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Abstract

In this paper, we focus on the problem of detect-
ing/matching a query object in a given image. We propose a
new algorithm, shape band, which models an object within
a bandwidth of its sketch/contour. The features associated
with each point on the sketch are the gradients within the
bandwidth. In the detection stage, the algorithm simply
scans an input image at various locations and scales for
good candidates. We then perform fine scale shape match-
ing to locate the precise object boundaries, also by taking
advantage of the information from the shape band. The
overall algorithm is very easy to implement, and our exper-
imental results show that it can outperform stat-of-the-art
contour based object detection algorithms.

1. Introduction

Object detection can be roughly divided into two broad
categories: (1) task to detect classes of objects, e.g. face
[25] and pedestrian [6]; (2) specific object retrieval and
matching [2]. In the first category, a learning stage is of-
ten required to learn the detector for the class of inter-
est. A bounding box is usually given, if an object is de-
tected in an image, without detailed indication of the object
parts. Besides the successes achieved for detecting rigid
objects, such as frontal faces, this problem remains a big
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challenge in computer vision. The second category tries
to detect/match a specific query object in a given image.
This has been a long standing problem, e.g. the General-
ized Hough Transform [1], and recent advances include the
shape context [2], the SIFT [17], and the pyramid matching
[12]. Ideally, one would have a unified systems for the two
types of situations, and the difference is just in the training
image set. However, such a framework dealing with general
objects, with satisfactory performance, is yet not available.

In this paper we focus on the second category, to de-
tect/match objects based on a given template. However, our
objective is not just to detect/match the identical template
in an input image. Rather, we hope that our system is able
to capture the reasonable variation and deformation of the
object in the same class. Unlike some the existing work in
which query objects are highly textured [15], we emphasize
shape based direction for objects without highly discrimi-
native appearances. The problem has wide range of appli-
cations in image search, medical image analysis, and video
tracking. We work on edge maps, rather than extracted in-
terest points to explicitly explore shape based information.
Our method is a shape matching and exemplar based ap-
proach without heavy learning, which is another important
aspect in object detection.

Here, we propose a new method for shape-based object
detection and matching:Shape Band. It models an object
within a bandwidth of its sketch/contour. The features asso-
ciated with each point on the sketch are the gradients within
the bandwidth. In the detection stage, the algorithm sim-
ply scans an input image at various locations and scales



Figure 1. The proposed Shape Band allows for nonrigid contour
deformations. Three different mugs (the left three contours) can
be put in only one Shape Band (the right image), where the black
region denotes the Shape Band, and the red curves are the trans-
formed contours of the three mugs.

for good candidates. We view shape band as ashape rep-
resentation, which has the tolerance for certain degree of
within-class variation and deformation. Also, we can view
the shape band as a search window. Though traditional
sliding-window based detection algorithms use rectangles
or circles as the search windows, we will show that, using
the shape band as thedetection windowis more appropriate.
As shown in Fig.1, although the contours of the three mugs
are different, all of them can be localized in a single band
when their center points are aligned. Since the global shape
information is implicitly contained in the shape band, we
do not need to know the order of the edges even when the
local edges are not salient. Also, considering only the edge
cues in the band helps to alleviate the problem of accidental
alignment.

Shape band can be considered as a special window, but it
is different from the typical windows using bounding boxes
in [22, 9]. Given a template represented by contour/sketch,
the window for shape band only considers the edges within
the band, which avoids the disturbances from the other parts
on the background in a cluttered image. The major advan-
tages of the shape band are three-fold: (1) It is a simple rep-
resentation but able to capture certain variation. (2) Though
it is based on contour/sketch, closed object boundary is not
required in detection, and thus, we avoid the complicated
edge linking to get a closed contour. (3) Detecting and
matching a shape using shape band can be done very ef-
ficiently, and it is not difficult to be extend to multiple tem-
plates [20, 21, 22].

2. Related Work

Early work for object detection through template match-
ing can be dated to early 90s, e.g., the deformable template
by Yuille et al. [27]. As stated before, learning is often
involved to train a detector for detecting a class of object
[25, 6]. Recently, a large body of research work has been
proposed for shape-based object detection and matching.
Shape-based approach has the advantage of being relatively
robust against lighting and appearance change. A common

idea to many the methods is to define a distance measures
between a given shape to the objects in the image. Usually,
the detection and matching steps are performed at the same
time.

Classical methods such as Shape Contexts [2]and Cham-
fer Matching [23] are mostly successful in matching shapes
already extracted from the images. Inner Distance Shape
Contexts(IDSC) [16] improves the distance of the Shape
Context for articulated shapes. However, it is not directly
applicable for detecting and matching objects in cluttered
images. A hierarchical shape matching method proposed by
Felzenszwalb et al. [8] requires the contour points to be or-
dered/linked, which is not easy for real-world images. Like-
wise, other shape matching techniques require either good
initial positions or clean images (or both) to avoid (false)
local minima [19, 24, 7, 5]. In Ferrari et al. [9, 10], a shape
codebook of contours is learned, followed by edge linking
methods named KAS or TAS to obtain many salient seg-
ments before detection. Shotton et al. [21, 22] describes the
shape of the entire object using deformable contour frag-
ments and their relative positions. Since their distance mea-
sure using improved Chamfer Matching is sensitive to the
noise, many training samples are required for boosting the
discriminative shape features. Other works [29, 14, 11] de-
compose a given contour of a model shape into a group of
contour parts, and match the resulting contour parts to edge
segments in a given edge image. Zhu et al. [28] also use
contour parts within a hierachical model for object detec-
tion. Recently, Wu et al. [26] proposed an Active Basis
model that provides deformable template consisting of a
small number of Gabor wavelet elements allowed to slightly
perturb their locations and orientations.

