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Abstract

The proposed model is devoted to the segmentation and
reconstruction of branching structures, like vascular trees.
We rely on an explicit representation of a deformable tree,
where topological relationships between segments are mod-
eled. This allows easy posterior interactions and quanti-
tative analysis, such as measuring diameters or lengths of
vessels. Sarting from a unique user-provided root point,
an initial treeis built with a technique relying on minimal
paths. Within the constructed tree, the central curve of each
segment and an associated variable radius function evolve
in order to satisfy a region homogeneity criterion.

1. Introduction

The recovery of branching structures, especially vas-
cular trees in MRA, CTA or retinal images, has been an
extensively studied subject [2][8][6][14]. In this contex
a major concern lies in the extraction of centerlines and

data for posterior clinical study. For a survey on vessel
extraction techniques, the reader may refer to [11]. Specif
ically, a tree modeling algorithm should be able to handle
imaging issues like great variability in length and thickse
of segments.

Among various existing techniques, whether they are

designed for planar or volumetric images, few approaches

provide an explicit modeling of the tree structure, i.e. the
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are consecutively added to segments regarding intensity
features. The difficulty lies in the implementation of

mechanisms dealing with junctions, whether current
segment should be split or not. Moreover, topological rela-
tionships between segments are not necessarily reprdsente

We propose a novel deformable tree model, initialized
thanks to a technique based on minimal paths [4]. It is
slightly related to the work in [8][5][15], as minimal paths
intervene in the definition of centerlines. However, our
approach differs from those in the sense that the initial
tree is built by back-propagation from many endpoints to
the user-provided root point, following the geodesic votin
method [18]. The obtained structure explicitly represents
topological relationships between segments (the pargnt se
ment and children are known for a given segment). Then,
each segment is endowed with a deformable generalized
cylinder defined by a central curve and a radius function,
which both evolve with respect to a variational homogene-
ity criterion [3]. Both 2D and 3D generalized cylinders are

lpresented, namely deformable bands and tubes. We intro-

duce a novel evolution scheme for the entire tree, performed
by successive selection and evolution of sequences of seg-
ments. We finally present experimental validation on 2D
MR angiography images and 3D CT data.

2. Background

The minimal path approach by Cohen and Kimmel [4]
aims at finding curves of minimal length in a Riemannian

topological relationships between segments [2]. A number SPace endowed with an isotropic metric. The length of
of vessel extraction methods is devoted to pixel-basedPathC is:

segmentation only, without tree extraction. In these
methods, pixel classification is performed with respect
to a vesselness (or medialness) measure, based on the

I(c) = / P(C(s))ds (1)

image Hessian structure [1][7]. On the other hand, many wheres is the arc length. Potentid?, which defines the

methods dealing with centerlines extraction like [6] or][14

isotropic metric, should be chosen according to the appli-

make sequential tracking of segments, in the sense thatation. In our case, the minimal path is used to define an

the whole final tree structure is propagated from one or

initial centerline of segment. Its intensity should be adtno

several seed location(s). Given a search window, pointsuniform and close to the intensity of seed pakat hence



Figure 1. Removing unsignificant segments by vote thresholding : initiséndth root pointx,eo: (&), minimal action map (b), initial
tree (c), tree after thresholding on voting score (d)

we choose: path~; is stopped and patk, is split atx,. Considering
sourcexoot, the upstream portion of; becomes the parent
P(x) = w+ (I(x) — I(x0))” (2) segment ofy; and the remaining downstream portiomef
Finally, portions of paths between two junction points (or
where I is the image intensity ane is a regularizing  petween a junction and an endpoint) become tree segments,

constant. The minimal path approach determines a globakyhich guarantees the acyclic nature of the structure.
minimum of the energy, given two fixed endpointg

andx;. The minimal action mapiy, which corresponds to As is, one may note that several segments are created
the m|n|mal co;t .|ntegrate'd along a pgth starting@and without having their endpoints localized in the structufe o
ending atx, satisfies the Eikonal equati¢ivU| = P and  jnterest. The geodesic voting score is a relevant clue to as-

