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Abstract

Regularization is an important aspect to be reckoned with in
high angular resolution diffusion imaging (HARDI), since,
unlike with DTI, there is no a priori regularity of raw data
in the co-domain, i.e. considered as a multispectral signal
for fixed spatial position. HARDI preprocessing is therefore
a crucial step prior to any subsequent analysis, and some
insight in regularization paradigms and their interrelations
is compulsory.

In this paper we posit a codomain scale space regulariza-
tion paradigm that has hitherto not been applied in the
context of HARDI. Unlike previous (first and second order)
schemes it is based on infinite order regularization, yet can
be fully operationalized. We furthermore establish a closed-
form relation with first order Tikhonov regularization via
the Laplace transform.

Keywords: high angular resolution diffusion imaging (HARDI);
diffusion tensor imaging (DTI); regularization; scale space

1. Introduction

By virtue of the directional dependence of water diffu-
sion characteristics, fibrous tissue such as white matter and
muscle can be studied in vivo and non-invasively with the
help of MRI diffusion imaging protocols and corresponding
physical/mathematical models. These are invariably based
on variants of high angular resolution diffusion imaging
(HARDI), such as Tuch’s orientation distribution function
(ODF) [26], the higher order diffusion tensor model and
the diffusion orientation transform (DOT) by Özarslan et
al. [21, 22], and the diffusion tensor distribution model by
Jian et al. [13].

The desire to account for signal attenuation and diffusiv-
ity profiles more complex than can be realistically coped
with by the conventional rank-2 DTI model—introduced by
Basser et al. [2, 3], cf. also Le Bihan et al. [17], and itself
a HARDI regularization model by construction—has led to
a concomitant need for regularization techniques, such as
proposed by Descoteaux et al. [4, 5] and by Hess et al. [12],
since there is no a priori smoothness of acquisition data.

In this conceptual paper we posit a new regularization
scheme based on an extension of classical scale space the-
ory, and show that it generalizes Tikhonov regularization
by establishing a well-posed, analytically closed-form pro-
cedure for mapping the scale space regularized signal to
the Tikhonov regularized signal via the Laplace transform.
The inverse mapping exists (thus the schemes are formally
equivalent), but is ill-posed and thus operationally void.
Although perhaps a minor contribution for the practically
minded, the paper does offer new insight in the relation-
ship between regularization schemes of various orders. In-
sight provided by our new analytical result and its connec-
tion to established results may be decisive in one’s choice
for HARDI preprocessing. It is clear that, in any case, the
choice of regularization will affect the outcome of subse-
quent analysis (cf. the comparison study by Descoteaux et
al., loc. cit.), thus insight is of fundamental importance per
se.

2. Theory

2.1. Notation

Let S : Ω → R denote a given raw HARDI signal confined
to the unit sphere Ω : ‖x‖ = 1, x ∈ R3. Ω may be pa-
rameterized using two coordinates, ξµ, µ = 1, 2, say. An
obvious choice would be the polar angles ξ = (ξ1, ξ2) =
(θ, φ) ∈ [0, π] × [0, 2π), given in terms of 3D Cartesian
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coordinates1 xi, i = 1, 2, 3, by




x1 = sin θ cosφ
x2 = sin θ sin φ
x3 = cos θ

(1)

The components of the Riemannian metric for the unit
sphere embedded in Euclidean 3-space R3 are given by

gµν =
∂xi

∂ξµ
ηij

∂xj

∂ξν
, (2)

in which ηij denote the components of the Euclidean metric
of the embedding space. Using polar and Cartesian coor-
dinates for Ω and R3, respectively, we obtain the familiar
matrix representations

g =
(

1 0
0 sin2 θ

)
resp. η =




1 0 0
0 1 0
0 0 1


 . (3)

In particular,
√

g dξ =
√

det g dξ1dξ2 = sin θ dθdφ is the
invariant volume element.

However, for the sake of transparency and generality, as
well as to facilitate mathematical manipulations below, we
will initially allow for general, closed (smooth, not nec-
essarily embedded) manifolds and coordinate conventions,
and only later on specify results for the unit sphere endowed
with the conventional spherical coordinates, Eqs. (1–3).

With Dµ we denote the covariant derivative with respect to
xµ induced by the metric gµν . Recall that by construction
the metric is “covariantly constant”: Dρgµν = 0, whence
also Dµg = 0. One can take this as the definition of the
covariant derivative [24].

We will assume that Ω is a single “fibre” over the Euclidean
space R3 at some implicit base point x ∈ R3. More specifi-
cally, in the context of HARDI, Ω is the domain of definition
of the diffusive attenuation signal S(ξ) or the diffusion co-
efficient D(ξ) defined via the general Stejskal-Tanner for-
mula [21, 25]:

S(ξ) = S0 exp (−bD(ξ)) . (4)

(That is, we do not make the DTI assumption that D(ξ)
can be expressed as rank-two tensor. The functions S(ξ)
and D(ξ) are thus essentially arbitrary, and Eq. (4) holds by
definition.)

