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Abstract

In the last few years, the interest in the analysis of hu-
man behavioral schemes has dramatically grown, in partic-
ular for the interpretation of the communication modalities
called social signals. They represent well defined interac-
tion patterns, possibly unconscious, characterizing different
conversational situations and behaviors in general. In this
paper, we illustrate an automatic system based on a gen-
erative structure able to analyze conversational scenarios.
The generative model is composed by integrating a Gaus-
sian mixture model and the (observed) influence model, and
it is fed with a novel kind of simple low-level auditory social
signals, which are termed steady conversational periods
(SCPs). These are built on duration of continuous slots of
silence or speech, taking also into account conversational
turn-taking. The interactional dynamics built upon the tran-
sitions among SCPs provide a behavioral blueprint of con-
versational settings without relying on segmental or contin-
uous phonetic features. Our contribution here is to show the
effectiveness of our model when applied on dialogs classi-
fication and clustering tasks, considering dialogs between
adults and between children and adults, in both flat and
arguing discussions, and showing excellent performances
also in comparison with state-of-the-art frameworks.

1. Introduction
Social signals have been defined by psychologists as a

powerful determinant of human behavior, which may have
evolved as a way to establish hierarchy and group cohesion
[14, 24, 16, 15]. In the recent years, there has been a grow-
ing interest in the development of the so-called conversa-
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tional external mediators, i.e. dialog analysis systems that
observe humans interacting with each other, capturing pos-
sible social signals and enhancing the human-human con-
versational exchange [15],[4]. The primary aim is to ob-
tain a good yet general blueprint of a dialog situation by
analyzing the ongoing conversational dynamics, intended
as the alternating speech behavior exploited by the part-
ners during the discussion. In this paper, we present a di-
alog analysis system characterizing different audio profiles
among dialogic conversational situations, exploiting a novel
way to encode conversational dynamics. The key charac-
teristic of our approach is represented by a serial gener-
ative framework, composed by a Gaussian mixture model
(GMM) [8] followed by an observed influence model [1] at
the higher level. Such framework is fed by a novel type of
simple, low-level auditory social signals, which are termed
steady conversational periods (SCPs) introduced in [18].
These are built on duration of continuous slots of silence
or speech, and, in addition, they take into account conver-
sational turn-taking. This allows to easily capture and pro-
file silence/speech dependencies in dialogs, and are moti-
vated from a behavioral, physiological and neurophysiolog-
ical level.
In practice, the system is able to capture the attitude of self-
selecting for turn-taking even though the interlocutor has
not yet completed his own turn. Further, it also indirectly
models speech planning by characterizing the tendency to
utter short sentences instead of longer propositions.

This paper contributes to the state of the art in social sig-
nal processing by showing how the proposed model collects
and distills effectively the SCPs as social signals, providing
a means to classify dialog instances into predetermined di-
alogic situations, also in comparative terms. We also ana-
lyze a clustering setting in which similar (in a psycholog-
ical sense) conversational dialogs are hierarchically clus-
tered together by using a likelihood-based similarity mea-
sure.

The rest of the paper is organized as follows. In Sect.2 a
brief overview of the literature devoted to the social sig-
nal processing is presented, with emphasis on the turn-
taking dynamics modelling. In Sect.3, math details are
provided, in order to ease the understanding of Sect.4,
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where the building of our model is explained. Therefore,
in Sect. 5, comparative classification and clustering results
are reported, and, finally, in Sect. 6 conclusions are drawn
and future perspectives are envisaged.

