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Abstract

This paper makes use of the continuous eccentric-
ity transform to perform 3D shape matching. The ec-
centricity transform has already been proved useful in
a discrete graph-theoretic setting and has been applied
to 2D shape matching. We show how these ideas ex-
tend to higher dimensions. The eccentricity transform
is used to compute descriptors for 3D shapes. These
descriptors are defined as histograms of the eccentric-
ity transform and are naturally invariant to euclidean
motion and articulation. They show promising results
for shape discrimination.

1. Introduction

Shape recognition is a central topic in computer vi-
sion. It requires to set up a signature that characterizes
the properties of interest for the recognition [27]. The
invariance of the signature or the matching method to
changes in orientation and scale, and to local deforma-
tions such as articulation is important for the identifi-
cation of 2D and 3D shapes.

Applications of shape recognition can be found in
Computer Aided Design/Computer Aided Manufac-
turing (CAD/CAM), virtual reality (VR), medicine,
molecular biology, security, and entertainment [3].

Existing approaches can be divided into [3]: Statis-

tical descriptors, like for example geometric 3D mo-
ments employed by [6, 19] and the shape distribu-
tion [17, 12]. Extension-based descriptors, which
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are calculated from features sampled along certain di-
rections from a position within the object [30, 28].
Volume-based descriptors use the volumetric repre-
sentation of a 3D object to extract features (examples
are Shape histograms [1], Model Voxelization [29] and
point set methods [26]). Descriptors using the surface

geometry compute curvature measures and/or the
distribution of surface normal vectors [20, 32]. Image-

based descriptors reduce the problem of 3D shape
matching to an image similarity problem by compar-
ing 2D projections of the 3D objects [2, 5, 4]. Methods
matching the topology of the two objects (for exam-
ple Reeb graphs, where the topology of the 3D object is
described by a graph structure [8, 23]). Skeletons are
intuitive object descriptions and can be obtained from
a 3D object by applying a thinning algorithm on the
voxelization of a solid object like in [25]. Descriptors
using spin images work with a set of 2D histograms
of the object geometry and a search for point-to-point
correspondences is done to match 3D objects [13].

The majority of shape descriptors is quite complex
and not invariant to the deformation or articulation of
object parts. In this article we extend the simple and
efficient approach to shape matching with the eccen-
tricity transform [11] to 3D. Based on the computation
of geodesic lengths, eccentricity histograms are robust
with respect to changes in orientation, scale and artic-
ulation of the object. The presented approach could
be fitted to either of the categories extension-based

or volume-based. In Section 2 the eccentricity trans-
form is recalled. Section 3 presents the eccentricity
histogram descriptors. Experimental results and dis-
cussion follow in Section 4.



2. Eccentricity Transform

The following definitions and properties follow [15,
10], and are extended to n-dimensional domains.

Let the shape S be a closed set in R
n. A (geodesic)

path π is the continuous mapping from the interval
[0, 1] to S. Let Π(p1,p2) be the set of all paths between
two points p1,p2 ∈ S within the set S. The geodesic
distance d(p1,p2) between two points p1,p2 ∈ S is
defined as the length λ(π) of the shortest path π ∈
Π(p1,p2) between p1 and p2

d(p1,p2) = min{λ(π(p1,p2))|π ∈ Π(p1,p2)} (1)

where

λ(π(t)) =

∫

1

0

|π̇(t)|dt

and π(t) is a parametrization of the path from p1 =
π(0) to p2 = π(1). The eccentricity transform of S can
be defined as, ∀p ∈ S

ECC(S,p) = max{d(p,q)|q ∈ S}, (2)

i.e. to each point p it assigns the length of the shortest
geodesics to the points farthest away from it.

In [15] it is shown that this transformation is quasi-
invariant to articulated motion and robust against salt
and pepper noise (which creates holes in the shape).
An analysis of the variation of geodesic distance under
articulation can be found in [16].