In what follows we shall consider regularization of the func-
tion S(ξ), but the method proposed can be equally well ap-
plied to any other L2(Ω)-function on Ω, notably to D(ξ), or
to such derived quantities as the DOT [22].

1We will adhere to the convention that Latin indices label coordinates
of the embedding space R3, while Greek indices label parameters of the
embedded submanifold.

2.2. Regularization

Consider the following functionals2, in which St : Ω → R
(referred to henceforth as the scale space extension of the
raw signal S) and S̃s : Ω → R (the first order Tikhonov
regularization of S) are two alternative regularizations of
the raw HARDI signal S : Ω → R, viz.

E(St) =
∫

Ω

(S(ξ)− St(ξ))
2

Dξ (5)

+
∑

k≥1

tk

k!

∫

Ω

Dµ1 . . . Dµk
St(ξ)Dµ1 . . . DµkSt(ξ)Dξ ,

in which Dµ is shorthand for gµν(ξ)Dν , and in which
Dξ =

√
g(ξ) dξ, with dξ = dξ1dξ2, denotes the invariant

measure on Ω. Furthermore

Ẽ(S̃s) =
∫

Ω

(
S(ξ)− S̃s(ξ)

)2

Dξ (6)

+ s

∫

Ω

DµS̃s(ξ)DµS̃s(ξ)Dξ .

Equivalently, one may write (notice the minus signs)

E(St) =
∫

Ω

(S(ξ)− St(ξ))
2

Dξ (7)

+
∑

k≥1

(−t)k

k!

∫

Ω

St(ξ)∆k
gSt(ξ)Dξ ,

respectively

Ẽ(S̃s) =
∫

Ω

(
S(ξ)− S̃s(ξ)

)2

Dξ (8)

− s

∫

Ω

S̃s(ξ)∆gS̃s(ξ) Dξ ,

in which ∆g = gµν(ξ)DµDν denotes the self-adjoint
Laplace-Beltrami operator on Ω, i.e. if f : Ω → R is a
scalar function on Ω, then we have

∆gf =
1√
g

∂µ (gµν√g∂νf) . (9)

These rewritings are possible by virtue of the fact that (i) the
product rule for differentiation holds for covariant deriva-
tives, enabling partial integration in formally the same way
as applicable to ordinary derivatives, and (ii) the boundary
∂Ω of Ω is empty. In particular, in terms of polar coordi-
nates for the unit sphere, Eqs. (1–3):

∆gf(θ, φ) =
(

1
sin2 θ

∂2

∂φ2
+

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

))
f(θ, φ) .

(10)
2Index summation applies to pairs of identical upper and lower indices.



Using covariant constancy of the metric, and the fact that
∆k

g is self-adjoint for any k = Z+
0 , it is straightforward

to derive the corresponding Euler-Lagrange equations. For
Eq. (5) this yields the “infinite order” PDE

S(ξ) =
∑

k≥0

(−t)k

k!
∆k

gSt(ξ) = exp(−t∆g)St(ξ) . (11)

Inversion yields the solution

St(ξ) =
∑

k≥0

tk

k!
∆k

gS(ξ) = exp(t∆g)S(ξ) . (12)

Notice that it satisfies the heat equation on the sphere. This
is analogous to the standard scale space representation in
the Euclidean plane [6, 8, 10, 11, 14, 15, 16, 18, 20, 23,
27], with the Euclidean Laplace operator ∆ on Rn formally
replaced by ∆g. The (dimensionless) parameter3 t ∈ R+

controls the (inverse) angular resolution.

The Euler-Lagrange equation corresponding to the
Tikhonov regularized functional, Eq. (6), is given by the
second order elliptic PDE

S(ξ) = (I − s∆g) S̃s(ξ) . (13)

Its solution is the well-known Tikhonov-regularized signal

S̃s(ξ) = (I − s∆g)
−1

S(ξ) . (14)

Henceforth we specify results for the spherical geometry
appropriate for HARDI representations, recall Eqs. (1–4).

Expressed in terms of spherical coordinates it is natural
to decompose the functions on left and right hand side of
Eqs. (12) and (14) relative to the orthonormal basis of spher-
ical harmonics, cf. Frank [9] and Alexander et al. [1], since
this diagonalizes the Laplace-Beltrami operator:

∆gY
m
` = −`(` + 1)Y m

` , (15)

for any ` ∈ Z+
0 and m ∈ {−`,−` + 1, . . . , ` − 1, `}. We

employ the following convention for spherical harmonics,
in which Pm

` are the associated Legendre polynomials4:

Y m
` (cos θ) =

√
(2` + 1)(`−m)!