2. State of the art
The research on the formalization of particular social

signals from a computer science perspective is an emerg-
ing field in the context of the so-called human computing or
social signalling area, and a few groups, increasing in num-
ber, are devoted to investigate these issues [14, 24, 15, 17].
This research investigates the modelling of turn-taking
[15, 5, 13, 6] evaluating also social signals such as activity,
engagement, emphasis, and mirroring [15], detecting situa-
tions of interest, attraction [17], or dominance [20].
Two major issues make the social signaling hard to manage,
i.e., the kind of features to be extracted and the mathemati-
cal models to be applied in processing such features in order
to extract the nature of the behavior, also capturing interact-
ing patterns.
Regarding the features, attempts have been made at focus-
ing on one-dimensional characteristics like the prosodic fea-
tures produced in the early processing stages [21, 22] for
smoothing out the dynamics of adult dialog systems [9].
Prosody is the ensemble of phonetic properties that are used
in connected speech to emphasize given items or concepts,
disambiguate the syntactic structure of sentences, and to ex-
press emotional states of the speaker. Prosodic features are
tied to intonational, phrasing, timing and loudness varia-
tions, which have their acoustic counterpart in pitch, energy,
syllable duration, and pauses [22]. Recently, prosodic fea-
tures related to voice quality have also gained some atten-
tion as effective indicators of different emotional states and
attitudes of the speaker [11, 21]. Automatic dialog analy-
sis has also been investigated considering emotional cues as
part of prosodic information [12].
As for the models, Markov approaches, and more complex
models that build upon the Markovian paradigm [19, 6, 3]
have achieved a prominent position in the analysis and
recognition of audio sequences in several domains. Regard-
ing the conversational dynamics modeling, both the influ-
ence model [1] and mixed memory Markov processes [6]
have been employed as fine yet efficient tools. Such archi-
tectures are similar to the one we adopt in our framework,
in the fact that they provide a mechanism for decoupling
complex interactions as a weighted summation of pairs of
simpler interactions.

3. Mathematical background
3.1. The Observed Influence Model

The observed influence model (OIM) has been intro-
duced in [2] as a simplified version of the influence

model. OIM represents a statistical model for describing
the connections between C Markov chains with a simple
parametrization in terms of the “influence” each chain has
on the others. We denote the state variable of a Markov
chain by St ∈ {1, . . . , N}. The factorization of the (full)
multi-process transition probability of the OIM is

P (cSt|1St−1,...,
CSt−1)=

C∑

d=1

(c,d)θP (cSt|dSt−1) (1)

with 1 ≤ c, d ≤ C, (c,d)θ ≥ 0,
∑C

d=1
(c,d)θ = 1. In prac-

tice, the OIM models the full transition with a linear com-
bination of pairwise inter-chain (c 6= d) and intra-chain
(c = d) transition probabilities. The weight (c,d)θ repre-
sents the influence that chain d exerts on chain c.

Formally, we name an influence model as λ =
{{A(c,d)}, Θ, π}, where A(c,d) is the intra-chain matrix
when c = d, and represents the dynamics of a single pro-
cess per se; when c 6= d we consider the inter-chain ma-
trices, modeling how much a state of a chain influences
the next state of the other chain. The value acd

ij indicates
P (cSt = j|dSt−1 = i). The C × C matrix Θ contains the
influence weights, and π contains the (independent) initial
probability distributions for all processes.

In practice, the OIM is able to model each interaction
between pairs of chains, but it is not able to model the joint
effect of multiple chains together. In other words, {θ} coef-
ficients are constant factors that tell us how much the state
transitions of a given chain depend on a given neighbor.

It is important to realize the consequences of these fac-
tors being constant: intuitively, it means that how much we
are influenced by a process is constant, but how we are in-
fluenced by it depends on its state. OIM learning of the {θ}
coefficients is performed by standard constrained gradient
descent [1, 8].

A classification involving the OIM has to be carried out
considering carefully the order with which the observation
sequences are organized. With a two-process situation in
which the second process exerts a strong influence on the
other, we learn a model where the weight (1,2)θ is high. In
order to recognize such situation in a classification scenario,
the relative ordering of the sequences has to be preserved,
i.e., the second sequence has to be the one related to the
process that influences the opposite one. If this cannot be
ensured, a reasonable strategy for extracting the “correct”
classification score would be the following: the sequences
S = {S1, . . . , SC} are presented to the model in all their
possible orderings, indexed by o, collecting all correspon-
dent likelihood scores P (So|λ); the correct likelihood score
would thus be the highest one.

