
A Multi-Resolution Framework for Diffusion Tensor Images

Luc Florack
Department of Mathematics and Computer Science & Department of Biomedical Engineering

Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

Laura Astola
Department of Mathematics and Computer Science

Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
{L.M.J.Florack,L.J.Astola}@tue.nl

Abstract

A new scale space paradigm is proposed for multi-
resolution analysis of diffusion tensor images (DTI). An
a priori consistency requirement is stipulated, which pre-
cludes a linear model. A nonlinear adaptation is proposed
to remedy the problem. Subsequently it is shown how differ-
entiation can be operationalized.

Considerations in this paper are relevant for DTI analysis
in a differential geometric framework, in which the DTI im-
age imposes a Riemannian structure. As such it adds further
support in favor of the “geometric rationale”, opening the
door for a multi-resolution geometric approach towards fi-
bre tracking, connectivity analysis, and so forth.

Keywords. Scale space, diffusion tensor imaging, Rieman-
nian geometry, log-Euclidean framework, differentiation.

1. Introduction

Recent literature advocates differential geometry1 as a pow-
erful mathematical framework for analyzing diffusion ten-
sor images (DTI) [2, 8, 23, 34, 36]. However, operational-
ization of differential concepts is hampered by the ill-posed
nature of classical differential operators. This has led to the
introduction of regularization techniques [30, 34, 40], not
only in DTI, but in image analysis in general.

An intrinsic coupling of regularization and differentiation
1Geometric considerations have been applied to domain and codomain

of a DTI image. Our focus is the former but on the fly we obtain a natural
connection to the latter.

is achieved by treating images as tempered distributions
[37]. In the framework of distribution theory the act of
differentiation (including zeroth order) requires a class of
smooth test functions (linear filters), by virtue of which
it becomes well-posed. In scale space theory the class
of test functions is axiomatically restricted so as to ar-
rive at an operational definition of an image derivative
[7, 9, 10, 15, 17, 18, 19, 20, 21, 22, 24, 31, 38, 44, 45]. The
paradigmatic (zeroth order) filter is the normalized Gaus-
sian of a priori arbitrary scale. This naturally produces a
scale space representation, i.e. a continuous family of im-
ages intended to capture raw image data at arbitrary lev-
els of resolution (within physically reasonable limits). This
holds a fortiori for any image derivative.

Linear scale space theory provides a natural framework for
image differentiation in the absence of constraints that are
incompatible with linearity. An instance of incompatibility
is encountered in image processing by nonlinear diffusion
[16, 35, 42, 43], in which the desire to “preserve edges”
precludes linearity. Another instance in which linearity con-
flicts with fundamental demands—and the subject of this
paper—is encountered in the context of DTI.

A DTI sample is a symmetric positive definite matrix (more
precisely, a contravariant 2-tensor [26, 39]). In the dif-
ferential geometric rationale its inverse defines the com-
ponents of the Riemannian metric tensor. The first order
structure of the DTI image then induces a unique, so-called
affine connection, which is the geometric construct for “fit-
ting together” neighbouring tangent spaces, allowing e.g.
fibre tracking via parallel transport (geodesics). In turn, the
first order structure of this connection determines the Rie-
mann curvature tensor2, which can be seen as a measure
of geodesic deviation (inclination of neighbouring fibres to

2In 3D the Riemann tensor is equivalent to the so-called Ricci tensor.
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repel or attract eachother [2]) in analogy with the relative
acceleration experienced by freely falling particles in an in-
homogeneous gravitational field [26].

In view of the above, we propose a multi-resolution frame-
work for DTI images, so as to admit well-posed differen-
tiation at any level of resolution. The space of symmetric
positive definite matrices is closed under inversion. A DTI
image and its pointwise inverse are dual metrics, and their
matrix representations belong to the same class of positive
definite symmetric matrix fields. A scale space generator
for this class must therefore be such that it manifestly pre-
serves inverse relationships at all scales. In other words, the
acts of blurring and inversion of matrix fields should com-
mute. One easily verifies that this a priori commutativity
requirement is inconsistent with linear blurring.

