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Abstract

Several computer vision algorithms rely on detecting a

compact but representative set of interest regions and their

associated descriptors from input data. When the input is in

the form of an unorganized 3D point cloud, current practice

is to compute shape descriptors either exhaustively or at

randomly chosen locations using one or more preset neigh-

borhood sizes. Such a strategy ignores the relative variation

in the spatial extent of geometric structures and also risks

introducing redundancy in the representation. This paper

pursues multi-scale operators on point clouds that allow

detection of interest regions whose locations as well as spa-

tial extent are completely data-driven. The approach dis-

tinguishes itself from related work by operating directly in

the input 3D space without assuming an available polygon

mesh or resorting to an intermediate global 2D parameter-

ization. Results are shown to demonstrate the utility and

robustness of the proposed method.∗

1. Introduction

Many approaches to solving computer vision problems

work with compact intermediate representations of the in-

put data. A popular approach to problems like object recog-

nition and scan registration from 3D point clouds is to start

by selecting a set of regions in the data, and then reducing

the input data to a collection of descriptors computed over

those regions [4, 12]. This strategy of using local regions

has proven to be well-suited to take on the practical chal-

lenges of occlusion, clutter and intra-class variation.

Similar approaches exists for the same problems in the

2D image domain, one example of which is the popular

bag-of-words model. The success of these local represen-

tations in image processing has been largely driven by de-

velopments in building multi-scale representations of im-

ages [10] and by their application to finding distinguished
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Figure 1. Random selection of locations for computing shape de-

scriptors can miss geometric structures whose spatial extent are

not comparable to the preset choice of support radius. Exhaustive

selection strategies introduce redundancy in areas with little shape

variation. A data-driven approach can judiciously choose both lo-

cations and associated support radius if guided by local shape.

scale-invariant interest regions automatically [11, 13].

However, when the input is in the form of an unorga-

nized 3D point cloud, the interest region selection methods

currently available are relatively unprincipled in compari-

son. Current practice [4, 12] consists of computing a shape

descriptor [6, 1] either exhaustively at each point or at ran-

domly distributed locations in the point cloud. Furthermore,

the descriptor is computed over a spatial extent that is usu-

ally preset to one or more values that are based largely on

intuition, instead of being guided by the available data.

Why is there such a huge difference between approaches

for processing 2D images and 3D point clouds?

The main reason for this inconsistency is that while a rig-

orous theory of scale selection exists for images [5, 10], a

direct equivalent does not really exist for unorganized point

clouds. Scale theory for images has focused largely on an-

alyzing functions observed on a regular 2D (or even n-D)

lattice. However point clouds lack any organized lattice

structure. Unlike image intensity, the observed geometry
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“signal” in point clouds is implicit and is represented only

through the spatial arrangement of the observed locations.

Thus the applicability of traditional scale theory for images

to discrete point cloud data is unclear.

This paper addresses the above inconsistency through

two contributions. First, we derive multi-scale filtering op-

erator for point clouds that captures variation in shape at a

point relative to its neighborhood, working analogously to

the Laplacian filter in 2D images, but with the property of

being invariant to local changes in sampling density.

Second, we show how this filter may be used in an al-

gorithm for interest region detection working directly in the

input point cloud domain and without relying on polygonal

meshes or accurate surface normals. We wish to emphasize

that our goal is not to develop yet another kind of 3D shape

descriptor, but to provide a principled way of repeatably se-

lecting regions over which descriptors should be computed.

By this, we enable a change in current practice from using

random locations and preset neighborhood sizes to using

a completely data-driven strategy that finds locations and

their associated support radii automatically.

1.1. Related work

To distinguish our proposed approach from other related

methods, it is necessary to understand how other methods

draw connections to scale-space axioms from the 2D image

domain. It is also useful to identify cases where these inter-

pretations are insufficient or even incorrect for point clouds.

To do this, we begin by summarizing the development of

scale theory for images and mention its salient points.