4π(` + m)!
eimφ Pm

` (cos θ) . (16)

Pm
` (z) =

(−1)m

2``!
(
1− z2

)m
2 d`+m

dz`+m

(
z2 − 1

)`
, (17)

3The operator exp(t∆g) is bounded and defines a strongly continuous
semigroup for t ∈ R+ ∪ {0}.

4Cf. functions.wolfram.com for further properties of Y m
` and P m

` .

with −1 ≤ z ≤ 1. Setting

S(θ, φ) =
∗∑

`,m

c`m(0) Y m
` (θ, φ) , (18)

in which the asterisk indicates summation over the effective
indices ` ∈ Z+

0 , m ∈ {−`,−` + 1, . . . , `− 1, `}, yields

St(θ, φ) =
∗∑

`,m

c`m(t)Y m
` (θ, φ) , (19)

with
c`m(t) = e−t`(`+1) c`m(0) . (20)

Notice the analogy with the e−t‖ω‖2-attenuation of high fre-
quency components of scalar images in the Euclidean plane
under Gaussian blurring.

Recall that the coefficients in Eq. (18) are determined as
follows:

c`m(0) =
∫ 2π

0

∫ π

0

S(θ, φ) Y −m
` (θ, φ) sin θdθdφ , (21)

by virtue of Y −m
` = (Y m

` )∗ and orthonormality:

∫ 2π

0

∫ π

0

Y m
` (θ, φ)∗ Y m′

`′ (θ, φ) sin θdθdφ = δmm′δ``′ .

(22)
Eqs. (19–21) summarize the operational scheme for regu-
larizing the HARDI signal according to the “infinite order”
regularization scheme defined implicitly via minimization
of Eq. (5).

Similarly, using Eq. (18) together with Eqs. (14–15), we
have for the first order regularization scheme:

S̃s(θ, φ) =
∗∑

`,m

c̃`m(s)Y m
` (θ, φ) , (23)

with

c̃`m(s) =
c`m(0)

1 + s `(` + 1)
, (24)

cf. Eq. (20). This is the analogy of the 1/(1 + s‖ω‖2)-
attenuation of high frequency components of scalar images
in the Euclidean plane after Tikhonov regularization.

The asymptotic cases are as expected:

lim
t→0+

St(θ, φ) = lim
s→0+

S̃s(θ, φ) = S(θ, φ) , (25)

lim
t→∞

St(θ, φ) = lim
s→∞

S̃s(θ, φ) =

1
4π

∫ 2π

0

∫ π

0

S(θ, φ) sin θdθdφ , (26)



i.e., in the hypothetical limit of infinite angular resolution
Eqs. (19–21) and (23–24) reproduce the raw signal, whereas
the limit of vanishing angular resolution corresponds to a
complete averaging of this raw signal over the sphere. In-
deed, the signals S̃s and St are qualitatively similar, and
are both viable regularizations of the raw signal on the unit
sphere. Which of these two alternatives is to be preferred,
if any, probably depends on the application context.

Of course one may want to opt for regularizing the appar-
ent diffusion coefficient D(ξ) instead of the diffusive atten-
uation signal S(ξ), or any other suitably defined HARDI-
related distribution on the sphere, such as mentioned in
the introduction, by exactly the same procedures. For in-
stance, H2O-displacement probability distributions derived
from the observed MR signal attenuation, such as captured
by the DOT [22], typically exhibit profiles that more closely
reflect actual fiber orientations, as opposed to the MR atten-
uation signal or related diffusivity profiles themselves.

2.3. Tikhonov versus Scale Space Regularization

Following a similar approach as done previously in the con-
text of regularization in the Euclidean plane [7], our aim is
to establish an exact connection between the two alterna-
tive regularizations, Eqs. (12) and (14). (An approximate
relationship is immediately apparent from the fact that the
resolvent operator in the latter equation can be seen as a first
order approximation of the heat operator in the former, cf.
Nielsen et al. in the context of Euclidean images [19].)

The explicit relation between the two representations,
Eqs. (12) and (14), is as follows:

S̃s(ξ)
def=

1
s

∫ ∞

0

exp(− t

s
)St(ξ) dt

=
1
s

∫ ∞

0

exp(− t

s
) exp(t∆g)S(ξ) dt

= (I − s ∆g)
−1

S(ξ) . (27)

Alternatively, we arrive at this same result by noticing that

c̃`m(s) =
1
s

∫ ∞

0

exp(− t

s
) c`m(t) dt , (28)

which at the same time provides an operationally well-
defined scheme for the operator identity Eq. (27), recall
Eqs. (20) and (24).