4. The proposed framework
We focused on two-person conversations, played by sub-

jects 1 and 2, each one equipped with a microphone and a



headphone. The conversation originates a couple of syn-
chronized audio signals sampled at 44100 Hz, each one con-
veying the voice of a single speaker. Source separation is-
sues were avoided by separating the players by means of a
glass pane, in an adequate anechoic soundproof booth. The
audio signals were filtered in order to prune out noise arti-
facts. Then, the short-term energy of the speech signals was
computed on frames of 10 msec, and a speech/silence clas-
sification was performed on the energy contour by a cluster-
ing process adopting the k-means procedure [8], setting the
number of clusters to 2, so as to obtain two binary arrays O1

and O2, of length T . A sketch of this operation is shown in
Fig.1a.

In this work we assume the two streams as originating
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Figure 1. Steady conversational periods creation; a) binary conver-
sion of the audio samples into speech (black dots) and non speech
or silence (white dots) values; b) the (boundaries of the) periods
of silence and speech are not synchronized, so it is not possible
to evaluate a first-order statistical transition probability among pe-
riods; c) forced synchronization due to the steady conversational
periods: the synchronization permits to calculate transition proba-
bilities intra- and inter- processes (see text).

from two interacting binary stochastic processes. Our idea
is to introduce a model which encodes the mechanism that
causes one process to change or remain steady in its state,
depending on its previous state and on the previous state of
the other process. A simple choice could be to fit an OIM,
supposing that each silence/speech sample amounts to a sin-
gle state observation of a Markov process [20].

Looking at Fig.1a, we can get an idea of the expected
resulting transition matrices: being the silence/speech (and
viceversa) switches rarer than the persistences of the sig-
nals in the same state, the resulting Markov matrices are
strongly diagonal; in other words, the auto-transitions over-
whelm the other transitions.

Another choice could be to take into account the duration
of each speech/silence segment, as an indicator of the state
of each stochastic process. This brings up two issues: 1) an
explosion of the space state, being present one state for each
possible duration of a speech/silence period; 2) a synchrony
problem in evaluating inter-chain conditional dependencies.

While the first problem can be solved by employing hidden
Markov models [19] that group similar durations as expres-
sion of the same (hidden) Markov state, the second issue
still remains hard to tackle. As visible in Fig.1b, it becomes
difficult to evaluate the conditional dependency of a state
given the other, due to problems of transition synchroniza-
tion.

Our solution assumes that whenever a process changes
its state, it causes a global transition that affects also the op-
posite process, injecting a novel auto-transition state (see
Fig.1c). The fragmentation caused by global transitions
forces synchronization between the processes, creating T̃ <
T different audio segments, called steady conversational
periods (SCP), cIt̃, where the apex c ∈ 1, 2 indexes the
speaker and t̃ = 1, . . . , T̃ enumerates the different SCPs.

The introduction of SCPs in our model makes it feasi-
ble to evaluate first-order intra- and inter-chain conditional
probabilities (red arrows in Fig.1c). In order to take into
account the different durations of each silence and speech
segment, we pooled together all the SCPs related to the
speech and “silence”, respectively, so as to generate SCP
histograms (see Fig.2b).
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Figure 2. Overview of the system.

Here, we consider the histograms as multimodal distri-
butions, that associate to each SCP a probability of being
produced in a conversation. In order to obtain a smaller
state space, we decided to quantize the possible SCP dura-
tions into a restrict set of values, adopting two labels, for the
short and long durations of speech, respectively. In the same
way, we also quantized the durations of the SCPs related to
silence. Quantization is performed by Gaussian clustering
[7], which has been applied in two steps. In the first, we
assumed that the probability of observing an SCP value cIt̃

follows a mixture of Gaussian (MOG) distribution, i.e.,

P (cIt̃) =
R∑

r=1

wrN (cIt̃|µr, σr) (2)

where wr, µr and σr are the mixing coefficients, the mean,
and the standard deviation, respectively, of the r-th Gaus-



sian of the mixture, and R = 2 (short, long). We for-
mally indicate a MOG as the set of its parameters, i.e.,
Φ = {wr, µr, σr}r=1,...,R. More specifically, we emploied
two GMMs, one for the SCPs related to the speech, and the
other for the SCPs related to silence. The parameters of the
two MOGs are estimated on training data by the EM algo-
rithm [7]. Having two mixtures, we name their components
univocally as 1, 2, . . . , 2R, where the first half addresses the
speech SCPs, and the second half indexes the silence SCPs.
The second step of the clustering imposes to assign a single
Gaussian component to each SCP value. This is performed
by Maximum Likelihood classification, i.e., selecting the
“nearest” (in a probabilistic sense) component of the mix-
ture or SCP state, that we name cSt̃

cSt̃ = arg max
r

wrN (cIt̃|µr, σr) (3)

After this operation, each SCP state cSt̃ takes one label
among 1, 2, . . . , 2R (See Fig.2b, bottom).