Scale theory in 2D images. The beginning of scale the-

ory in images is usually attributed to Witkin [19], who pro-

posed a scale space representation as a transformation of an

input signal f(x) : R
d → R to a one-parameter family of

signals f(x, t) : R
d × R

+ → R, where the non-negative t
denotes the scale parameter. Witkin obtained a Gaussian

scale space representation by convolving f(x) with Gaus-

sians of increasing width as f(x, t) = f(x)∗G(x, t) where

G(x, t) = (2πt2)−1/2 exp
(

−‖x‖2/2t2
)

and the asterisk

denotes convolution.

Koenderink [7] pointed out the connection between

Gaussian scale space and the diffusion equation

∂f(x, t)

∂t
= ∆f(x, t) ≡

d
∑

i

∂f(x, t)

∂xixi
, (1)

where ∆ denotes the Laplacian operator. When subject to

the initial condition f(x, 0) = f(x), the solution of (1) can

be shown to be Gaussian convolution with G as the unique

Green’s function for the above system.

Lindeberg [10] later showed that the amplitude of scale-

normalized derivative operators assumes a unique maxi-

mum for a value of t proportional to the “wavelength” of the

signal at that point. This property provides a way to choose

feature support regions in proportion to this characteristic

length of the signal.

Lowe [11] proposed to linearize the diffusion equation

with a simple forward explicit Euler scheme so that succes-

sive convolutions of the signal may be obtained as

f(x, t + δt) = f(x, t) + δt∆f(x, t). (2)

3D Mesh processing. Several methods have been pro-

posed to extend the above connection of 2D scale space with

the diffusion equation to surfaces represented by a connec-

tivity mesh. Seminal work by Taubin [17] replaced the con-

tinuous Laplacian operator ∆ from the diffusion equation

by its discrete counterpart, the graph Laplacian Lg . For

a set of sample points {xi} forming vertices of a graph,

the unnormalized graph Laplacian is defined as the operator

over a function f on the points as

Lgf(xi) =
∑

j,{i,j}∈E

(f(xi) − f(xj))wij , (3)

where the summation is over graph edges (i, j) in edge

set E, and wij are positive edge weights.

By using the graph Laplacian Lg and replacing the scalar

image intensity function f(x) in (2) by the Euclidean co-

ordinate vector x, one can progressively “smooth” the 3D

points by successive application of (2).

Our main criticism of this line of work is that, by modi-

fying the 3D points directly, we believe it is trying to solve a

different problem. Altering the extrinsic geometry as part of

a multi-scale representation is akin to changing not only the

pixel values but also the pixel coordinates in images, and

incorrectly changes the observations. This different prob-

lem of mesh simplification, while still useful for tasks like

progressive rendering and compression, is not directly ap-

plicable to multi-scale interest region detection.

Other relevant work. Pauly et al. [15] measure a quan-

tity termed surface variation, given by σn(x) = λ0/(λ0 +
λ1 + λ2), where the λi’s are eigenvalues of the sample co-

variance matrix computed in a local n-point neighborhood

of sample point x. They propose the natural scale at a point

to be the neighborhood size for which the corresponding σn

achieves a local extremum. However the variation in σn

is extremely noisy and heuristic pre-smoothing procedures

have to be applied in order to recover any trends in its vari-

ation.

Recent work [14] presented a method to detect multi-

scale corner and edge features by constructing a global 2D

parameterization of the data and filtering surface normals

in the 2D space. The approach relies strongly on having a

connectivity mesh to faithfully construct the 2D parameter-

ization, and also on the prior availability of good surface

normals, as does [9]. Also none of the above methods ad-

dress the variability in the distribution of the point samples.



2. Multi-scale operators for point clouds

From studying the related work, we may conclude that

discretization of the 2D diffusion equation is not the appro-

priate starting point for developing scale-space analogies in

unorganized point clouds. In this section we will pursue a

different line of reasoning to develop multi-scale operators

while preserving the advantages of working in the original

input space and not relying on good initial estimates of sur-

face normals or meshes. We will build on these operators

in Section 3 to devise an algorithm for estimating at each

point a natural scale that is representative of its local shape.

Results using this algorithm are presented in Section 4 fol-

lowed by discussion of the approach in Section 5.

As was first reported by Weickert [18], Gaussian scale

space theory was axiomatically derived by Iijima [5] as far

back as 1959. Iijima’s starting point [18] was to define the

mathematical form of an integral operator that maps in-

put functions to their one-parameter multi-scale represen-

tations. We will follow this route by first defining the form

of such an operator for continuous surfaces, and then pro-

gressively modify the operator to satisfy the various require-

ments of our problem domain.