After establishing some notation in the next section we ad-
dress the problem of how to set up a consistent scale space
paradigm for DTI in Section 3. In Section 4 we operational-
ize differential structure, and we conclude in Section 5.

2. Notation

We denote a DTI-image by f : Rn → S+
n , where S+

n ⊂
Sn ⊂ Mn denotes the set of R-valued symmetric positive
definite n×n matrices3, Sn the set of R-valued symmetric
n×n matrices, and Mn the set of all n×n matrices. Its
pointwise inverse is f inv : Rn → S+

n , so that (f invf)(x) =
(ff inv)(x) = I , the identity matrix, at each point x ∈ Rn.

Cω(Rn,Mn) denotes the class of analytical functions
f : Rn → Mn. Self-explanatory definitions hold for
Cω(Rn, S+

n ) ⊂ Cω(Rn, Sn) ⊂ Cω(Rn,Mn).

The isotropic Gaussian scale space kernel in n dimensions
is given by

φσ(x) =
1√

2πσ2
n exp

(
−1

2
‖x‖2
σ2

)
. (1)

The scale space representation of f ∈ Cω(Rn, S+
n ) is ob-

tained by the blurring operator (detailed in the next section)

F : Cω(Rn, S+
n )×R+ → Cω(Rn, S+

n ) : (f, σ) 7→ F (f, σ) .
(2)

We shall require F (f, 0) = f for all f ∈ Cω(Rn,S+
n ), and

sometimes use the shorthand notation4 fσ ≡ F (f, σ).

3In practice n=3. For the sake of illustration we also consider n=2.
4Analyticity of F (f, 0) ∈ Cω(Rn, S+n ) is not essential.

3. The Basic Paradigm

3.1. Formulation of Consistency

Our goal is to formulate a consistent scale space rep-
resentation for symmetric positive definite matrix fields
f ∈ Cω(Rn, S+

n ). Since inversion is automorphic on
Cω(Rn, S+

n ), there is no mathematical justification for
treating f and f inv differently. Thus consistency means that
if fσ = F (f, σ), then for each σ ∈ R+ we must have
f inv

σ = F (f inv, σ), i.e. blurring and inversion must commute.
Note that commutativity would not hold if we would define
F (f, σ) = f ∗ φσ, since f inv ∗ φσ 6= (f ∗ φσ)inv for σ > 0.
Consistency requires the scale space generator F to be non-
linear. In the spirit of previous work [4, 11]—applicable to
scalar images—we will look for a pseudo-linear scale space
representation with the desired commutativity property. We
start with an intermezzo on relevant results in the context of
matrix-valued functions.

3.2. Matrix Exponential and Logarithm

The exponential map exp : Mn → GLn maps an arbitrary
n×n matrix to a nonsingular matrix, i.e. an element of the
general linear group [12, 13, 27]. For later convenience we
defineM+

n = exp (Mn) ⊂ GLn. For our purpose it suffices
to consider diagonalizable matrices. In fact, we need only
consider elements of Sn ⊂ Mn, which are diagonalizable
with real eigenvalues, in which case the range of the expo-
nential map equals exp(Sn) = S+

n . So we will employ the
prototype

exp : Sn → S+
n : A 7→ expA . (3)

An operational representation of a general analytical matrix
function is given by Sylvester’s formula5:

F (A) def=
m∑

i=1

F (λi) Ai , (4)

in which the λi, i = 1, . . . m, are all distinct eigenvalues of
A. In Eq. (4) the left hand side—with intentional abuse of
notation—is defined by virtue of the analytical scalar func-
tion F ∈ Cω(R,R) on the right hand side, i.c. F ≡ exp,
and the so-called Frobenius covariants are given by

Ai =
m∏

j=1,j 6=i

1
λi − λj

(A− λjI) . (5)

5Generically one expects m=n a.e. within the DTI image domain.