can thus be computed by the Fast Marching method [19]. sess the significance of segments. In our context, we deal
A geodesic pathy linking pointx, to x, is found by back- jith voting scores of segments, which are computed during
propagation onl/, starting fromx; until x, is reached:  the modified gradient descent step described in the previous
Oy = —=VUp(7). paragraph. Naturally, the voting score of a segment is the
sum of voting scores of his child segments, whereas an end-
The geodesic voting score introduced in [18] is related to segment has a unit voting score. Basing ourselves on the
path density. Given an action map propagated from one Orfact that significant segments have high voting scores, seg-
several seed point(s), the voting score of a point is the nuM-ment elimination may be performed by thresholding scores.
ber of geodesic paths passing through this point. When sevgig. 1¢ depicts an initial tree whereas fig. 1d depicts the
eral geodesics are extracted, e.g. starting from the b®rder ggme tree after removing segments with threshld = 3
of the image, they tend to merge at different junction points (color scales from green to blue correspond to score values)

The geodesic density and its variation can give significant s will be justified in section 5, remaining false segments
information on some parts of the structure one wants to ex-gyre not critical for the final result.

tract.

4. Deformable generalized cylinders for tubu-
lar structures representation

In order to builq the initial tree, we e_xtract a Iargg 4.1. The deformable band
number of geodesic paths. Once the action map starting
from root pointx;.o is determined (see fig. 1a and 1b), The deformable band [16], inspired from the ribbon
gradient descent is performed from points evenly sampledsnake model [13], combines aspects of region-based active
on a grid. It is assumed that grid stépis small enough  contours and minimal paths. It is devoted to the recovery
so that every branch in the image is partially covered by a of tubular structures. In this context, the segmentatia@na pr
path. Since the tree is built by back-propagation starting cess is constrained by essence, rather than by adding prior
from endpoints, junctions should be detected. Hence,shape terms in a general model. The band, depicted in
instead of applying independent back-trackings, we checkfig. 2a, is defined by open cunig parameterized by arc
for the presence of an already traced path at each gradienkengths € [0, 1], and radius functiorR : [0,1] — R*.
descent step. During the construction of path if the CurveT plays the role of the medial axis. The inner re-
distance between current positieq and a pointxs in an gion Ri, of width 2R is bounded by curvelsz; andl'_r;,
existing pathy, is lower than threshold (typically, e = 1), constructed by translatinig along normah. Their respec-

3. Building the initial tree



where region descriptors, andget increase with respect to
intensity inhomogeneity. The band integral over regitn

is explicitly expressed in terms @f andR using a mathe-
matical derivation based on Green’s theorem. Such deriva-
tion enables to calculate variationsigf,;and solve associ-
ated Euler-Lagrange equations. The variational derigativ
of Egamare:

5?;“"" ~ [(1-Rk)(gin(cr)) — gou(crr)))
—(1+R#)(gin(e(7)) — goue-m)))] B

0 Fyata ~ (1—RK)(gin(C[R])_QOUI(C[R]))

R

+(14+R~)(gin(c[=R])) — gout(c[-R]))

We usegin(x) = (I(x) — ,Utree)2 and gow(x) = (I(x) —
tout)?, Where uyee and poy are the average intensities in-
side and outside the entire tree structure, respectiveije N
that these functions are related to the potential defined in
eqg. 2. The band is implemented as a polygonal line of
verticesp; with associated radiR;. Vertex positions and

_ (®) _ _ corresponding radii are updated by gradient descent of the
Figure 2. Deformable band defined by medial curve and th'CknessEuler-Lagrange equations:

(a), representation of the tree by discontinuous bands (b)

o0 = pl! = AvsET,

8
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tive position vectors are given by:
To maintain sufficient vertex density, the curve is resaihple

cr)(s) = c(s)+R(s)n(s) (3)  after each deformation step, i.e. after the previous scheme
c-ri(s) = cls) = R(s)n(s) has been applied on all vertices. The initial formulation of

The band is endowed with energy functional, the deformable band [16] defines static endpoints. In our
weighted sum of the internal ener@¥moomand the external ~ context, endpoints are made variable to allow local grow-
region energyyata ing or retraction with respect to region homogeneity. The