Our general strategy will be to determine not point lo-

cations but values defined on the points that will reflect the

variation in local mean curvature of the underlying shape at

each point. As importantly, we will also show how these

values can be computed independently of the sampling dis-

tribution generating those points.

2.1. Case of 2D curves

We start by considering the integral operator A : R
d ×

R
+ → R

d, with d = 2 for the 2D case. A is defined to have

the form

A(α(s), t) =

∫

Γ

φ(s, u, t)α(u)du (4)

that operates on positions on a smooth 2D curve Γ param-

eterized by distance as the function α(s) : R → R
2. Note

that (i) the form of the transformation is linear, and (ii) the

integration is performed along the curve Γ and not in the

Euclidean R
2 space. The implication of the latter is that by

defining the operator in terms of intrinsic geometry, there is

no reference to an extrinsic coordinate system. Thus the op-

erator is invariant to rigid transformations in the 2D space.

For the operator to be translation invariant in the 1D in-

trinsic system, the kernel φ must be representable in the

form φ(s − u, t). We fix the kernel to be a Gaussian

φ(s, u, t) = (2πt2)−
1
2 exp

(

−
(s − u)2

2t2

)

, (5)

so that
∫ ∞

−∞
φ(s, u, t)du = 1.

How does the above operator relate to the geometry of

the curve? To answer this, let us fix a local coordinate sys-

tem at a point x = α(0), for convenience, and examine the

effect of the operator at the point. By Taylor expansion of

α(u) around u = 0,

α(u) = x + uα̇(0) + u2

2 α̈(0) + . . . ,

we can derive

A(x, t) =

∫ ∞

−∞

(2πt2)−
1
2 e−

u2

2t2 α(u)du

≈ x + (2πt2)−
1
2

∫ ∞

−∞

u2

2 e−
u2

2t2 α̈(0)du

= x + α̈(0) t2

2 = α(0) + κxnx
t2

2 .

(6)

Hence the effect of the operator is to displace the point x

in direction of the normal nx to the curve, and in proportion

to its curvature κx .

2.2. Extension to 3D surfaces

Using the previous result, it is straightforward to extend

the operator from (4) to the case of a surface in 3D. Consider

now the neighborhood around the origin x on a surface M
having normal direction nx. There then exists a family of

planes Πθ that all contain nx and whose normals lie in the

tangent space of x at angle θ to some reference tangent.

The intersection of each plane Πθ with the surface M is a

normal curve Γθ parameterized by the function αθ(0).
Using the fact that the normal to each curve αθ(0) at x

is nx, we can deduce for each normal curve that

A(x, t) = A(αθ(0), t) ≈ x + κx,θnx
t2

2 ,

where κx,θ is the normal curvature associated with tangent

direction θ. we can average over all tangent vector direc-

tions θ to get

A(x, t) ≈ x + 1
2π

∫

κx,θnxt2dθ = x + Hnxt2 , (7)

where H is the mean curvature at the origin.1

Any two orthogonal tangent directions at angles θ and

θ + π/2 may be used to form a local coordinate system at

x. Using the property of mean curvature on surfaces H =
(κθ + κθ+π/2)/2 gives

A(x, t) ≈ x +
[

α̈θ(0) + α̈
θ+

π
2
(0)

] t2

2
= x + t2

2 LMx ,

where LM is the Laplace-Beltrami (LB) operator [3, 16].

The LB operator is the natural analogue of the Laplacian ∆
from Euclidean space, but operates in an intrinsic coordi-

nate system defined on a manifold. The modified interpre-

tation of the A operator is that of displacing a point along its

normal direction n in proportion to its mean curvature H .

1It should be clear that H varies with location x, and an explicit sub-

script is omitted for clarity.