The definition above accommodates n-dimensional
objects embedded in R

n as well as n-dimensional ob-
jects embedded in higher dimensional spaces (e.g. the
2D manifold given by the surface of a closed 3D object).
A definition for graphs is given in [15].

This paper considers the class of 6-connected dis-
crete shapes S defined by points on a square grid Z

3.
Paths need to be contained in the area of R

3 defined
by the union of the support cubes for the voxels of S.
The distance between any two voxels, whose connect-
ing segment is contained in S, is computed using the
ℓ2-norm. (For easy understanding, some images with
2D shapes are also shown). The eccentricity transform
is computed for:

• the whole object, i.e. S in Equations 1 and 2 is the
3D object itself (all voxels of the object);

• the border voxels of the object, i.e. S in Equa-
tions 1 and 2 is the 6 connected voxel surface in
3D, made out of voxels of the object that are 26
connected to a background voxel.

An eccentric point is a point that reaches a maxi-
mum in Equation 2, and all eccentric points lie on the
border of S [15]. The center is the set of points that
have the smallest eccentricity.

2.1. Computation

The straight forward approach is: for each point
of S, compute the distance to all other points and
take the maximum. In [10] faster computation and
efficient approximation algorithms are presented. For
this paper, the fastest one, algorithm ECC06, has been
used (see [10] for an analysis of the speed/error perfor-
mance).

ECC06 relies on the computation of the shape
bounded single source distance transform1 DT (S,p)
(Figure 1.b), which is computed for estimated eccen-
tric point candidates in an iterative manner. The shape
bounded single source distance transform DT (S,p) as-
sociates to each point q ∈ S the geodesic distance to
p. The 3D DT can be computed using Fast March-
ing [21] which allows for an efficient computation in
O(n log(n)) steps for a grid with n points.

Figure 1 shows a comparison of the geodesic and
Euclidean distances. Figures 2 and 3 show the eccen-
tricity transform of two shapes. For the case of the 3D
shape, the eccentricity transform is presented for the
whole object and for the border voxels.

(a) (b)

0 distance

gray value

Figure 1. An example of (a) Euclidean and (b) geodesic dis-
tance function, for some starting point p0.

3. Eccentricity Histogram Matching

To match two binary shapes, we first create a shape
descriptor for each of them, and then match these de-
scriptors to obtain a similarity measure. A first ap-

1Also called geodesic distance function.

Figure 2. Left: a 2D binary shape. Right: eccentricity
transform ECC - same gray value assignment as in Figure 1
(the point with smallest eccentricity is marked).
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Figure 3. Top: 3D model of an ant. Column I: eccentricity
transform of the ant. Column II: eccentricity transform of
the border voxels of the ant. (a) Volume visualization of the
eccentricity transform - darker means higher eccentricity,
left and right use different gray value scales. (b) Cut along
plane x = const. (c) Cut along plane z = const. (a) and
(b) use the same gray value assignment as in Figure 1.

proach for using ECC histograms to match 2D Shapes
can be found in [11].

ECC histogram descriptor. The basic building
block of our shape descriptor is the histogram h of the
eccentricity transform ECC of the shape S. We use k

bins for the histogram. Then, the histogram descriptor
is the vector h ∈ R

k defined by: ∀ i = 1, . . . , k

h(i,S) =
1

|S|
#

{

p ∈ S |
i − 1

k
6

ECC(S,p) − m

M − m
<

i

k

}

,

where |S| is the number of pixels in S, and m and M

are the smallest, respectively largest, eccentricity val-
ues. The obtained histogram contains only bins for
the values actually existing in the eccentricity trans-
form i.e. from minimum to maximum eccentricity, and
the sum of all bins is 1. Fig. 4 shows examples of his-
tograms for shapes with different geometric features.
We note that the histogram h is invariant under eu-
clidean transformations, scaling and isometric bending
of S. In numerical applications, we use k = 200 and
each descriptor is normalized such that the sum of all
bins is one.