At this point we have all the conditions that allow the
modeling through the observed influence model, that is,
two synchronized, discrete and inter-communicating pro-
cesses. We thus fit an observed influence model λ =
{{A(c,d)}, Θ, π} to the data.

The resulting intra-chain transition parameters indicate
the conversational trend of each subject considered sepa-
rately. The inter-chain transition parameters indicate local
state dependencies among processes, while influence fac-
tors mirror the influence that a process exerts on the other.
All the parameters {Φ, λ} form the statistical signature of
a conversation, that will lead to an interesting analysis and
classification tool.

Please note that our framework adopts a choice which
is orthogonal wrt what proposed in [1, 6], concerning the
turn-taking modeling of dialog situations. In their work
they explicitly remove the time information regarding the
persistence of a subject in a silence or speech state, while in
our framework this information is carefully included in the
modeling.

5. Experiments
The experimental session has multiple goals. First, we

would like to show how the parameters of our model are
meaningful, allowing to distill intuitive behavioral patterns.
Second, we will show how our model is effective in a clas-
sification task, also considering different comparative tech-
niques. Third, we will provide results about model clus-
tering in order to illustrate how similarity relations among
dialogs can be found through their parametric modelling.
Our dialog database 1 was built considering 30 healthy sub-
jects (12 males, 18 females). They belonged to two age

1The database will be made public.

groups, 14 preschool children ranging from 4 to 6 years
(average age: 5 years), and 16 adults ranging from 22 to 40
years (average age: 32 years). The dataset was composed
by 38 conversational samples, each sample lasting about 9
minutes.
Three categories of dialogic situations have been consid-
ered:

1. Flat dialogs between adults, formed by semi-structured
(13 samples) and unstructured (5 samples) conversa-
tions. Semi-structured dialogs are driven by a moder-
ator, a research-trained female psychologist who did
not know the aim of the experiment, which introduced
in sequence 5 predetermined topics with fixed ques-
tions in a given order (job/school, hobbies, friends,
food, family). Unstructured conversations derived by
collecting phone office conversations of our Computer
Science department employees, where the topics of the
dialogs were focused on fixing appointments or discus-
sions about technical information.

2. Flat dialogs between an adult and a child (14 samples),
formed by flat semi-structured conversations.

3. Dispute dialogs (6 samples), extracted by phone office
conversations driven by an operator who was aware
of the experimental goal, and other subjects (Com-
puter Science department employees) which were only
warned about the possibility that an arguing issue
might arise.

The phone conversations have been realized by recording
the voice signal of each participant with a standard micro-
phone at a sampling rate of 44100 Hz, without relying di-
rectly on the phone signal, and the signals were then syn-
chronized. The other face-to-face dialogs are built as de-
scribed at the beginning of Sect.4. Even if the conversations
have been generated in different experimental settings, the
audio signal have been pre-processed/pre-filtered in order to
avoid an unfair comparison among the different experimen-
tal sessions.

5.1. Parameters analysis: adult-child conversation

The intra and inter-chain transition matrices are reported
in Fig.3, 4. As already reported, intra-chain matrices ex-
press the first-order Markov conversational dynamics of a
single subject, while the inter-chain matrices encode the
probability that a particular state conditions the choice of
the next state of the other subject.

The figures show the values of the matrices, and por-
tray a complementary network scheme in which circles rep-
resent states, and oriented edges conditional probabilities.
The most probable transition is depicted as a departing ar-
row from each state, in order to allow a snapshot of the most
probable paths among states that a subject may follow. The
thickness of each arrow is proportional to its conditional



probability. The figure portraying inter-chain matrices ex-
tend the complementary scheme by also adding the most
probable inter-chain dependencies, encoded as gray arrows.
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Figure 3. Intra-chain transition matrix of the conversation between
an adult and a child, and its network simplification. In the matri-
ces, the probability values are rounded, for clarity.