2.3. Non­uniform sampling

So far, our continuous domain analysis was done under

the assumption that the points on the curve or surface were

uniformly distributed. In reality, the nature of sensor geom-

etry induces a variation in sampling density that needs to

be accounted for. Our method will follow a structure sim-

ilar to Lafon’s [8] analysis of the discrete Laplacian oper-

ator, with the important differences that our chosen opera-

tor A(α(s), t) integrates over the sub-manifold instead of in

Euclidean R
3 space, and is analyzed as specifically applied

to the extrinsic surface coordinate function α(s).
We consider again from Section 2.1 the case where

points are sampled from the 2D curve Γ = α(s) but

now follow an unknown but smooth probability distribu-

tion p(s). The expected value of the operator A may

then be obtained by integrating over the modified measure

µ(s) = p(s)ds, so that

A(α(0), t) =
1

d(0, t)

∫ ∞

−∞

(2πt2)−
1
2 e−

u2

2t2 α(u)p(u)du ,

(8)

where the normalization factor

d(0, t) =

∫ ∞

−∞

(2πt2)−
1
2 e−

u2

2t2 p(u)du (9)

ensures the effective kernel weights sum to 1.

Linearizing the now combined function α(s)p(s) as be-

fore yields

A(α(0), t) ≈
[

p(0) + p̈(0) t2

2

]−1 [

p(0)α(0)

+ t2

2 [p(0)α̈(0) + 2α̇(0)ṗ(0) + α(0)p̈(0)]
]

≈ α(0) + t2

2 α̈(0)

+ t2

2p(0)

[

2α̇(0)ṗ(0) + α(0)p̈(0)
]

.

(10)

Comparing with (6), it can be seen that effect of the vari-

ation in sampling density p(s) is felt through the additional

last term in (10) that corrupts the estimate of the curvature

vector. A similar expression may be obtained for surfaces.

Invariance to sampling distribution. In this section,

we show how to remove this additional term [8] by modify-

ing the kernel function φ through an estimate of the density

p(s). In particular, consider

φ̃(s, u, t) =
φ(s, u, t)

pt(s)pt(u)
, (11)

where pt(s) is the kernel density estimate at s with kernel

bandwidth t as

pt(s) =

∫

φ(s, u, t)p(u)du. (12)

Note that the above continuous domain expression for pt(s)
must be approximated in practice with finite samples as
∑

i φ(s, ui) where xi = α(ui). We now show that the

above modification of (11) eliminates the dependence on

the sampling distribution.

We know from linearizing p(u) around s that

pt(s) =

∫

(2πt2)−
1
2 e−

(s−u)2

2t2 p(u)du ≈ p(s) + p̈(s) t2

2 .

Therefore
∫ ∞

−∞

φ̃(s, u, t)α(u)p(u)du

≈ (2πt2)
−

1
2

pt(s)

∫ ∞

−∞

e−
(s−u)2

2t2 α(u)
[

1 − p̈(u)
p(u)

t2

2

]

du

≈ 1
pt(s)

[

α(s) + t2

2 α̈(s) − p̈(s)
p(s)

t2

2

]

,

(13)

and the normalizing factor transforms to

d̃(s, t) =

∫ ∞

−∞

φ̃(s, u, t)p(u)du ≈ 1
pt(s)

[

1 − p̈(s)
p(s)

t2

2

]

.

(14)

Dividing (13) by (14) gives

Ã(α(s), t) = 1
d̃(s,t)

∫

Γ

φ̃(s, u, t)α(u)du

≈ α(s) + t2

2 α̈(s).

(15)

Thus the use of the density normalized kernel φ̃ removes

the dependence of the result on variations in sampling den-

sity p(s). A similar result can be obtained for surfaces, with

the α̈(s) term replaced by the mean curvature normal Hnp.

3. A scale-selection algorithm

In order to try and define what a characteristic scale at a

point may be, it is useful to recall its analogy in 2D intensity

images. A pixel location is considered salient or “interest-

ing” by virtue of the distinctiveness of its intensity relative

to that of its neighboring pixels. A change in the definition

of this neighborhood can make the pixel seem less or more

salient. Thus a point in a periodic intensity pattern of mono-

tone frequency is most distinctive relative to a neighborhood

of radius equal to its wavelength.