0 100 200 0 100 200 0 100 200 0 100 200

Figure 4. Top: some shapes S used during experiments.
Bottom: their eccentricity histograms h (ECCobj).

Comparison of histograms. In order to match the
descriptors of the two shapes S and S̃, we need to com-
pute a meaningful distance between histograms. Let
h, h̃ ∈ R

k be the two histograms of S and S̃ computed
as above. We propose to use the simple ℓ2-norm de-
fined by

δ(h, h̃)
def.

=

√

√

√

√

k
∑

i=1

(h(i) − h̃(i))2.

One could use more elaborate metrics such as the
χ2 metric or those defined in [18], but we found in nu-
merical experiments that all these metrics give results
similar to δ, which is the easiest to compute.

We can compute the distance ∆(S, S̃) between two
shapes S and S̃ as the distance of their histogram de-
scriptors

∆(S, S̃)
def.

= δ(h, h̃). (3)

4. Experiments

One of the most widely used 3D object retrieval
databases is the Princeton Shape Benchmark [22]. It
contains 1,814 3D object models organized by class and
is effective for comparing the performance of a vari-
ety of methods. However, the majority of the models
corresponds to rigid, man-made objects. Only a lim-
ited number of objects in the database have articulated
parts. As one of the main advantages of using eccen-
tricity is its robustness with respect to articulation, we
have turned to the McGill Shape Benchmark [33]. It
contains several models from the Princeton repository
and others added by the authors. The main advantage
of this benchmark is that from its 455 3D objects, 255
have significant part articulation. These articulated
objects are grouped into 10 classes (see Figure 5). This
paper shows the results on the 10 enumerated classes.
See [24] for results of other methods for the same bench-
mark.

Two descriptors where used (see Figure 3):
1. ECCobj - eccentricity of the whole object;
2. ECCborder - eccentricity of the border voxels.
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Figure 5. The object classes from the McGill 3D shape
database having significant part articulation.
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Figure 6. Percentage recall for several rank thresholds. Top:
ECCobj, Bottom: ECCborder.

ECCborder is an attempt to get a feeling for how the
eccentricity transform of the boundary relates to the
eccentricity transform of the object. In the ideal case,
the former should be computed on the 2D manifold
defined by the boundary of the 3D objects. Computing
in the “volume” of the 6 connected voxel boundary is
an approximation that is possible with the available

ant cra han hum oct pli sna spe spi ted
0

50

100

150

ant cra han hum oct pli sna spe spi ted
0

50

100

150

Figure 7. Average ranks for each class. Top: ECCobj, Bot-
tom: ECCborder. (The first tree letters of each class name
are printed.)

tools.

Figure 6 shows the percentage recall for several rank
thresholds (t = 10, 20, . . . ). For each rank t, the per-
centage of models in the database in the same category
as the query (not including the query itself) with index-
ing rank 6 t is given. The average results and standard
deviation, over all classes, are given.

Figure 7 shows the average ranks for each class. For
all queries in a class, the ranks of all other objects in
that class are computed. The average and standard
deviation for each class are given.

Tables 1 and 2 show the average score (see Equa-
tion 3) for all pairs of classes. Each object in the
database is matched against all other objects and each
cell shows the average score between all combinations
of objects of the two classes defined by the row and
column. See Section 4.1 for a discussion on the results.