The logarithmic map, restricted to S+
n for our purposes, has

prototype
ln : S+

n → Sn : B 7→ ln B , (6)

and is the unique inverse of the exponential map restricted
to Sn: ln(S+

n ) = Sn. In this case we may apply Eqs. (4–5)
with F ≡ ln.

3.3. Multi-Scale Representation

We shall be primarily interested in a second order multi-
scale representation. This suffices for nearly all applications
that exploit differential geometry, such as the computation
of Christoffel symbols [23, 34, 36] and the Riemann curva-
ture tensor [2] compatible with the metric. Generalization
to higher orders is straightforward.

Let us start by considering the basic zeroth order scale space
paradigm, accounting for commutativity of blurring and in-
version. Subsequently we turn to first and second order dif-
ferential structure of the established representation.

gσ = exp (ln g ∗ φσ) inv−−−−→ hσ = exp (ln h ∗ φσ)

exp

x
xexp

ln g ∗ φσ ln h ∗ φσ

∗φσ

x
x∗φσ

ln g ln h

ln

x
xln

g
inv−−−−→ h

Figure 1. Commuting diagram for blurring and inversion.

Fig. 1 shows how a consistent multi-scale representation
can be obtained. Indeed, if f ∈ Cω(Rn,S+

n ), then fσ =
F(f, σ) constructed according to

F(f, σ) = exp (ln f ∗ φσ) , (7)

satisfies the desired commutativity property,

F(f inv, σ) = F(f, σ)inv . (8)

This follows immediately by inspection of Fig. 1 and
Eq. (7), using the identities

exp(−A) = (exp A)inv and ln B inv = − ln B , (9)

for A ∈ Sn, B ∈ S+
n . The zeroth order scheme, Eq. (7), is in

line with the so-called log-Euclidean framework proposed

by Arsigny et al., Pennec et al., and Fillard et al. [1, 8, 34],
but is here based on a different motivation, viz. the funda-
mental commutativity axiom. In this sense the zeroth order
result comes out with no surprise. However, the differential
geometric rationale also compels us to consider derivatives
of this zeroth order multi-scale representation. In the next
section we show that this is not quite trivial, but that closed-
form expressions can be obtained in this respect as well.

4. Differentiation

A complication arises when differentiating the zeroth order
representation, Eq. (7), due to the fact that matrices do not
in general commute. In particular this complicates the chain
rule. To appreciate this, we recall a few nontrivial results on
derivatives of a matrix exponential function. (These results
are formulated for arbitrary, sufficiently regular n×n matrix
fields [3, 5, 13, 28, 29, 32].)

Definition 1 Let X ∈ Cω(R,Mn). The parametric
derivative of the matrix exponential function exp X ∈
Cω(R,M+

n ) is defined as

d

dt
exp (X(t)) = lim

h→0

exp
(
X(t) + hẊ(t)

)
− exp (X(t))

h
.

Theorem 1 The parametric derivative of a one-parameter
matrix-valued function X ∈ Cω(R,Mn) can be opera-
tionalized as follows:

d

dt
exp (X(t))=

∫ 1

0

exp ((1−α)X(t))
dX

dt
(t) exp (αX(t)) dα.

In order to prove this the following lemma turns out useful,
the proof of which follows immediately by substitution.

Lemma 1 The unique solution of the inhomogeneous
matrix-ODE

dY

dλ
= X Y + F with initial condition Y (0) = Y0,

with X ∈Mn constant, and F ∈ Cω(R,Mn), is given by

Y (λ) = exp (λX)

(
Y0 +

∫ λ

0

exp (−µX) F (µ) dµ

)
.