In our problem since the available information is of ob-

ject shape, the distinctiveness at a point may be captured

through the variation in shape at that point relative to its

neighborhood. For example, on a perfect plane or sphere

no point is salient with respect to its neighbors as the local

shape is identical for any choice of neighborhood. Consider

the addition of a small “bump” caused by perturbing the sur-

face of a sphere. A point on the bump is now salient due its

increased shape variation with respect to the sphere. How-

ever, relative to a neighborhood much larger than the spatial

extent of the bump, the perturbation is not significant.



3.1. Scale­space extrema

We propose to capture this locality in shape variation by

inspecting the variation in Ã(x, t) as a function of the size

of the neighborhood t used to estimate it. The relationship

between the Ã(x, t) operator and the mean curvature sug-

gests a way to do this, and also provides a simple interpre-

tation for the case of constant curvature surfaces.

We know from (7) and the derivation in previous section

with the density normalized kernel that

‖x − Ã(x, t)‖ = H t2

2

√

nT
x
nx = H t2

2 (16)

or that the norm of the shift induced by the Ã operator is

proportional to the mean curvature.

Consider the scalar function F formed by exponential

damping of the above expression

F (x, t) =
2‖x − Ã(x, t)‖

t
e−

2‖x−Ã(x,t)‖
t . (17)

Differentiating (17) with respect to the scale parameter t
and using (16) gives

∂F (x, t)

∂t
=

∂

∂t
(Hte−Ht) = He−Ht (1 − Ht)

which achieves a maximum at tmax = 1
H for H 6= 0.

Thus the characteristic scale may be defined in the case

of a perfect sphere or plane simply as its radius of curvature,

in direct analogy to the wavelength for monotone intensity

patterns in images. In the case where the shape is not of con-

stant mean curvature, tmax loses its simple interpretation, as

is true of characteristic scale in images for non-monotone

frequencies [10]. In the previous example of the perturba-

tion on a sphere, the local shape at a point is a composition

of two constant curvature surfaces, and there will exist two

characteristic scales reflecting the two components.

3.2. Implementation

Algorithm 1 outlines the procedure based on the extrema

property of (17). The set of scales {tk} were fixed as tk =
t0(1.6)k where t0 is a base scale. We draw attention to a

few implementation details below.

Graph construction. (Step 1) Since the integral oper-

ator A requires knowledge of geodesic distances between

each point pair, we require a way to compute them from the

few observed points. A common strategy is to construct a

sparse Euclidean graph on the points and approximate the

geodesic distances by distance along the shortest path in the

graph. We choose to use disjoint minimum spanning trees

(DMST) [2], although other valid constructions include ǫ-

graphs and mutual k-nearest neighbor graphs. The con-

struction using DMSTs has some desirable properties over

traditional k-nearest neighbor or ǫ-ball schemes. In prac-

tice, it produces connected graphs without undesirable gaps

Algorithm 1 Scale selection algorithm

Data: Points X = {xi} ∈ R
3 with i = 1 . . . n, and a set of

scales T = {tk} to be considered.

1: Construct a graph G on the points from which approx-

imate geodesic distances may be computed as graph

path distances. Distance dG(xi, xj) between any pair

of points xi,xj can be computed efficiently using Di-

jkstra’s algorithm.

2: for t ∈ {tk} do

3: for x ∈ {xi} do

4: Compute estimate of density

pt(xi) =
∑

j

φ(xi,xj , t)

where φ(xi,xj , t) = (2πt2)−
1
2 exp

(

−
d2

G
(xi,xj)
2t2

)

5: Compute weights for each pair (i, j) as

φ̃(xi,xj , t) = φ(xi,xj , t)/ [pt(xi)pt(xj)]

6: Evaluate the operator Ã

Ã(xi, t) =
P

j φ̃(xi,xj ,t)xj
P

j φ̃(xi,xj ,t)

7: Compute the invariant F

F (xi, t) = 2‖Ã(xi,t)−xi‖
t exp

(

− 2‖Ã(xi,t)−xi‖
t

)

8: end for

9: Declare interest points to be those having extremum

values of F (xi, tk) both in a geodesic neighbor-

hood of radius tk as well as over a range of scales

(tk−1, tk+1).
10: Designate points in the geodesic tk-neighborhood of

each interest point as forming its interest region at

that scale.

11: end for

and does not induce edges to clump together in noisy re-

gions having relatively higher point density.