Figure 8 shows the precision-recall curves for each
of the 10 classes. Precision and recall are common
in information retrieval for evaluating retrieval perfor-
mance. They are usually used where static document
sets can be assumed. However, they are also used in
dynamic environments such as web page retrieval [7].
Given a query object Q and retrieval result R contain-
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Figure 8. Left two columns: Precision-recall for the ten classes. Thin continuous line: ECCobj, Thick interrupted line:
ECCborder. Right two columns (image taken from [24], with kind permission of Springer Science and Business Media):
results of three other methods on the same database: medial surfaces (MS) [24], harmonic spheres (HS) [14], and shape
distributions (SD) [17]. Precision: horizontal axis, recall: vertical axis.

ing t objects, precision refers to the ratio of the relevant
objects retrieved to the total number retrieved, i.e. the
number of objects in R of the same class as Q divided
by t. Recall refers to the ratio of the relevant objects
retrieved to the total number of relevant objects in the
database, i.e. the number of objects in R of the same
class as Q divided by the total number of objects the
same class as Q, that could be returned. In our case,
the latter one is equal to the number of objects of the
class of Q in the database minus 1 (the query itself is
not a possible answer). Precision-recall curves are pro-
duced by varying the parameter t. Better results are

characterized by curves closer to the top i.e. recall =
1 for all values of precision.

As can be seen in Figures 6, 7, and 8, and Tables 1
and 2, ECCobj does a better job than ECCborder.
The percentage recall of the two methods is compa-
rable, with slightly better results from ECCobj. With
respect to the average ranks, ECCobj does clearly bet-
ter with the hands, humans, octopus, pliers, spectacles,
spiders, teddy, and is close or slightly worse with the
ants, crabs, and snakes. Both, ECCobj and ECCbor-
der, have the smallest average class distance (highest
similarity) correct for 8 out of 10 classes, with ECCobj



ants crabs hands humans octopus pliers snakes spectacles spiders teddy
ants 1.75 5.33 3.72 3.53 7.20 2.95 2.91 7.25 5.43 3.72

crabs 5.33 1.55 3.73 3.50 3.67 3.02 4.36 3.99 3.43 2.53

hands 3.72 3.73 2.30 3.04 5.60 2.71 3.76 6.19 4.53 2.51

humans 3.53 3.50 3.04 2.19 5.03 2.13 3.15 5.04 3.52 2.62
octopus 7.20 3.67 5.60 5.03 3.90 5.02 6.22 4.04 4.06 4.58

pliers 2.95 3.02 2.71 2.13 5.02 0.55 1.82 4.97 3.64 2.11
snakes 2.91 4.36 3.76 3.15 6.22 1.82 0.80 5.73 4.83 3.55

spectacles 7.25 3.99 6.19 5.04 4.04 4.97 5.73 2.24 3.97 5.13
spiders 5.43 3.43 4.53 3.52 4.06 3.64 4.83 3.97 2.25 3.50
teddy 3.72 2.53 2.51 2.62 4.58 2.11 3.55 5.13 3.50 1.46

Table 1. Average matching results using ECCobj multiplied by 100 (smaller means more similar). For each row, the first
and second smallest value are printed in bold.

ants crabs hands humans octopus pliers snakes spectacles spiders teddy
ants 1.00 2.45 2.16 1.60 3.09 1.61 2.42 5.62 2.47 1.66
crabs 2.45 1.41 2.30 3.01 3.42 2.88 3.64 6.92 3.08 2.38
hands 2.16 2.30 1.94 2.65 2.98 2.48 3.49 6.05 2.78 2.29

humans 1.60 3.01 2.65 1.57 3.19 1.54 2.16 5.12 2.54 1.93
octopus 3.09 3.42 2.98 3.19 2.97 2.72 3.82 4.80 2.69 2.80
pliers 1.61 2.88 2.48 1.54 2.72 0.65 1.75 4.51 2.00 1.47

snakes 2.42 3.64 3.49 2.16 3.82 1.75 0.85 4.86 3.21 2.44
spectacles 5.62 6.92 6.05 5.12 4.80 4.51 4.86 1.67 4.69 5.26
spiders 2.47 3.08 2.78 2.54 2.69 2.00 3.21 4.69 1.76 2.07
teddy 1.66 2.38 2.29 1.93 2.80 1.47 2.44 5.26 2.07 1.45

Table 2. Average matching results using ECCborder multiplied by 100 (smaller means more similar). For each row, the first
and second smallest value are printed in bold.

having the correct class as the second smallest one for
the humans and octopus (see Tables 1 and 2).