B following force is added to the overall displacement of a
El,R] = wBsmootl, Rl + (1 = w)Eaad Rl () oriapie endpoint:
The user-provided coefficient, weighting the influence
of Esmooth OVer Egais CONtrols the elastic properties of the faaa(Pi) = [gou(Pi + Riti) — gin(Pi + Riti)| t: (9)
deformable band. Sinc& depends both o and R, \heret; is the "outward” unit tangent vector, e.g. in the
the band minimizingE' should satisfy two coupled Euler- directionp; — p- for endpointp;.
Lagrange equations:
SEL,R] 0 and SE[T,R] . ) 4.2. Extension to 3D: the deformable tube
or R We present an intuitive 3D extension of the deformable

where the variational derivatives of the energy with re- band model described in section 4.1. ket [0,1] — R?
spect to the curve and radius vanish. The smoothness enbe the curved axis, parameterized by arc-lengthndR :
ergy EsmootniS €xpressed in terms of curve length - which [0,1] x [0, 27] — R* the radius function. LeT', N andB
induces mean curvature motion - and radius first order be the tangent, normal and binormal vectors of cupve
derivative, as we also seek for a smoothly varying radius: Frame{T, NN, B} defines an orthogonal coordinate system
1 sweeping along the curve. It is used to build varying cross-
Fsmootl', R] = / lcs|| + R2 ds (6) sections orthogonal to the curve’s local direction. Hence,
0 the surface position vector is defined as follows:
Since the structure of interest should satisfy an intertsty
mogeneity criterion, the data term is as follows:

Egadl', R] = /

Rin

s(s,v) = ¢(s) + R(s,v)(cos vN + sinvB)

where parametersandv sweep along and around the cylin-

gin(x)dx + /B goulx)dx (1) ger, respectively. As stated in [17], defining the surface in



this way yields an undesirable twisting effect on the cylin-
der. Actually, we compute corrected normal and binormal
vectors (denoted with) following [20]:

_ N*(s) = (N"(s), T(s+As)) T(s+As)

T INT(s) — (N"(5), T(s+As)) T(s+As)]|
B*(s+As) = T*(s+As)xN*(s+As)

N*(s+As)

which basically consists in projecting previous normal and
binormal vectors on the current orthogonal plane. The gen
eralized cylinder is endowed with a similar energy as in
eq. 4. Equally, a minimizer of’ satisfies eq. 5. To express

wherek is the curvature ofh. One may easily deduce the
first variation of the data term with respect to radius:

o Edata
0R

which is actually divided byR when implemented in the
gradient descent, so that an increase of radius does ndt yiel
an increase in its variation. The tube is implemented as a
polygonal line ofn verticesp;, each vertex being endowed
“with m angular positions with associated radli;. Re-
garding our implementation, it is not necessary to caleulat
the first variation ofFy, With respect to the axis. Indeed,

=R(1 — Rrcosv)(gin(s) — gout(s))

the regularization term, we rely on the reasonable assump;nce the axis should remain in the center of the tube, vertex

tion that a smooth axis curve and a smoothly varying radius

will yield a smooth surface:

&mﬂ¢m=AWmmw/

1 27
R2 + R2 dvds
0
The first variations of the smoothness term are:

(SEsmooth

— ||ps|| kN
N sl
Esmooth

_2 5 S VU
R (Ros + Ruw)

wherer is the curvature op. Since the structure of interest
should satisfy an intensity homogeneity criterion, theadat
term is as follows:

Eaado. %) = |

Rin

Jout(x)dx (20)

()i + [
Rou

where region descriptorg, and goy: increase with respect
to intensity inhomogeneity. To obtain a suitable expressio
of the data term for derivation and implementation, we rely
on the divergence theorem. Since surfécis piecewise-
differentiable, the volume integral ofR* — R function f

on regionRj, may be rewriten:

ﬂxMx=jAZ?f@L%X&»mus

Rin
21 p1
—/ /(F(sl),sluxs1v>+<F(52)752ustv>dudv
o Jo

where vector fieldF is chosen such that d¥ = f,
whereass; ands, are parameterizations of the end cross
sections (ats = 0 ands = 1, respectively). Admitting
thatN andB can be computed at arc-lengthand1, we
have:

(11)

¢(0) +uR(0,v)(cosvIN*(0) + sinvB*(0))
o(1) + uR(1,v)(cosvN*(1) 4+ sinvB*(1))

s1(u,v)

so(u, v)

It can be shown that the variational derivative of the swgfac
integral in eq. 11 with respect to radius is:

o

iR { . f(x)dx} =R(1 — Recosv)f(s)

coordinates are computed as centroids of angular positions
when all radii have been updated. This is summarized by
the following scheme:
(t+1)
Ri;

=R\ — At SE/0R|_r,
p(_t+1) N

—
1 o= (1) 275\ O o iy (27T p®
o R (o ()N i ()
mj:1 m m
p£t+2) — p§t+1) + At 5E5m00th/6¢|¢:pi

wheret + 2 actually corresponds to the smoothing step. As
in the 2D case, endpoints are made dynamic by adding an
extra data force, which is computed in a similar way than in

eq. 9

5. Evolving the tree structure
5.1. Evolution scheme

We now describe the tree evolution scheme, relying on
the deformable cylinder models and the geodesic tree gen-
erated in section 3. A hierarchical structure of bands, twhic
is referred to as deformable tree, is built by assigning a de-
formable cylinder model, in 2D or 3D, to each segment.
The segment curve naturally becomes the medial curve of
the cylinder, whereas the radius is set to a small initial
value R(?). This generates a discontinuous representation
- depicted in fig. 2b - which will be subsequently smoothed.
Segments are endowed with two status variables denoted
ACTIVE and STABLE, indicating respectively if segment
should deform at the current iteration and if they reached
their final states. Initially, all ACTIVE and STABLE values
are disabled. Evolution of the tree is achieved by repeating
the following steps, until all segments reach stability:

e Select the connex sequence of segments of maximal

euclidean length, such that the last segment is not STA-
BLE

e Mark all segments in the sequence as ACTIVE

e Evolve ACTIVE segments according to gradient de-
scent of eq. 8



e Update average intensiti@gee and oyt set of cylindrical surfaces to the triangulated boudnary su
face will be considered. This will imply to deal with surface

e Mark all segments in the sequence as STABLE and dis- intersections of connected cylinders.

able their ACTIVE status. Remove unsignificant seg-

ments
Deformable modeling enables to grow partial segments, or
retract false segments. The additional force in eq. 9isonly The 2D deformable tree model is tested on a set of
applied on free endpoints of end segments. In the last stepMR angiography images. Fig. 5 depietsf them. In all
unsignificant segments are determined according to two cri-experiments, the initial seed point is provided at a cotteren
teria. The first one deals with the proportion of segment root location. In the last row, the seed correspond to the
overlapped by other segments. If this proportion is grea_ter|00ati0n where the boundary curve is cut straight (the above
than a specified thresholgyerap the segment is removed. remaining tree is manually deleted). Average image size
The second criterion is the one used in [8], stating that theis 512 x 512. The grid steph is set to10 pixels, which
length of a segment should be at least twice greater than it§urns out to be sufficient for covering, at least partially,

6. Experiments

average width. every branch of the structure. Threshagld: is chosen in
order not to remove significant segments. Remaining false
5.2. Boundary refinement segments are not critical regarding the final segmentation

result, but only on the computational load. Indeed, the
evolution phase needs more iterations as false segments
are longer and more numerous. Threshold valuesaf4

For a given segment, the boundary is easily determined
from the central curve and thickness data varying along this
curve. However, if cylinders are considered independgntly .