Proof of Theorem 1. Consider the following matrix-ODE,
with X, V ∈Mn constant, and h ∈ R:

dY

dλ
= (X + hV ) Y with initial condition Y (0) = I .



The solution—obtained by identifying the term hV Y with
the inhomogeneous term F in Lemma 1, with Y0 = I—can
be represented in the form of a Volterra integral equation:

Y (λ) = exp (λX) + h

∫ λ

0

exp ((λ− α)X) V Y (α) dα .

This gives rise to an O(h) approximation

Y (λ)=exp (λX)+h

∫ λ

0

exp ((λ−α)X) V exp (αX) dα+O(h2).

On the other hand we also have the exact solution,

Y (λ) = exp (λ(X + hV )) .

Identifying the last two expressions, putting λ = 1, yields

exp (X + hV )− exp (X) =

h

∫ 1

0

exp ((1− α)X) V exp (αX) dα +O(h2) ,

from which the proof readily follows. 2

We define the gradient of a multivariate matrix-valued func-
tion X ∈ Cω(Rk,Mn), ∇ exp (X), in a similar fashion.
We may generalize Theorem 1 accordingly.

Theorem 2 Let X ∈ Cω(Rk,Mn). The gradient of the
matrix exponential function exp X ∈ Cω(Rk,M+

n ) can be
represented component-wise as follows:

∂µ exp (X(x))=

∫ 1

0

exp ((1− α)X(x)) ∂µX(x) exp (αX(x)) dα.

Proof of Theorem 2. Freeze all arguments except xµ, and
apply Theorem 1. 2

By repetitive application of Theorem 2, using the product
rule, we obtain higher order derivatives. (The product rule
readily generalizes to matrix-valued functions, as long as
one respects the ordering of non-commuting matrices.) We
refer to Appendix A for the second order case, presenting
the operational formula for the Hessian, ∇2 exp (X). It is
clear that complexity increases rapidly with order.

In the context of DTI we set k = n, and restrict ourselves
to Sn ⊂ Mn, S+

n ⊂ M+
n . In the following, logarithm takes

precedence over convolution product:

Result 1 Setting X = ln f ∗φσ, we have obtained formulas
for the gradient—Theorem 2—and Hessian—Theorem 3,
Appendix A—of the multi-scale representation of a matrix
field f ∈ Cω(Rn, S+

n ).

Moreover, if X = ln f ∗ φσ, then ∂µX = ln f ∗ ∂µφσ,
∂µ∂νX = ln f∗∂µ∂νφσ . These are the familiar expressions
for derivatives in linear scale space theory, applied to the
logarithm of the input image, and can be computed in the
same way (by direct convolution, via DFT, or recursively
[6, 14, 17, 41]). However, to obtain the desired multi-scale
derivatives requires us to compute matrix logarithms and
exponentials, and to compute the aforementioned integral
representations (Theorems 2–3) over non-commuting ma-
trix products, e.g. using a standard numerical Riemann sum
approximation for the parameter integrals [3, 5]. Although
technically straightforward, this is a numerical complica-
tion, but it is the price we must pay for consistency. Up to
second order, the relevant case in the differential geomet-
ric rationale, this fortunately turns out relatively unprob-
lematic. Figs. 2–3 illustrate the zeroth order scale space
representation of a synthetic tensor field f ∈ Cω(R2,S+

2 ).
(Higher order results are difficult to visualize, and best stud-
ied in the context of a particular application, such as trac-
tography or connectivity analysis.) Asymptotics are as ex-
pected. Given suitable boundary conditions, the blurred
DTI matrix field tends to an isotropic, homogeneous field
given by the pointwise identity matrix as scale tends to in-
finity. The smooth connection between Euclidean geometry
at large scales and the Riemannian geometry induced by the
raw DTI image at data scale opens the door to a coarse-to-
fine approach in differential geometric analysis.

