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Abstract

The proposed model is devoted to the segmentation and
reconstruction of branching structures, like vascular trees.
We rely on an explicit representation of a deformable tree,
where topological relationships between segments are mod-
eled. This allows easy posterior interactions and quanti-
tative analysis, such as measuring diameters or lengths of
vessels. Starting from a unique user-provided root point,
an initial tree is built with a technique relying on minimal
paths. Within the constructed tree, the central curve of each
segment and an associated variable radius function evolve
in order to satisfy a region homogeneity criterion.

1. Introduction

The recovery of branching structures, especially vas-
cular trees in MRA, CTA or retinal images, has been an
extensively studied subject [2][8][6][14]. In this context,
a major concern lies in the extraction of centerlines and
thicknesses of significant branches, which make up relevant
data for posterior clinical study. For a survey on vessel
extraction techniques, the reader may refer to [11]. Specif-
ically, a tree modeling algorithm should be able to handle
imaging issues like great variability in length and thickness
of segments.

Among various existing techniques, whether they are
designed for planar or volumetric images, few approaches
provide an explicit modeling of the tree structure, i.e. the
topological relationships between segments [2]. A number
of vessel extraction methods is devoted to pixel-based
segmentation only, without tree extraction. In these
methods, pixel classification is performed with respect
to a vesselness (or medialness) measure, based on the
image Hessian structure [1][7]. On the other hand, many
methods dealing with centerlines extraction like [6] or [14]
make sequential tracking of segments, in the sense that
the whole final tree structure is propagated from one or
several seed location(s). Given a search window, points

are consecutively added to segments regarding intensity
features. The difficulty lies in the implementation of
mechanisms dealing with junctions, whether current
segment should be split or not. Moreover, topological rela-
tionships between segments are not necessarily represented.

We propose a novel deformable tree model, initialized
thanks to a technique based on minimal paths [4]. It is
slightly related to the work in [8][5][15], as minimal paths
intervene in the definition of centerlines. However, our
approach differs from those in the sense that the initial
tree is built by back-propagation from many endpoints to
the user-provided root point, following the geodesic voting
method [18]. The obtained structure explicitly represents
topological relationships between segments (the parent seg-
ment and children are known for a given segment). Then,
each segment is endowed with a deformable generalized
cylinder defined by a central curve and a radius function,
which both evolve with respect to a variational homogene-
ity criterion [3]. Both 2D and 3D generalized cylinders are
presented, namely deformable bands and tubes. We intro-
duce a novel evolution scheme for the entire tree, performed
by successive selection and evolution of sequences of seg-
ments. We finally present experimental validation on 2D
MR angiography images and 3D CT data.

2. Background

The minimal path approach by Cohen and Kimmel [4]
aims at finding curves of minimal length in a Riemannian
space endowed with an isotropic metric. The length of
pathC is:

L(C) =

∫ 1

0

P (C(s))ds (1)

wheres is the arc length. PotentialP , which defines the
isotropic metric, should be chosen according to the appli-
cation. In our case, the minimal path is used to define an
initial centerline of segment. Its intensity should be almost
uniform and close to the intensity of seed pointx0, hence
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Figure 1. Removing unsignificant segments by vote thresholding : initial image with root pointxroot (a), minimal action map (b), initial
tree (c), tree after thresholding on voting score (d)

we choose:

P (x) = w + (I(x) − I(x0))
2 (2)

where I is the image intensity andw is a regularizing
constant. The minimal path approach determines a global
minimum of the energy, given two fixed endpointsx0

andx1. The minimal action mapU0, which corresponds to
the minimal cost integrated along a path starting atx0 and
ending atx, satisfies the Eikonal equation‖∇U‖ = P and
can thus be computed by the Fast Marching method [19].
A geodesic pathγ linking pointx1 to x0 is found by back-
propagation onU , starting fromx1 until x0 is reached:
∂uγ = −∇U0(γ).

The geodesic voting score introduced in [18] is related to
path density. Given an action map propagated from one or
several seed point(s), the voting score of a point is the num-
ber of geodesic paths passing through this point. When sev-
eral geodesics are extracted, e.g. starting from the borders
of the image, they tend to merge at different junction points.
The geodesic density and its variation can give significant
information on some parts of the structure one wants to ex-
tract.

