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Abstract
A Generalized Expectation Maximization (GEM) algo-

rithm is used to retrieve the pose of a person from a mono-
cular video sequence shot with a moving camera. After
embedding the set of possible poses in a low dimensional
space using Principal Component Analysis, the configura-
tion that gives the best match to the input image is held as
estimate for the current frame. This match is computed ite-
rating GEM to assign edge pixels to the correct body part
and to find the body pose that maximizes the likelihood of
the assignments.

1. Introduction

Tracking objects in 3D using as input a video sequence
captured using a single camera has been known to be a very
under-contstrained problem. This is especially valid if the
target to be tracked is a human body. Persons usually per-
form fast motions, wear loose clothing and generate lots of
self-occlusions and visual ambiguities. Other difficulties
may be caused by cluttered backgrounds and poor image
resolution. The problem is particularly acute when us-
ing a single video captured with a moving camera to re-
cover the 3D motion and existing approaches remain fairly
brittle. To cope with the under-constrained characteris-
tic of the problem, incorporating motion models as prior
into the algorithms has been shown to be a reasonable
and effective assumption to obtain good results [8]. The
models can be physics-based [2] or learned from training
data [11, 16, 10, 1, 15, 13]. Furthermore, an efficient algo-
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Figure 1. The full pipeline of the approach, from the input image
to the 3D reprojection.

rithm should be able (i) to obtain reliable image observa-
tions from the person of interest, these observations should
not be corrupted by the moving background, and (ii) to
fit a learned body configuration to these observations in a
robust manner.

In this paper, we build on a recent work [6] that com-
bines detection and tracking techniques to achieve 3D mo-
tion recovery of people seen from arbitrary viewpoints by
a single camera. This algorithm helps us in having a first
estimate of the body configuration for each image of the
sequence, obtained by interpolating between detected key
postures. Hence, the central idea of our work is to propose a
robust framework to refine this first estimate that maximizes
a novel image likelihood based on moving edge pixels. We
first process the input sequence in order to obtain reliable
edge information even if the camera is moving and thus no
background subtraction is possible. We then use a Gener-
alized Expectation Maximization (GEM) algorithm to iter-
atively assign the edge pixels to the correct body part and
find the body configuration that maximizes the likelihood



of these assignments. This is done by fitting a mixture dis-
tribution to the set of observations. The proposed mixture is
composed of a uniform law to cope with corrupted observa-
tions, and Gaussian laws, each one associated to one side of
each body limb. Expectation-Maximization (EM) [4, 3] is
a well established clustering technique and has been widely
used in the Computer Vision community. It algorithm has
been applied to the problem of articulated shape alignement
with 2D image observations [12] or 3D data [5, 7]. GEM
[4] is a variant of EM, that relaxes the maximization step
into an optimization step.

In this paper, we propose to apply GEM to solve the
problem of fitting the 2D projection of a 3D body cofigu-
ration to a set of moving edge pixels. In our case the op-
timization is performed over parameters that define the 3D
state of the person. We are therefore able to retrieve the full
body pose and position in 3D even starting from single im-
ages. The exploration over the state space is constrained to a
search over plausible configurations learned for a particular
activity. This learning phase is performed using Principal
Component Analysis, leading to embed the set of possible
poses in a latent space of low dimensionality. The optimiza-
tion is therefore performed over latent variables whose few
dimensions keep the optimization problem tractable.

We demonstrate the effectiveness of the described ap-
proach on different sequences. The case of people walking
along arbitrary trajectories is chosen. Persons who are not
present in our motion database walk at different speeds and
are seen from varying viewpoints, but are nonetheless ac-
curately tracked in 3D. The results are also shown using a
stick skeleton to demonstrate that the obtained results are
fully 3D and can be reprojected to any viewpoint. The full
pipeline of the approach is depicted in Fig. 1.

2. The Tracking Framework

The approach we have designed is structured as follows:
first of all we obtain a reliable initial estimate of the 3D con-
figuration of the person, using a key-pose detection tech-
nique together with the corresponding motion model, as
suggested in [6]. Then we pre-process the video sequence
we use as input in order to obtain a pretty clean edge image
even if the camera is moving. Finally we use GEM to re-
fine the initial pose estimation. This is done by matching
the image edges to the edges obtained by projecting a 3D
model of the person where limbs are considered as cylin-
ders. We will explain in detail the 3 phases in the following
subsections.