5. Conclusion and Summary

We have proposed an operational scale space paradigm for
symmetric positive definite matrix fields, such as encoun-
tered in DTI. The automorphic nature of matrix inversion
within this class led us to impose a basic consistency de-
mand, viz. that blurring and inversion should commute.
This demand is incompatible with linear scale space theory,
but is manifest in the proposed nonlinear modification. Per-
haps not surprisingly, the commutativity axiom reproduces
the zeroth order representation introduced by Arsigny et al.,
Fillard et al., and Pennec et al. As such it adds further sup-
port to their so-called log-Euclidean framework [1, 8, 34].

A complication is the nontrivial nature of the chain rule for
nested matrix-valued functions. We have derived novel, ex-
plicit integral expressions for first and second order deriva-
tives, and provided an operational scheme to compute these
at any physically meaningful scale. Extension to higher or-
ders is straightforward, but produces cumbersome expres-
sions, with a concomitant computational price due to the
fact that the complexity of the resulting integral expressions
grows rapidly with order. We have argued, however, that
second order structure may well be sufficient in a differen-



tial geometric framework, since it allows one to obtain the
most important geometric objects, notably the affine con-
nection or Christoffel symbols, and the Riemann curvature
tensor. Numerical implementation is straightforward.

Interestingly, the proposed multi-resolution scheme nat-
urally joins the differential geometric paradigms on the
DTI domain (Riemannian geometry) and codomain (log-
Euclidean framework). An intriguing, hitherto unex-
plored possibility enabled by this scheme is a coarse-to-
fine (or Euclidean-to-Riemannian) approach towards dif-
ferential geometric DTI analysis (tractography, connectiv-
ity analysis, and so forth). In this respect one should al-
ways keep in mind that resolution limitations in diffusion
imaging preclude a microscopic analysis of biological tis-
sue at cellular level, so that data scale is a priori as arbi-
trary as any other empirical scale. One is thus confined to
a mesoscopic analysis, in which tissue organization induces
the “right scales” for analysis rather than technical acquisi-
tion limitations (pixels). In a multi-scale representation all
scales are a priori equivalent, thus providing a natural basis
for probing the “deep structure” of DTI data [21]. This is a
subject for much future work.

The proposed multi-resolution framework is also relevant
for high angular resolution diffusion imaging (HARDI),
since in this context, too, the differential geometric ratio-
nale is applicable, cf. the active contour approach based on
Finsler geometry by Melonakos et al. [25], and the intimate
analytical connection between HARDI and DTI pointed out
by Özarslan and Mareci [33].
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A. Hessian of the Matrix Exponential Function

Theorem 3 Let X ∈ Cω(Rk,Mn). The Hessian of the matrix exponential function expX ∈ Cω(Rk,M+
n ) can be repre-

sented component-wise as follows:

∂µ∂ν exp (X(x)) =

∫ 1

0

exp ((1−σ)X(x)) ∂µ∂νX(x) exp (σX(x)) dσ

+

∫ 1

0

∫ σ

0

exp ((1−σ)X(x)) ∂νX(x) exp (σ−ρ)X(x)) ∂µX(x) exp (ρX(x)) dρ dσ

+

∫ 1

0

∫ σ

0

exp ((1−σ)X(x)) ∂µX(x) exp ((σ−ρ)X(x)) ∂νX(x) exp (ρX(x)) dρ dσ .

Note that if [∇X, X] = 0 (always the case if n = 1, hardly ever otherwise), this expression reduces to ∂µ∂ν exp (X) =
(∂µ∂νX+∂µX∂νX) exp (X), as it should.

Proof of Theorem 3. Apply the Theorem 2 twice, and perform a change of variables so as to obtain the integral expression
stated in the theorem. 2

Figure 3. Illustration of Eq. (7) for twelve levels of exponentially increasing scales. The two-dimensional synthetic data are of course not
very realistic, and are only provided for the sake of illustration. Qualitative behaviour and asymptotics will be similar in practice.