Region extraction (Step 10) for an extremum detected at

scale t is currently done by grouping together points that are

within a graph distance proportional to t from the extremum

point. Note this is analogous to the use of a multiple of the

scale σ as the patch radius in 2D images [13].

4. Experiments

In this section we present supporting experimental re-

sults to demonstrate the utility of the proposed method.

Since region selection is done separately from the step of

constructing shape descriptors, we focus only on perfor-



Figure 2. (left) Colorized plot showing variation of point density

on the dragon model colored in gray. (right) Rendering of under-

lying mesh. Results in boxed regions are analyzed in Figure 3.

mance metrics that are independent of the choice of descrip-

tor. Some of the datasets presented in this section were ob-

tained from 3D models that were available in the form of a

triangulated connectivity mesh. We wish to emphasize here

that the algorithm does not have any knowledge of the mesh

during runtime, and the mesh only serves as a visual aid for

presenting our results.

Qualitative behavior: To illustrate the behavior of the

multi-scale operator, we focus on its application to a low-

resolution version of the ‘dragon’ model, originally from

the Stanford Scanning Repository. One important charac-

teristic of this model is its complex shape with both finer

spike-like features on its limbs, tail and back, as well as

coarser features such as the stubby feet and tail. Figure 2

shows the 5205 points on the model colorized by point den-

sity, and illustrates the non-uniformity of the samples.

Figure 4 shows the norm of the density normalized

Laplacian ‖xi − Ã(xi, t)‖ for a few choices of scale t. The

regions associated with their scale-space extrema for the

corresponding computed value of F are shown in Figure 5.

For each scale-space extremum in Figure 5, the mesh faces

formed by points belonging to its interest region are given

the same random color. Note that for the purpose of com-

parison with Figures 4 all the associated interest regions in

Figure 5 are shown without the use of a threshold. A suit-

able choice of threshold may be used in practice to remove

the least salient detections.

For the smallest values of t considered, the extrema cor-

respond largely to noise due to discretization. When the

value of t is increased, it can be seen (Figure 5) that fea-

tures reflecting the geometry of the model become visible,

such as the spikes on the feet and tail-end, and the features

on the claws and mouth are progressively detected as hoped.

Figure 3 shows zoomed views of some interesting parts of

the model where complex shapes exist in close proximity

and are correctly detected at different scales. For exam-

ple, the first row shows the tail having fine short spikes at

its edges that are detected for small values of t, while the

coarser overall club-like shape is detected at a larger scale.

Figure 6 shows the results from processing a sparse out-

door scan of vehicles in a parking lot. While the geometric

(a) (b) (c)

Figure 3. Interest regions detected in parts of the ‘dragon’ model

from Figure 2 rendered in the column (a). Columns (b) and (c)

show colored patches for each detected region corresponding to

finer and coarser shapes, respectively. Yellow dots mark extrema

locations. Figures are best seen in color.

interpretation of the results is not as vivid as the previous ex-

ample, the detected intermediate regions correctly segment

points on the vehicle into front and side components based

on the difference in local curvature of those regions.

Repeatability: To quantitatively measure the robust-

ness of the algorithm to noisy data and sampling density,

we computed the repeatability of the detections for low-

resolution versions of the the ‘bunny’ and ‘dragon’ mod-

els from the Stanford database. The data was controllably

perturbed by adding Gaussian random noise with multiple

values of standard deviation σ to points sampled with re-

placement from the models.

We define the overlap score between two interest regions

as the ratio of the intersection to the union of the two small-

est 3D spheres containing the points corresponding to those

regions. Note that this metric for computing overlap is the

direct 3D analog of the metric that is well accepted as the

benchmark for 2D interest region detection in images [13].

Each detected interest region in the noise-free reference

model is matched with a region in the noisy, resampled test

model as the region with which it has the maximum over-

lap score. We then analyze the repeatability of the detec-

tion by computing the average of the overlap score between

matched regions.

Figure 7 plots the average overlap of matched interest re-

gions for different noise levels {σ}. The x-axis is the scale

level number k indexing {tk}, the set of scales considered.