Notice the formal relationship, analogous to Eqs. (27) and
(28), between the physical resolution parameters:

1
s

∫ ∞

0

exp(− t

s
) t dt = s . (29)

Thus we may formally interpret the Tikhonov parameter s
as the expectation value of the scale space parameter t under
a negative-exponential scale distribution. The Tikhonov-
regularized signal S̃s or, equivalently, the set of coefficients
c̃`m(s), apparently arises via a similar scale superposition
from the scale space signal St, respectively the set c`m(t).

Eq. (27) shows that the functions St and S̃s basically form
a Laplace transform pair. Thus formally speaking the two
schemes are equivalent. However, it is well-known that the
inverse operation is ill-posed, thus operationally void. Thus
we may state that scale space regularization in the sense of
the proposed “infinite order” scheme is a true generalization
of first order Tikhonov regularization, viz. to the extent that
the latter can always be derived a posteriori (for any fixed
Tikhonov regularization parameter s ∈ R+) given the for-
mer (as a function of the scale parameter t ∈ R+), but—in
practice—not vice versa. Cf. the literature for details in the
Euclidean plane [7].

2.4. Other Regularization Schemes

Descoteaux et al. propose another regularization scheme,
one in which the regularization term is a quadratic func-
tional of second order derivatives [4, 5]. By virtue of
spherical harmonic decomposition also this scheme ad-
mits a closed-form solution. An exact relation of the type
discussed in the previous section with either first order
Tikhonov or infinite order scale space regularization is,
however, hitherto unknown. Again, also this second order
scheme is qualitatively similar to the ones proposed here.
Based on an empirical comparison study the authors ex-
press a slight preference for their second order scheme over
the first order one, but this conclusion is probably context
and application dependent. In any case, if this preference
is somehow related to the order of the scheme, this would
itself provide additional justification—and is indeed what
motivated us in the first place—to study regularization to
any order. The availability of analytical closed-form ex-
pressions is an advantage that all these schemes have in
common. For many practical purposes the details of the
regularization scheme employed may be less decisive than
the way in which the scheme is used.

In principle, Eq. (5) is easily adapted so as to account for ar-
bitrary (quadratic) regularization schemes by replacing the
specific choice of coefficients5 (i.e. tk) by any suitably cho-
sen sequence λk (leading to convergence). But (to the best

5With only one parameter at hand, physical scaling arguments natu-
rally single out the monomial tk-behaviour of the k-th order coefficients
in Eq. (5). The factorial k! is a natural dimensionless weight as it counts
the number of terms in the k-th order contraction.



of our knowledge) closed-form solutions are not easily ob-
tained for cases other than the ones discussed here.

Finally, yet another form of regularization is achieved by
“brute force” truncation of the series Eq. (18) at some ` =
`max, the analogue of ideal low-pass filtering. For this case
there exists no simple functional minimization formulation.

3. Conclusion

We have established a linear filtering paradigm for HARDI
codomain regularization on the unit sphere, based on energy
minimization with Tikhonov regularization terms up to in-
finite order, in analytically closed form. We have shown
that it basically generalizes scale space theory from the Eu-
clidean plane to non-Euclidean Riemannian manifolds, and
elaborated on the specific, spherical geometry appropriate
for various HARDI based representations proposed in the
literature. Subsequently we have derived an explicit map-
ping that relates this scale space representation to first or-
der Tikhonov regularization via the Laplace transform. Ex-
pressed in terms of coefficients relative to the basis of spher-
ical harmonics the corresponding one-parameter smoothing
filter is as straightforwardly implemented as any of the ex-
isting (first and second order) Tikhonov-like schemes de-
scribed in the literature.

Qualitatively, these schemes are similar in their behaviour
as a function of the free parameter that couples the differ-
ential regularization terms to the data term, and identical
in their asymptotics. Whether the new representation has
any advantages over existing ones remains therefore to be
seen. One could undertake a similar detailed endeavour for
mutual comparison as pursued by Descoteaux et al. [4, 5].
However, it is not unlikely that the outcome of such a com-
parison experiment depends on the target criterion (in the
above case detection of crossing fibers and reduction of an-
gular error), and on a combination of various intrinsic fac-
tors, such as the spherical harmonic order taken into account
and the selection of the free regularization parameter. One
should note in this respect that it is neither trivial to deter-
mine optimal factors within each scheme, nor to compare
them across schemes.

We believe that no decisive generic conclusion can be
drawn (as yet). In any case, basic insight in the various
regularization schemes and their interrelations remains of
utmost importance, since such schemes are often necessary
and may affect any further HARDI analysis in a crucial way.
The main purpose of this conceptual paper has been to con-
tribute to this insight via a generalization of existing regu-
larization schemes.
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