2.1. Pose Initialization

To obtain an initial estimate of the 3D pose of the person
in each frame we adopt a techique presented in [6]. Ba-
sically it consists in detecting key-poses corresponding to

a particular activity in few images of the video sequence.
Since we consider walking in our case, the key-pose is cho-
sen to be the particular pose when the legs are furthest apart,
with the left leg in front of the right one. A rough esti-
mate of the pose of the person in all the frames between
two consecutive detections is then obtained: By interpolat-
ing the low-dimensional embedding of the activity through
an appropriate motion model, an estimate value of the state
S = {P,Q}of the person is retrieved. P is a 3-dimensional
vector which represents the position and orientation of the
body on a planar reference system coherent with the ground
plane. Q is the set of the N joint angles in the body rep-
resentation chain. In our experiments N = 78. In the
case of the walking activity Q can be embedded in an n-
dimensional PCA space. A body configuration is thus rep-
resented by the vector λ = {P, φ} where φ is the latent
variable of dimension n, with n << N , and a linear trans-
formation relates φ to Q. In practice, usually, n = 3.

2.2. Sequence Pre-Processing

To cope also with sequences shot by a moving camera,
we decided to elaborate the input images in order to retrieve
the edges corresponding to the moving objects. These are
assumed to be the objects that move in the image at a diffe-
rent velocity than the background. This phase is composed
of two main parts:

• Motion Detection: This step is taken from [9] and sim-
ply retrieves, using optical flow, which pixels in the
image are used to estimate the global motion of the
camera. It also retrieves which pixels are considered
as outliers for this estimation, and these are the pixels
on which we will focus our attention since they are the
ones that move at a different velocity than the back-
ground.

• Background matching: To obtain a more robust esti-
mate of the edges belonging to the foreground, we also
adopt a homography-based technique. Assuming that
the motion of the camera is not too fast and not too
close to the scene, we can consider the background to
be planar. We then can simply take a window of N
frames centered around the current one It and match
them to It using a standard approach based on robust
estimation of homographies using keypoints. Then we
extract the edges, using a Canny-style edge detector,
from all the frames in the window. Finally we warp all
the obtained edge images to match It, using the previ-
ously computed homographies. For all the pixels we
will now have a set of N observations, which corre-
spond to the same pixel being edge (1) or not (0) in
the warped images. Now simply taking the median
of these values for each pixel will tell us which edge
pixels belong to the foreground (if the median is 0) and
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which to the background (if the median is 1). At this
point we have an estimate of the edge pixels belonging
to the background at frame It, and simply subtracting
this estimate from the edge extraction performed at It

will give us an estimate of the edge pixels that belong
to the foreground.

By making a simple intersection of the outputs of these
two parts, for each input frame, we will obtain a pretty ro-
bust estimate of which pixels belong to the foreground and
are at the same time part of some edges. All the parts of this
pre-processing algorithm are summarized in Fig. 2. We will
use the output of this procedure as input for the following
phase. Note that this phase can easily be replaced by a stan-
dard background subtraction algorithm if the camera is not
moving.

2.3. Pose refinement through GEM

2.3.1 Definitions

Before explaining how we plugged the GEM algorithm into
our framework, some definitions are provided. The observa-
tions points x = {x1, . . . , xM} are the points belonging to
the contours obtained from the previous phase. Our goal is
then to fit a body configuration to these observation points.
To do so, we suppose that x is sampled from a 2D mix-
ture distribution of K components (Gaussian laws) and an
outlier component (uniform law). Each Gaussian is asso-
ciated to one limb’s side of the projected body pose. The
parameters of the kth Gaussian, i.e. its mean and covari-
ance, are denoted as θk . Let us note that θk is a function
of the the state S of the body, and therefore a function of
λ. This parameterization is straightforward and is done as
follows: From a given value of λ, the state S, defined by the
3-dimensional body pose P and by the set of joint angles
Q, is used to generate a 3D representation of the human
body. This representation has limbs which are considered
as cylinders of different radius and length, dependending
on the body part. Then this 3D model is projected onto the
image and generates two segments for each cylinder, which
should represent the 2 sides of the limb. Finally these seg-
ments are converted into Gaussian distributions, using the
midpoint as representation of the mean and their length and
a constant width to model an appropriate covariance matrix.