3. Building the initial tree

In order to build the initial tree, we extract a large
number of geodesic paths. Once the action map starting
from root pointxroot is determined (see fig. 1a and 1b),
gradient descent is performed from points evenly sampled
on a grid. It is assumed that grid steph is small enough
so that every branch in the image is partially covered by a
path. Since the tree is built by back-propagation starting
from endpoints, junctions should be detected. Hence,
instead of applying independent back-trackings, we check
for the presence of an already traced path at each gradient
descent step. During the construction of pathγ1, if the
distance between current positionx1 and a pointx2 in an
existing pathγ2 is lower than thresholdǫ (typically, ǫ = 1),

pathγ1 is stopped and pathγ2 is split atx2. Considering
sourcexroot, the upstream portion ofγ2 becomes the parent
segment ofγ1 and the remaining downstream portion ofγ2.
Finally, portions of paths between two junction points (or
between a junction and an endpoint) become tree segments,
which guarantees the acyclic nature of the structure.

As is, one may note that several segments are created
without having their endpoints localized in the structure of
interest. The geodesic voting score is a relevant clue to as-
sess the significance of segments. In our context, we deal
with voting scores of segments, which are computed during
the modified gradient descent step described in the previous
paragraph. Naturally, the voting score of a segment is the
sum of voting scores of his child segments, whereas an end-
segment has a unit voting score. Basing ourselves on the
fact that significant segments have high voting scores, seg-
ment elimination may be performed by thresholding scores.
Fig. 1c depicts an initial tree whereas fig. 1d depicts the
same tree after removing segments with thresholdsvote = 3
(color scales from green to blue correspond to score values).
As will be justified in section 5, remaining false segments
are not critical for the final result.

4. Deformable generalized cylinders for tubu-
lar structures representation

4.1. The deformable band

The deformable band [16], inspired from the ribbon
snake model [13], combines aspects of region-based active
contours and minimal paths. It is devoted to the recovery
of tubular structures. In this context, the segmentation pro-
cess is constrained by essence, rather than by adding prior
shape terms in a general model. The band, depicted in
fig. 2a, is defined by open curveΓ, parameterized by arc
length s ∈ [0, 1], and radius functionR : [0, 1] → R

+.
CurveΓ plays the role of the medial axis. The inner re-
gionRin of width 2R is bounded by curvesΓ[R] andΓ[−R],
constructed by translatingΓ along normaln. Their respec-
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Figure 2. Deformable band defined by medial curve and thickness
(a), representation of the tree by discontinuous bands (b)

tive position vectors are given by:

c[R](s) = c(s) + R(s)n(s)
c[−R](s) = c(s) −R(s)n(s)

(3)

The band is endowed with energy functionalE,
weighted sum of the internal energyEsmoothand the external
region energyEdata:

E[Γ,R] = ωEsmooth[Γ,R] + (1 − ω)Edata[Γ,R] (4)

The user-provided coefficientω, weighting the influence
of Esmooth over Edata, controls the elastic properties of the
deformable band. SinceE depends both onΓ and R,
the band minimizingE should satisfy two coupled Euler-
Lagrange equations:

δE[Γ,R]

δΓ
= 0 and

δE[Γ,R]

δR
= 0 (5)

where the variational derivatives of the energy with re-
spect to the curve and radius vanish. The smoothness en-
ergyEsmooth is expressed in terms of curve length - which
induces mean curvature motion - and radius first order
derivative, as we also seek for a smoothly varying radius:

Esmooth[Γ,R] =

∫ 1

0

‖cs‖ + R2
s ds (6)

Since the structure of interest should satisfy an intensityho-
mogeneity criterion, the data term is as follows:

Edata[Γ,R] =

∫

Rin

gin(x)dx +

∫

Rout

gout(x)dx (7)

where region descriptorsgin andgout increase with respect to
intensity inhomogeneity. The band integral over regionRin

is explicitly expressed in terms ofΓ andR using a mathe-
matical derivation based on Green’s theorem. Such deriva-
tion enables to calculate variations ofEdataand solve associ-
ated Euler-Lagrange equations. The variational derivatives
of Edataare:

δEdata

δΓ
≈

[

(1−Rκ)(gin(c[R]) − gout(c[R]))

−(1+Rκ)(gin(c[−R]) − gout(c[−R]))
]

n

δEdata

δR
≈ (1−Rκ)(gin(c[R]) − gout(c[R]))

+(1+Rκ)(gin(c[−R]) − gout(c[−R]))

We usegin(x) = (I(x) − µtree)
2 andgout(x) = (I(x) −

µout)
2, whereµtree andµout are the average intensities in-

side and outside the entire tree structure, respectively. Note
that these functions are related to the potential defined in
eq. 2. The band is implemented as a polygonal line of
verticespi with associated radiiRi. Vertex positions and
corresponding radii are updated by gradient descent of the
Euler-Lagrange equations:

p
(t+1)
i = p

(t)
i − ∆t δE/δΓ|

c=pi

R
(t+1)
i = R

(t)
i − ∆t δE/δR|

R=Ri

(8)