. ; . for syote lead to proper false segment removal. During
this leads to a discontinuous boundary of the tree structure . .
the evolution phase, to delete small segments partially

To obtain a continuous representation, the boundary may )
be refined after the deformation using an active Comouroverlapped by other segments, the threshalgap is

- . . . (O) . -
or surface. For the 2D tree, we build a closed cuéve set t00.75. The initial inner thicknessB'®) is typically

by scanning the tree according to a depth-first algorithm. set t.04 pixels. As regards smopt_h ness welghtv_alues
o ranging from0.4 to 0.7 are sufficient to maintain cen-
In each segment, the central curve is visited forward

: terlines smooth. The same set of parameters is suitable
ggmcc_(o%rtlopcéiﬁg;o scarne + Rn points) and backward for all experiments, in 2D and 3D. Fig. 6 and 7 depict

results obtained with the 3D tree method applied on a CT
volume data. Fig. 4 represents a slice of the CT data, with
‘centerlines and surface positions of two segments (aorta
and superior mesenteric artery).

Since topology preservation of the boundary is needed
an explicitimplementation of the active contour is used. We
use a similar data term as in eq. 7, which can be thought of
as an explicit implementation of the Chan & Vese region en-
ergy [3]. The geometry of the boundary should remain tubu-
lar to be consistent with the set of tree centerlines, which i
this case are related to the shape skeleton. In addition t
the region energy and the usual smoothness term, we add
tubularity-maintaining energy, which relates pointsto
their corresponding points on the tree centerline:

With a C++ implementation running on an Intel
Core 2 Duo 2.2GHz PC (4Gb RAM), computational costs
Oyielded by the 2D model are as follows).9s for the

construction of the initial tree and vote thresholdirg6s
for tree evolution and).25s for building and evolution of
the refined boundary. On th&56 x 256 x 256 volume
image shown in fig. 6, our 3D approach to®Bs for the
1 construction of the initial tree and vote thresholdirgl5s
ErpuiaC] = / (1= (C(v)—c(s), £n(s)))* dv for tree evolution and.5s for building and evolution of the
0 refined boundary surface.

where c(s) is the tree point associated to boundary
point C(v). The sign applied to the normal depends on  According to visual inspection, we believe the recon-
the scanning step of the centerline, during which bound- struction results to be promising. Initial curves provided
ary pointC(v) was previously created. Fig. 3 represents the minimal path approach are sinuous and do not match
the 2D tree and the smoothed boundary curve at differentvessel centerlines. This phenomenon is corrected during
evolution steps. For the 3D tree model, we implement the tree evolution, as gradient descent of the region criterion
boundary surface as a triangulated mesh [12]. First, the in-makes curve naturally locate on actual centerlines. The 3D
sides of tubes are voxelized using a polyhedron filling al- tree of the aorta is validated with respect to the locatidns o
gorithm [10]. Then, the boundary of the obtained discrete arteries (see right part of fig. 6). To keep a critical eye an ou
volume is triangulated by means of a Marching cube-like approach, we observe that tiny vessels, which appear darker
method [9]. In the future, a direct transformation from the than thick vessels, are removed from the structure because



Figure 3. Intermediate steps (left, center) and final step (right) of wekitéon. Colors correspond tNON STABLE, STABLE and

ACTIVE segments

Figure 4. Slice of the 3D CT image, with centerlines and surface

positions of two segments: aorta (bottom) and superior mesenteric

artery (top)

of the global homogeneity criterion (see eq. 7). One may
note that this is not necessarily problematic, depending on

ground truth, whether these vessels have to be included or
not. However, increased sensivity to small vessels may be

achieved by defined a more local region energy. Moreover,
in some parts, improvements could be done on the loca-

tion of intersections, which may appear more upstream than

their actual position.

7. Conclusion and future work

We described an explicit deformable tree, holding rela-
tionships between segments, for the extraction of braigchin
structures. A thresholding technique was applied on the

was performed by evolving segment cylinders towards a
minimum of an energy functional. The evolution method
enabled to retract or grow segments in order to satisfy
intensity homogeneity inside and outside the tree stractur
Our approach was validated on 2D MRI and 3D CT data.

As a future investigation, validation on a large database
holding expert segmentations will follow. Future work will
focus on the formulation of local region terms handling in-
tensity variations along branches, which we believe to be
valuable for extracting thin and low-contrasted vessels. W
may also consider an improvement on the selection of ini-
tial segment endpoints, which could be done by studying
particular differential quantities on the action map.
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