Two observations are noteworthy. First, as can be expected,

the overall repeatability score decreases with increasing

noise level σ. Second, the repeatability of finer scale fea-

tures (low scale level numbers) is consistently lower than

that of coarser large-scale features. This should also not

be surprising, as noise in point positions is indistinguish-
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Figure 4. Plot of norm of density-normalized Laplacian operator on the ‘dragon’ model for increasing kernel widths. Plots use the ‘jet’

colormap. Note that knowledge of the underlying mesh was not used in the computation.

(a) (b) (c) (d)

Figure 5. Plot showing extrema and corresponding sizes for increasing kernel widths, corresponding to F values computed from Figure 4.

Each colored patch on the model corresponds to the region associated with a extremum point detected at that scale. Yellow dots mark

extrema locations. The blue spheres are drawn with radii equal to the value of kernel width used to detect the regions in the image.

able from high-frequency shape details. Thus addition of

Gaussian noise should adversely affect the repeatability of

a geometric feature whose spatial extent is comparable to

the standard deviation of the noise distribution.

When interpreting the repeatability score values, it

should be noted that the overlap metric is far more strin-

gent when used with 3D points than with 2D images for

two reasons. First, due to the difference in dimensionality,

an overlap score of 60%, for example, corresponds to a dif-

ference in radius of only 15% for two 3D spheres centered

at the exact same location while it corresponds to a 23% dif-

ference in circular patch radius in 2D. It has been verified

in the 2D image domain [13] that an overlap error of 50%
can be handled with a sufficiently robust descriptor. This is

equivalent to an error of 65% in 3D, or an overlap score of

just 35%. Second, the ability to find extrema at precisely

the same locations in 3D point samples of the same shape

is severely limited by several factors such as point density

and noise. Thus, for the 3D point cloud domain, a low re-

peatability score is not as much a negative indicator, when

compared to 2D images, of the ability to match descriptors

computed in those regions.

Redundancy: One drawback of using fixed-scale quan-

tities such as surface variation [15] to find interest regions is

that, although the measure may correlate with change in sur-

face geometry, it is unclear how to relate the computed val-

ues across different neighborhood sizes. Detectors based on

these measures tend to select regions centered at the same

points for multiple scales. Thus, the naive approach of sim-

ply choosing every interest region detected for a range of

preset scales usually results in regions that have high de-

gree of overlap, and thus a high degree of redundancy in the

representation.

We quantify the redundancy in a given set of detected

multi-scale interest regions by computing the average over-

lap between any pair of regions in the set. Overlap was com-

puted in the same manner as in the repeatability experiment,

and the comparison was made between a detector based on

the surface variation score [15] (defined in Section 1.1) and

our proposed invariant F (x, t). A lower overlap score is an

indicator of higher variation in the detected interest regions

and thus lower redundancy.

Using our proposed method, the redundancy score for

the ‘dragon’ model reduced from 0.166 to 0.114, and re-

duced from 0.165 to 0.152 for the ‘bunny’ model, corre-

sponding to difference of 32% and 8% respectively. Al-

though this difference is dataset-dependent, we have ob-

served this lowering of redundancy score to be consistent

across datasets and noise levels. At the same time, our pro-

posed method also gives a larger number of interest regions.

Detailed results are omitted due to space limitations.

5. Discussion

This work presented a filtering operator that works di-

rectly in the input point cloud domain to generate multi-

scale representations that reflect the underlying geometry of
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Figure 6. Top figure plots points from a sparse 3D scan of vehicles

in a parking lot. Column (a) shows magnified view of the points on

the two cars highlighted in the scene outline. Columns (b) and (c)

plot points colored by interest regions detected at different scales

for the input points in the corresponding row.

the data. Our approach has deviated from traditional multi-

scale analysis in that we construct an operator Ã that does

not have the property of being a semi-group. The impact

of this is largely reflected as increased computational cost.

One way to scale the proposed algorithm efficiently to large

datasets may be through use of an appropriate quadrature

rule to evaluate the integrals in Ã(p, t). This could be done

so that a far fewer number of points would need to be eval-

uated at the expense of a small loss in numerical accuracy.

This approach also leaves open the possibility of richer

classes of operators that could be obtained by modifying the

kernel φ or using its higher order derivatives. A more ex-

haustive characterization of the possible choices could lead

to a useful larger family of interest region detectors and de-

serves further study.
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