The intra-chain transition matrices depicted in Fig.3 dis-
play interesting features. The child shows a high tendency
to converge to a short silence state, while the dynamics of
the moderator is more regular, displaying a high probability
of moving from a state of silence to a speech state, either
long or short, and viceversa.

In the inter-chain matrices (Fig.4), the importance of the
short silence state as a peculiar aspect of the child’s conver-
sational dynamics is manifest: actually, almost all the states
of the moderator are followed by a short period of silence
of the child.

It is also worth noticing that a long speech of the mod-
erator is followed by a short speech segment of the child.
Viceversa, the short speech and the long speech performed
by the child are followed by a short period of silence of
the moderator, suggesting that the moderator waits a while
in order not to make the conversation too tight, thus fright-
ening the child. A long silence on the part of the child is
followed by a moderator’s short speech, which are likely to
consist in the encouragements made by the moderator.

Regarding the influence matrix, influence factors
{(c,d)θ}c,d={1,2} indicate how much the subject d influ-
ences the subject c. From Fig.5, one can note that the child
is influenced by the moderator and viceversa, i.e., the inter-
transition matrices have high importance in determining the
opposite’s state.

5.2. Classification

Classification was performed in a Maximum Likelihood
sense, as explained in Sect.3, that is learning different mod-
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Figure 4. Inter-chain transition matrix of the conversation between
an adult and a child, and its network simplification. In the matri-
ces, the probability values are rounded, for clarity.
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Figure 5. Influence matrices Θ = {(c,d)θ} of the child conversa-
tion model.

els, one for each dialog category, and evaluating which one
gives the highest likelihood score when fed with a test se-
quence. The results of the classification are obtained by
cross-validation in a leave-one-out sense [8], i.e., by learn-
ing the model of a class with M − 1 samples, employing
the M−th as test sequence and repeating this process for M
times, renewing by adequate shuffling the training set. The
likelihood score is calculated as explained in Sect.3, i.e.,
by considering the two possible ordering of the two audio
streams that compose a dialog. Concerning model selection
issues, augmenting the number of Gaussian components to
3 (3 for the silence SCPs and 3 for the speech SCPs), clas-
sification performances resulted similar. We also consid-
ered 4 Gaussian components, facing problems of overfit-
ting, thus losing in generality and robustness of the descrip-
tion, other than in classification accuracy. Performances
decreased severely by further augmenting the number of
Gaussian components.

As first comparative test (see Table 1, MG), we consid-
ered a classifier formed by a multidimensional Gaussian
trained on the values of a set of acoustic cues extracted
directly from the audio streams. This choice is consistent



with the classification models reported in the literature con-
cerning conversational speech analysis for dialog and dialog
acts classification [22, 10]. The selection of the acoustic
cues was made with the intention to keep the set as small as
possible yet well-matched to effectively represent our data.
Since most of the acoustic cues commonly used to this aim
are of a prosodic nature, we selected the pitch range mea-
sure to characterize intonation, and the “enrate” speech rate
measure as a predictor of the syllable articulation velocity.
We also included the spectral flatness measure (SFM) and
the drop-off of spectral energy above 1000 Hz (Do1000),
two features known to be correlated to voice quality mod-
ulations observed in emotionally charged phonation [21].
This was done since our dataset included dialogs character-
ized by non-neutral emotional states (i.e., the dispute cases).
Both audio signals of a conversation have been employed in
collecting the features to feed the classifier.
As second comparative technique we learn an influence
model using directly the couple of silence/speech boolean
signals as training sequence, originating thus a set of four,
2×2 transition matrices, plus a 2×2 influence matrix. After
the training, the auto-transition probabilities dominates over
the intra-chain matrix, reducing the significance of the re-
sulting model, turning out in very scarce classification per-
formances, which are thus omitted.
As third comparative technique, we realize an hybrid
model (named here Turn-Taking Influence Model, TTIM)
which stays in the middle between the pure OIM and our
method. In practice, we select from the couple of si-
lence/speech signals only the 4 silence/speech values occur-
ring across each global transition at time t, that is, related to
1S ˜t−1,

1St̃,
2S ˜t−1,

2St̃ (i.e., whenever a process changes its
silence/speech state, the same instants that define the SCPs).
In this way, we disregard the self-similar portions of signals,
learning then an OIM. In this way, state transitions are more
informative (TTIM was actually the model proposed in [6]).