We then formalized the problem of fitting the projected
body pose, now described as a Gaussian mixture, to the ob-
served 2D cues as a classification task that could be carried
out by the GEM algorithm. This problem boils down to the
problem of finding an optimal value of λ such as the mixture
components explain the image observation. The algorithm
performs in 2 steps: First, each edge pixel is assigned to one
of the components of the mixture. Let us note that a uniform
component is added to the mixture to account for the cor-
rupted observations. Second, the body configuration, i.e the

mixture distribution, is fitted to the edge pixels by finding
a new value of the parameter λ that decreases a distance
function.

The assignement variables are denoted z =
{z1, . . . , zM}. The event zm = k, m = 1, . . . , M ,
k = 0, . . . , K means that the observation xm is generated
from the kth component of the mixture. The case k = 0
corresponds to the oulier case. By assuming conditional
independence of the observations, we have:

p(x|z, λ) =
M∏

m=1

p(xm|zm, λ).

As explained before, the likelihood of an edge point being
generated by the kth limb’s side is modeled as a Gaussian
distribution of parameters θk(λ) = (µk(λ), Σk(λ)):

p(xm|zm = k, λ) = N (xm; θk(λ)) if (k 6= 0). (1)

Similarly, we define the likelihood of an observation to be-
long to the outlier cluster as a uniform distribution:

p(xm|zm = 0, λ) = U [A] =
1
A

, (2)

where A represent the observed data area i.e the image area.
For simplicity, we assume that the assignement variables are
independent. Their prior probabilities are denoted

p(zm = k|λ) = p(zm = k) = πk ∀k = 0, . . .K

with
K∑

k=0

πk = 1

and therefore

πk =
1

K + 1
.

The components posterior probabilities are denoted as αmk:

αmk = p(zm = k|xm, λ).

By applying Bayes’ rule, we can obtain the following ex-
pression, where the observation likelihood are given by eq.
(1-2):

αmk =
πk p(xm|zm = k, λ)

∑K
j=0 πj p(xm|zm = j, λ)

.

For k = 1, . . . , K , we have:

αmk =
πk |Σk(λ)|−

1
2 exp

(
− 1

2
‖xm − µk(λ)‖2

Σk(λ)

)

2ππ0
A

+
∑K

j=1 πj |Σj(λ)|−
1
2 exp

(
− 1

2
‖xm − µj(λ)‖2

Σj(λ)

) ,

(3)

where the notation ‖ a − b‖2
Σ = (a − b)T Σ−1(a − b)

accounts for for the Mahalanobis distance. For k = 0, we
have:

αm0 = 1 −
K∑

k=1

αmk. (4)
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(a) (b) (c)

(d) (e) (f)
Figure 2. Summary of the pre-processing algorithm: (a) Input image. (b) Edges extracted from the input image. (c) Background edges
reconstructed through homographies. (d) Subtraction between (b) and (c). (e) Ouliers retrieved by the camera motion estimation technique.
(f) Final output of the algorithm, obtained as intersection between (d) and (e).

2.3.2 GEM framework

Given the probabilistic model defined above, the goal is to
determine the value of λ whose associated mixture distribu-
tion better explains the observations x. Treating assigne-
ments as the hidden variables, the GEM algorithm helps
in achieving this goal by maximizing the joint probability
p(x, z|λ). This probabiliy can be written as:

p(x, z|λ) = p(x|z, λ) p(z, λ)

=
M∏

m=1

p(xm|zm, λ) p(zm|λ)

=
M∏

m=1

K∏

k=0

[πk p(xm|zm = k, λ)]δk(zm) (5)

The random variables δk(zm) are defined as follows:

δk(zm) =
{

1 if zm = k
0 otherwise

Starting with the initial value λ(0), the GEM algorithm pro-
ceeds iteratively and the iteration t consists in searching for
the parameters λ that optimize the following expression:

Q(λ|λ(t)) = E[logp(x, z|λ)|x, λ(t)],

where λ(t) is the current estimate at iteration t. The expecta-
tion is calculed over all the possible assignements z. Using

eq (5), we have:

logp(x, z|λ) =
M∑

m=1

K∑

k=0

log(πk p(xm|zm = k, λ)) δk(zm)).