To maintain sufficient vertex density, the curve is resampled
after each deformation step, i.e. after the previous scheme
has been applied on all vertices. The initial formulation of
the deformable band [16] defines static endpoints. In our
context, endpoints are made variable to allow local grow-
ing or retraction with respect to region homogeneity. The
following force is added to the overall displacement of a
variable endpoint:

fdata(pi) = [gout(pi + Riti) − gin(pi + Riti)] ti (9)

whereti is the ”outward” unit tangent vector, e.g. in the
directionp1 − p2 for endpointp1.

4.2. Extension to 3D: the deformable tube

We present an intuitive 3D extension of the deformable
band model described in section 4.1. Letφ : [0, 1] → R

3

be the curved axis, parameterized by arc-lengths, andR :
[0, 1] × [0, 2π] → R

+ the radius function. LetT, N andB

be the tangent, normal and binormal vectors of curveφ.
Frame{T,N,B} defines an orthogonal coordinate system
sweeping along the curve. It is used to build varying cross-
sections orthogonal to the curve’s local direction. Hence,
the surface position vector is defined as follows:

s(s, v) = φ(s) + R(s, v)(cos vN + sin vB)

where parameterss andv sweep along and around the cylin-
der, respectively. As stated in [17], defining the surface in



this way yields an undesirable twisting effect on the cylin-
der. Actually, we compute corrected normal and binormal
vectors (denoted with∗) following [20]:

N∗(s+∆s) =
N∗(s) − 〈N∗(s),T(s+∆s)〉T(s+∆s)

‖N∗(s) − 〈N∗(s),T(s+∆s)〉T(s+∆s)‖

B∗(s+∆s) = T∗(s+∆s)×N∗(s+∆s)

which basically consists in projecting previous normal and
binormal vectors on the current orthogonal plane. The gen-
eralized cylinder is endowed with a similar energy as in
eq. 4. Equally, a minimizer ofE satisfies eq. 5. To express
the regularization term, we rely on the reasonable assump-
tion that a smooth axis curve and a smoothly varying radius
will yield a smooth surface:

Esmooth[φ,R] =

∫ 1

0

‖φs‖ ds +

∫ 1

0

∫ 2π

0

R2
s + R2

v dvds

The first variations of the smoothness term are:

δEsmooth

δφ
= −‖φs‖κN

δEsmooth

δR
= −2 (Rss + Rvv)

whereκ is the curvature ofφ. Since the structure of interest
should satisfy an intensity homogeneity criterion, the data
term is as follows:

Edata[φ,R] =

∫

Rin

gin(x)dx +

∫

Rout

gout(x)dx (10)

where region descriptorsgin andgout increase with respect
to intensity inhomogeneity. To obtain a suitable expression
of the data term for derivation and implementation, we rely
on the divergence theorem. Since surfaceΓ is piecewise-
differentiable, the volume integral of aR3 → R functionf
on regionRin may be rewriten:

∫

Rin

f(x)dx=−

∫ 1

0

∫ 2π

0

〈F(s), ss×sv〉 dvds

−

∫ 2π

0

∫ 1

0

〈F(s1), s1u×s1v〉+〈F(s2), s2u×s2v〉 dudv

(11)

where vector fieldF is chosen such that divF = f ,
whereass1 and s2 are parameterizations of the end cross
sections (ats = 0 and s = 1, respectively). Admitting
thatN andB can be computed at arc-lengths0 and1, we
have:

s1(u, v) = φ(0) + uR(0, v)(cos vN∗(0) + sin vB∗(0))

s2(u, v) = φ(1) + uR(1, v)(cos vN∗(1) + sin vB∗(1))

It can be shown that the variational derivative of the surface
integral in eq. 11 with respect to radius is:

δ

δR

{
∫

Rin

f(x)dx

}

= R(1 −Rκ cos v)f(s)

whereκ is the curvature ofφ. One may easily deduce the
first variation of the data term with respect to radius:

δEdata

δR
= R(1 −Rκ cos v)(gin(s) − gout(s))

which is actually divided byR when implemented in the
gradient descent, so that an increase of radius does not yield
an increase in its variation. The tube is implemented as a
polygonal line ofn verticespi, each vertex being endowed
with m angular positions with associated radiiRij . Re-
garding our implementation, it is not necessary to calculate
the first variation ofEdata with respect to the axis. Indeed,
since the axis should remain in the center of the tube, vertex
coordinates are computed as centroids of angular positions
when all radii have been updated. This is summarized by
the following scheme:

R
(t+1)
ij = R

(t)
ij − ∆t δE/δR|

R=Rij

p
(t+1)
i = p

(t)
i

+
1

m

m
∑

j=1

R
(t+1)
ij

(

cos

(

2πj

m

)

N
(t)
i + sin

(

2πj

m

)

B
(t)
i

)

p
(t+2)
i = p

(t+1)
i + ∆t δEsmooth/δφ|φ=pi

wheret + 2 actually corresponds to the smoothing step. As
in the 2D case, endpoints are made dynamic by adding an
extra data force, which is computed in a similar way than in
eq. 9.

5. Evolving the tree structure

5.1. Evolution scheme

We now describe the tree evolution scheme, relying on
the deformable cylinder models and the geodesic tree gen-
erated in section 3. A hierarchical structure of bands, which
is referred to as deformable tree, is built by assigning a de-
formable cylinder model, in 2D or 3D, to each segment.
The segment curve naturally becomes the medial curve of
the cylinder, whereas the radius is set to a small initial
valueR(0). This generates a discontinuous representation
- depicted in fig. 2b - which will be subsequently smoothed.
Segments are endowed with two status variables denoted
ACTIVE and STABLE, indicating respectively if segment
should deform at the current iteration and if they reached
their final states. Initially, all ACTIVE and STABLE values
are disabled. Evolution of the tree is achieved by repeating
the following steps, until all segments reach stability:
• Select the connex sequence of segments of maximal

euclidean length, such that the last segment is not STA-
BLE

• Mark all segments in the sequence as ACTIVE

• Evolve ACTIVE segments according to gradient de-
scent of eq. 8



• Update average intensitiesµtree andµout

• Mark all segments in the sequence as STABLE and dis-
able their ACTIVE status. Remove unsignificant seg-
ments

Deformable modeling enables to grow partial segments, or
retract false segments. The additional force in eq. 9 is only
applied on free endpoints of end segments. In the last step,
unsignificant segments are determined according to two cri-
teria. The first one deals with the proportion of segment
overlapped by other segments. If this proportion is greater
than a specified thresholdsoverlap, the segment is removed.
The second criterion is the one used in [8], stating that the
length of a segment should be at least twice greater than its
average width.

5.2. Boundary refinement

For a given segment, the boundary is easily determined
from the central curve and thickness data varying along this
curve. However, if cylinders are considered independently,
this leads to a discontinuous boundary of the tree structure.
To obtain a continuous representation, the boundary may
be refined after the deformation using an active contour
or surface. For the 2D tree, we build a closed curveC
by scanning the tree according to a depth-first algorithm.
In each segment, the central curve is visited forward
(from c(0) to c(1), to scanc + Rn points) and backward
(for c −Rn points).

Since topology preservation of the boundary is needed,
an explicit implementation of the active contour is used. We
use a similar data term as in eq. 7, which can be thought of
as an explicit implementation of the Chan & Vese region en-
ergy [3]. The geometry of the boundary should remain tubu-
lar to be consistent with the set of tree centerlines, which in
this case are related to the shape skeleton. In addition to
the region energy and the usual smoothness term, we add a
tubularity-maintaining energy, which relates points onC to
their corresponding points on the tree centerline:

Etubular[C] =

∫ 1

0

(1 − 〈C(v)−c(s),±n(s)〉)
2
dv

where c(s) is the tree point associated to boundary
point C(v). The sign applied to the normal depends on
the scanning step of the centerline, during which bound-
ary point C(v) was previously created. Fig. 3 represents
the 2D tree and the smoothed boundary curve at different
evolution steps. For the 3D tree model, we implement the
boundary surface as a triangulated mesh [12]. First, the in-
sides of tubes are voxelized using a polyhedron filling al-
gorithm [10]. Then, the boundary of the obtained discrete
volume is triangulated by means of a Marching cube-like
method [9]. In the future, a direct transformation from the

set of cylindrical surfaces to the triangulated boudnary sur-
face will be considered. This will imply to deal with surface
intersections of connected cylinders.