The classification scenarios we took into account (where
cat. stands for category) are:
(A) flat vs dispute - (cat.1 vs cat.3);
(B) flat vs dispute, general - ((cat.1 ∪ cat.2) vs cat.3);
(C) with vs without child - (cat.2 vs cat.1);
(D) all vs all;

The idea here is to test the capability of the model to cap-
ture different kinds of dialog scenarios, highlighting their
peculiar characteristics in terms of conversational dynam-
ics, in order to discriminate them adequately in a classifi-
cation sense. The (cross-validated) classification results are
shown on Table 1.

Our results appear promising, confirming the importance
of silence/speech alternation profile as an objective charac-
teristic which can nonetheless provide a fine modeling of
conversational behavior, both in the case of self-organized

Scenario MG TTIM Our approach
A 72% 100% 86%
B 77% 62% 86%
C 58% 64% 78%
D 64% 66% 73%

Table 1. Classification accuracies.

communication and turn-taking strategies. In the task A,
our method gives lower accuracy than the TTIM model be-
cause it tends to misclassify some flat conversations. This is
probably due because in some cases the timing of flat con-
versations is characterized by subjects which utters short
sentences, thus producing a turn-taking rhythm similar to
that of dispute dialogs. This behavior is captured by our
model and disregarded by TTIM. Therefore, a good direc-
tion may be that of embed features for emotion detection in
conjunction with SCP. In any case, the classification exper-
iments suggest that SCPs may be promoted as effective fea-
tures to be employed in modeling complex conversational
behaviors.

5.3. Clustering

This section reports results about the clustering, in or-
der to assess if it is feasible to discover natural groups of
dialogs. Given the complete dataset, we perform hierarchi-
cal clustering using the complete-link scheme, employing
as distance the likelihood-based similarity measure [23]:

Dij =
LL(Ii|λj) + LL(Ij |λi)

2
(4)

where LL(Ii|λj) indicates the log-likelihood of the i-th di-
alog given the model λj = {Φj , λj} .

In practice, we have a model for each sequence and, as
in the classification task, we use a simple rule for perform-
ing clustering in order to discover the expressivity of our
model. We only set the number of clusters to 3 (consider-
ing the number of categories), and let the algorithm to make
the natural clusters. The resulting dendrogram is shown in
Fig. 6, where in abscissas there are the category labels.
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Figure 6. Clustering result, where the label means 1) adult-adult
flat, 2) adult-child, 3) dispute conversations, respectively (the fig-
ure is best viewed in colors).



Observing the dendrogram, we can see that the under-
lying structure of the dataset is satisfactorily represented,
but, obviously, there are some errors as the task is not easy.
The accuracy of clustering can be quantitatively assessed by
computing the number of errors: a clustering error occurs if
a pattern is assigned to a cluster in which the majority of the
patterns belongs to another class. In this case, we obtain a
clustering accuracy of 75.63%, which is a really satisfactory
result.

6. Conclusions

In this paper, we proposed a structured generative model
which, exploiting a low-level yet psychologically principled
social feature, is able to deal with conversational settings.
In particular, this model is able to classify and cluster dif-
ferent kinds of dialog scenarios, characterized by different
social situations (adult-adult vs. child-adult conversations,
flat vs. dispute dialogs) in an accurate manner. Our method
is based on the coupling of mixture of Gaussian clustering
and an observed influence model, and provides a conversa-
tional signature which is discriminant with respect to differ-
ent classes of dialogs. Particularly important is the feature
extraction phase, which is not based on prosodic or phonetic
features typically used in classic state-of-the-art algorithms,
but aims at extracting the speakers’ periods of speech and
silence in order to model the dynamics of the conversation
employing a first-order Markov relations.

In conclusion, we proposed a behavioral blueprint of
conversational skills that, for its simplicity and objectivity,
may be important for tracking the changes in time of con-
versational behaviors in different settings.

Future work will be devoted to extend the experimenta-
tion to other types of dialogs and different classes of sit-
uations, possibly considering more than two subjects.
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