Remarking that:

E[δk(zm)|x, λ(t)] =
K∑

k=0

δk(zm) p(zm = k|x, λ(t)) = α
(t)
mk,

where α
(t)
mk are the posterior likelihood calculated using eq.

(3-4) with λ = λ(t), we have:

Q(λ|λ(t)) =
M∑

m=1

K∑

k=0

α
(t)
mk log(πk p(xm|zm = k, λ)).

Replacing the likelihoods by their expression given by eq.
(1-2) leads to:

Q(λ|λt) =
M∑

m=1

K∑

k=1

α
(t)
mk

{
−1

2
‖xm − µk(λ)‖2

Σk(λ)

− log
(
πk (2πk)−1 |Σk(λ)|−1/2

)}

+
M∑

m=1

α
(t)
m0 log(A π0) (6)

We can now formulate the GEM algorithm as iterations
of two steps at time t:
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• E-step From the current value λ(t), this step simply
requires the computation of the posterior probabilities
α

(t)
mk using eq. (3-4). Each probability α

(t)
mk represents

the likelihood of assigning observation point m to the
kth limb’s side or to the outlier class.

• M-step Provided that α
(t)
mk are computed, now

Q(λ|λt) needs to be maximized over λ. Since the ana-
lytical computation would be higly non-linear, the gen-
eralized version of the EM algorithm is applied. This
simply means that, instead of maximizing Q(λ|λt), we
simply find a state λ(t+1) that increases the value of
Q(λ|λt). In pratice, several λi are sampled around λ(t)

until this condition is reached.

We iterate this procedure a certain number of times until
an improvement in Q is obtained, and than retain the corre-
sponding body pose calculated from λ(final) for the current
frame.

3. Results

We now presents some results we obtained by applying
the full framework explained above to different sequences.
All the sequences have been captured in non-engineered
outdoor scenes and the camera has been kept in motion
throughout all of them. Unfortunately, due to the intrinsic
strength of the approach, we are not able to provide quan-
titative results but just qualitative evaluations. In fact, no
techniques to collect ground truth data in such difficult con-
ditions are available at the moment.

In Fig. 3 and in Fig. 4 there are two persons in the scene
but only one is tracked. The same procedure could have
been applied to the other subject to obtain distinct tracking
results for both of them. In Fig. 5 the walking subject is
undergoing a slight viewpoint change but this does not have
inlfuence on the tracking results. For this sequence we also
provide the ouput of the pre-processing phase that we used
as input to obtain the shown results. In all the three cases
we obtain a good reprojection of the 3D model limbs onto
the limbs of the tracked subject, and also the reconstructed
3D pose looks plausible.

4. Conclusion

In this paper we have presented an approach to retrieve
the 3D pose of a person using single viewpoint sequences,
shot with a moving camera in everyday life environments.
To this end we first initialize the body pose with the help of
a motion model and then refine it using a novel Generalized
Expectation Maximization algorithm. This algorithms has
the task of assigning the contour pixels, obtained from the
input images after a few pre-processing steps, to the corre-
sponding body part. It also correctly finds the outlier pixels
assigning them to a special class. The pose that gives the

best match between the image measurements and the body
parts is finally kept as output.

This framework is promising and gives good results in
the walking case. We now plan to extend it to track persons
performing different activities. Another direction we will
follow is to test the algorithm also on constrained environ-
ment sequences, for which ground truth data are available,
such as the HumanEva dataset [14]. This will provide us
useful quantitative evaluations.
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Figure 3. Pedestrian tracking and reprojected 3D model. First row: Frames from the input video. The recovered body pose has been
reprojected on the input image. Second row: The 3D skeleton of the person is seen from a different viewpoint, to highlight the 3D nature
of the results.

Figure 4. Pedestrian tracking and reprojected 3D model. First row: Frames from the input video. The recovered body pose has been
reprojected on the input image. Second row: The 3D skeleton of the person is seen from a different viewpoint, to highlight the 3D nature
of the results.

Figure 5. Post-processing output, pedestrian tracking and reprojected 3D model. First row: Output of the pre-processing phase, that is
used as input for the following phases. Second row: Frames from the input video. The recovered body pose has been reprojected on the
input image. Third row: The 3D skeleton of the person is seen from a different viewpoint, to highlight the 3D nature of the results.
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