator [30], where textures are defined

and controlled directly and intuitively by the keyframe images

rather than indirectly, by other than visual means. Results in

these directions will be reported elsewhere.

Acknowledgements

This work was mostly performed while DR was an intern at

Google, Inc. We thank Google, Inc. for this support. Additional

support came from NSF, ONR, NGA, ARO, and DARPA.

6. References

[1] Wikipedia., Virtual globe. Online:http://en.wikipedia.org/wiki/Virtual_

globe, 2008.
[2] Google, Inc., Google Earth. Online: http://earth.google.com, 2007.

[3] Google, Inc., Google Maps. Online: http://maps.google.com, 2007.

[4] Microsoft Corp., Microsoft Virtual Earth™. Online: http://dev.live.com/
virtualearth/, 2007.

[5] Yahoo! Inc., Yahoo! Maps. Online: http://maps.yahoo.com, 2008.

[6] Motherplanet, Inc., Motherplanet. Online: http://www.motherplanet.net,
2007.

[7] NASA., World Wind. Online: http://worldwind.arc.nasa.gov, 2007.

[8] Tanner, C., Migdal, C. and Jones, M., "The clipmap: A virtual mipmap."

SIGGRAPH, 1998.
[9] C.I.A., "The World Factbook." Online: https://www.cia.gov/library/

publications/the-world-factbook/, 2008.

[10] Food and Agriculture Organization of the United Nations., FAO
Production Yearbook 1994, Rome, Italy, 1995.

[11] National Agricultural Statistical Service., Online: http://www.nass.usda.

gov, 2007.
[12] Wei, L. and Levoy, M., "Fast Texture Synthesis using Tree-structured

Vector Quantization." SIGGRAPH, 2000.

[13] Ashikhmin, M., "Synthesizing Natural Textures." ACM Symposium on
Interactive 3D Graphics. 2001.

[14] Koriakine, A. and Saveliev, E., WikiMapia. Online:wikimapia.org, 2008.

[15] Google, Inc., Sketchup. Online: http://www.sketchup.com, 2007.
[16] Bai, X. and Sapiro, G., "A geodesic framework for fast interactive image

and video segmentation and matting." ICCV, 2007.

[17] Freeman, W. T., Jones, T. R. and Pasztor, E. C., "Example-Based Super-
Resolution." IEEE Computer Graphics and Applications, 2002.

[18] Efros, A. A. and Leung, T. K., "Texture Synthesis by Non-parametric

Sampling." ICCV, 1999.
[19] Williams, L., "Pyramidal parametrics." SIGGRAPH, 1983.

[20] Ashikhmin, M., "Fast Texture Transfer." IEEE Computer Graphics and

Applications, 2003.
[21] Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B. and Salesin, D. H.,

"Image Analogies." SIGGRAPH, 2001.

[22] Dalton, J., "Adaptive Learning of Aesthetic Imaging Transformations."
Conference Proceedings Digital Image Computing: Techniques and

Applications, Sidney, Australia. 1993.

[23] Buades, A., Coll, B. and Morel, J. M., "Image and movie denoising by
nonlocal means." IJCV, 2006.

[24] Buades, A., Coll, B., Morel, J. M. and Sbert, C., "Non local

demosaicing." IEEE TIP, 2007.
[25] Bishop, C.M., Pattern Recognition and Machine Learning. Springer,

2006.

[26] Caselles, V., Lisani, J. L., Morel, J. M. and Sapiro, G., "Shape Preserving
Local Histogram Modification." IEEE Trans. Image Proc, 1999.

[27] Wandell, B. A., Foundations of Vision. Sinauer Associates, Inc., 1995.

[28] Rother, D., Super-Resolution Texturing. Online: www.diegorother.net/
Research/SuperResolutionTexturing.html, 2008.

[29] Zelinka, S. and Garland, M., "Towards real-time texture synthesis with

the Jump Map." Eurographics Workshop on Rendering, 2002.

[30] Wikipedia., Procedural texture. Online: http://en.wikipedia.org/

wiki/Procedural_texture, 2007.

Figure 7: The location, in the training texture, of each pixel copied to the

images in Figure 1. The vertical and horizontal pixel indices are encoded

in the red and blue channels respectively. The size of the patches

increases in each sequence of images with texture transferred from the

same keyframe.

Figure 8: Example in a rural setting, a field in Iowa. See the corresponding video at [28].

http://en.wikipedia.org/wiki/Virtual_globe
http://en.wikipedia.org/wiki/Virtual_globe
http://en.wikipedia.org/wiki/Virtual_globe
http://earth.google.com/
http://maps.google.com/
http://dev.live.com/virtualearth/
http://dev.live.com/virtualearth/
http://dev.live.com/virtualearth/
http://maps.yahoo.com/
http://www.motherplanet.net/
http://worldwind.arc.nasa.gov/
https://www.cia.gov/library/publications/the-world-factbook/
https://www.cia.gov/library/publications/the-world-factbook/
https://www.cia.gov/library/publications/the-world-factbook/
http://www.nass.usda.gov/
http://www.nass.usda.gov/
http://www.nass.usda.gov/
http://wikimapia.org/
http://www.sketchup.com/
http://www.diegorother.net/Research/SuperResolutionTexturing.html
http://www.diegorother.net/Research/SuperResolutionTexturing.html
http://en.wikipedia.org/wiki/Procedural_texture
http://en.wikipedia.org/wiki/Procedural_texture
http://en.wikipedia.org/wiki/Procedural_texture