6. Experiments

The 2D deformable tree model is tested on a set of
MR angiography images. Fig. 5 depicts4 of them. In all
experiments, the initial seed point is provided at a coherent
root location. In the last row, the seed correspond to the
location where the boundary curve is cut straight (the above
remaining tree is manually deleted). Average image size
is 512 × 512. The grid steph is set to10 pixels, which
turns out to be sufficient for covering, at least partially,
every branch of the structure. Thresholdsvote is chosen in
order not to remove significant segments. Remaining false
segments are not critical regarding the final segmentation
result, but only on the computational load. Indeed, the
evolution phase needs more iterations as false segments
are longer and more numerous. Threshold values of3 or 4
for svote lead to proper false segment removal. During
the evolution phase, to delete small segments partially
overlapped by other segments, the thresholdsoverlap is
set to0.75. The initial inner thicknessB(0) is typically
set to4 pixels. As regards smoothness weightω, values
ranging from 0.4 to 0.7 are sufficient to maintain cen-
terlines smooth. The same set of parameters is suitable
for all experiments, in 2D and 3D. Fig. 6 and 7 depict
results obtained with the 3D tree method applied on a CT
volume data. Fig. 4 represents a slice of the CT data, with
centerlines and surface positions of two segments (aorta
and superior mesenteric artery).

With a C++ implementation running on an Intel
Core 2 Duo 2.2GHz PC (4Gb RAM), computational costs
yielded by the 2D model are as follows:0.9s for the
construction of the initial tree and vote thresholding,≈ 6s
for tree evolution and0.25s for building and evolution of
the refined boundary. On the256 × 256 × 256 volume
image shown in fig. 6, our 3D approach took8.3s for the
construction of the initial tree and vote thresholding,≈ 15s
for tree evolution and4.5s for building and evolution of the
refined boundary surface.

According to visual inspection, we believe the recon-
struction results to be promising. Initial curves providedby
the minimal path approach are sinuous and do not match
vessel centerlines. This phenomenon is corrected during
tree evolution, as gradient descent of the region criterion
makes curve naturally locate on actual centerlines. The 3D
tree of the aorta is validated with respect to the locations of
arteries (see right part of fig. 6). To keep a critical eye on our
approach, we observe that tiny vessels, which appear darker
than thick vessels, are removed from the structure because



Figure 3. Intermediate steps (left, center) and final step (right) of tree evolution. Colors correspond toNON STABLE, STABLE and
ACTIVE segments

Figure 4. Slice of the 3D CT image, with centerlines and surface
positions of two segments: aorta (bottom) and superior mesenteric
artery (top)

of the global homogeneity criterion (see eq. 7). One may
note that this is not necessarily problematic, depending on
ground truth, whether these vessels have to be included or
not. However, increased sensivity to small vessels may be
achieved by defined a more local region energy. Moreover,
in some parts, improvements could be done on the loca-
tion of intersections, which may appear more upstream than
their actual position.

7. Conclusion and future work

We described an explicit deformable tree, holding rela-
tionships between segments, for the extraction of branching
structures. A thresholding technique was applied on the
tree in order to remove unsignificant segments, with respect
to the geodesic voting score. Deformation of the entire tree

was performed by evolving segment cylinders towards a
minimum of an energy functional. The evolution method
enabled to retract or grow segments in order to satisfy
intensity homogeneity inside and outside the tree structure.
Our approach was validated on 2D MRI and 3D CT data.

As a future investigation, validation on a large database
holding expert segmentations will follow. Future work will
focus on the formulation of local region terms handling in-
tensity variations along branches, which we believe to be
valuable for extracting thin and low-contrasted vessels. We
may also consider an improvement on the selection of ini-
tial segment endpoints, which could be done by studying
particular differential quantities on the action map.
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[16] J. Mille, R. Bońe, and L. Cohen. Region-based 2D
deformable generalized cylinder for narrow structures
segmentation. InECCV, pages 392–404, Marseille,
France, 2008.

[17] T. O’Donnell, T. Boult, X. Fang, and A. Gupta. The
Extruded Generalized Cylinder: a deformable model
for object recovery. InCVPR, pages 174–181, Seattle,
USA, 1994.

[18] Y. Rouchdy and L. Cohen. Image segmentation by
geodesic voting: application to the extraction of tree
structures from confocal microscope images. InICPR,
Tampa, Florida, USA, 2008.

[19] J. Sethian. A fast marching level set method for mono-
tonically advancing fronts.Proceedings of the Na-
tional Academy of Science, 93(4):1591–1595, 1996.

[20] P. Yim, J. Cebral, R. Mullick, H. Marcos, and
P. Choyke. Vessel surface reconstruction with a tubu-
lar deformable model.IEEE Transactions on Medical
Imaging, 20(12):1411–1421, 2001.