Figure 8 shows comparative precision-recall results
of ECCobj and ECCborder and three other methods.
Again ECCobj and ECCborder are comparable, except
for the teddy bears, where ECCobj is clearly superior
to ECCborder. With respect to the other methods,
both eccentricity based methods score better on the
pliers, spectacles and snakes, while with the octopus,
two of the three other methods have considerably bet-
ter results.

4.1. Discussion

The histogram of the eccentricity transform char-
acterizes the compactness of the shape (e.g. a flat
histogram characterizes a very elongated object, a
histogram with monotonically decreasing values char-
acterizes a rather compact object - see Figure 4).
This measure is used to compute similarities between
shapes, robust with respect to scaling, rotation, and
part articulation. The matching results are promis-
ing, especially when considering the straightforward
approach.

0 200 0 200 0 200 0 200

Figure 9. Examples of similar eccentricity histograms corre-
sponding to objects of different classes. From left: octopus
and spectacles, pliers and human.

The major current limitations of our approach in-
clude: (1) eccentricity histograms do not capture the
topology of the shape, and thus histograms of differ-
ent shapes can be very similar. (2) histogram “match-
ing” (whether using the ℓ2-norm or more sophisticated
methods) is inherently low level and does not consider
the higher level context in which it is applied. We dis-
cuss each of these issues below.

1. Connectivity of the isoheight lines/surfaces of the
eccentricity transform does capture the part structure
of a shape [9], but the histograms “throw away” this
information. Figure 9 shows examples of similar his-
tograms belonging to objects of different classes.

2. In Figure 10, histograms of tree different shapes
are presented. Histogram (a) is considered by Equa-



(a) (b) (c)

Figure 10. Example where histogram matching fails, as it
is unable to capture the context of the match. Shown are
ECC histograms of: (a) snake, (b), (c) human.

tion 3 more similar to (b) and to (c), than (b) to (c).
Keeping in mind that these are distances, one can see
that (b) should represent an object more similar to (c)
than to (a), as both (b) and (c) have more “medium”
and “short” distance points (more compact), while (a)
is a less compact object. Please note that we have
also considered other histogram matching methods (χ2

statistic and diffusion distance) and none of them pro-
duced overall significantly different results. A possible
way to improve this would be to learn a distance met-
ric [31] for matching eccentricity histograms - in this
way the matching speed would not suffer too much.

In the case of 2D shapes the eccentricity of the bor-
der is a constant. In 3D it manages to capture some of
the properties of the shape, but it looks more unsta-
ble. The eccentricity transform of a simply connected
volume has a single, stable center (minimum), while
the eccentricity transform of its border will have a dis-
connected center or at least one with a more complex
structure. The fact that ECCobj produced better re-
sults than ECCborder can be related to the compact-
ness of the shapes (e.g. teddy). In our approximation
of the border, for very thin parts, most of the voxels of
the part are also border voxels (e.g. snakes).

Compared to other approaches (e.g. [24]), one can
identify the aspects discussed above (see Figure 8 and
Tables 1 and 2). For classes with simple topology (e.g.
snakes and spectacles), the results are very good. For
classes where part decomposition and structure play an
important role (e.g. octopus v.s. spiders and crabs),
the discrimination capabilities are reduced.

5. Conclusion

This paper presents matching of articulated 3D
shapes using the eccentricity transform. The descrip-
tors are defined as histograms of the eccentricity trans-
form and matched using the ℓ2-norm. A big advantage
of the presented approach is that it is simple and ef-
ficient. Experimental results on a database of articu-
lated 3D shapes are given and compared to results of
three other methods. We plan to study decomposition
of articulated shapes using the eccentricity transform
and extend the current approach to part based shape
matching.
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