3. Shape Band Template

In this paper, we use a contour-based template to detect
objects in images and compute the similarity between the
image and the template. Given an image, we extract edges
[18] first and assume that most the object boundaries are
contained in the edge map. The main challenge is that only
a small percentage of the edge map contains edges of the
target object. Further, the edges of the target objects are
usually broken into many fragments and are surrounded by
distractor edges resulting from texture and other objects.

Our goal is to match a templateX = {x1, x2,...,xn},
wherexi (i = 1, 2, ..., n) denote sample points of the tem-
plateX , to an edge imageE = {e1, e2, ..., e|E|} expressed
as a set of edge fragments. The edge fragments are ob-
tained by low level linking of thresholded edge pixels (we
use a publicly available code [13]). The edge images are
computed using [18].

We assume that the templateX is centered at the ori-
gin of the coordinate system of a given imageI. Based on
the templateX , we can easily construct the Shape Band
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Figure 2. (a) is a gray image of a swan, (b) is the edge map of (a),
and (c) shows the sample pointsEs obtained from (b).

SB(X) of X using a set of disksB(xi) centered at eachxi.
In this paper, the radius of each diskB(xi) is constant and
it is equal tor.

For a reference pointc ∈ I, X(c) denotes the template
X centered atc, i.e., X(c) = X + c. The shape band of
templateX(c) can be denoted as

SB(X(c)) = {y ∈ I| ∃xi ||y − (xi + c)||2 ≤ r} (1)

where||.||2 denotes thel2 norm.
The detection and matching can be considered as a pro-

cess of selecting a reference pointc∗ ∈ I and a subsetE∗

of E such that

D(X(c∗), E∗) = min
c∈I, E′⊂E

D(X(c), E′), (2)

whereD is a Shape Band Distance defined is Section 4. It
is worth to mention that detecting multiple objects is also
possible if we consider each candidate as one with the cost
smaller than a threshold.

4. Shape Band Distance

The goal of this section is to identify the possible posi-
tions and scales of the the templateX on the imageI with
respect to edge fragmentsE. Since the shape of the tar-
get object in the image may be significantly different from
the shape of our templateX , and we do not want to miss
the true location of the target object, we perform a rough
shape dissimilarity estimation, which we call Shape Band
Distance (SBD), for every possible center point location
c ∈ I of the templateX . SBD measures the similarity of
sample points onX(c) to the edge points inside its shape
bandSB(X(c)) . To reduce the computation, each edge
fragment inE is sampled with fewer points than the origi-
nal number of pixels linked to form the edge fragment. Let
Es = {s1, s2, ..., s|Es|} the set of all sample points obtained
by sampling the edge fragments inE. Fig. 2(c) shows an
example ofEs.

Let g be a function that assigns to every pointz a quan-
tized gradient direction:g(z) = k for k = 1, 2, ..., N iff the

Figure 3. The angular sectors forN = 6.

gradient direction ofx is in the interval[k−1
N

π, k
N

π). We
experimentally determinedN = 6 as shown in Fig. 3.

Given a particular locationc ∈ I of the templateX in the
imageI, we define the Shape Band Distance based on the
similarity between the gradient direction of each template
pointx and the gradient directions of edge points within the
radius ofr of x:

D(X(c), Es) =

n
∑

i=1

d(xi + c, Es), (3)

where

d(x, Es) =











0 ∃z ∈ Es ∩ B(x) g(z) = g(x)

0.1 ∃z ∈ Es ∩ B(x) g(z) = g(x) ± 1

0.5 else,
(4)

where±1 is moduloN . The equalityg(z) = g(x) ± 1
expresses the fact that template pointx and edge pointz
have adjacent (quantized) gradient directions. For example
in Fig. 3, direction 6 is adjacent to 5 and 1. The meaning
of equation 4 is: If there is an edge point inB(x) with very
similar tangent direction, we return 0; A relatively small
value 0.1 is returned when their tangent directions are not
very dissimilar, since shapes from the same class may have
some locally deformation and rotation.

For a given templateX , w find its optimal location in the
imagec∗ ∈ I

D(X(c∗), Es) = min
c∈I

D(X(c), Es) (5)

by computing the distance in Eq. 3 for everyc ∈ I. Eq. 5 is
equivalent to Eq. 2, since we can infer the subset of edges
that minimizes Eq. 2 from Eq. 5, as we show below.

Since the objects from the same class may be in different
scales, we use a templateX in 5 scales(w = ω1, . . . , ω5)
for computing SBD.

By repeating the computation in Eq. 5 for the different
scales, we obtain the optimal model positionc∗ ∈ I and
optimal scalew∗:

D(X(c∗, w∗), Es) = min
c∈I,w

D(X(c, w), Es), (6)



whereX(c, w) denotes templateX centered atc and with
scalew.

However, in a heavily clutter image, the optimal position
c∗ ∈ I of the template, may not be the true position of the
target object. For the examples shown in Fig. 4(a) and (d),
the optimal positions are not the true positions. Especially,
in Fig. 4(d), the edge segments (in red) near to the optimal
position are very similar to the input model (in green). This
case can be considered as an accidental matching. There-
fore, we define a distance mapDM over the imageI as

DM(c) = D(X(c, w∗), Es) = min
w

D(X(c, w), Es) (7)

We then select a small set of possible target object positions
in imageI as the local minima ofDM . The local minim are
computed with respect to eight neighbors inI. We denote
by C = {c1, c2, ..., c|C|} the set of local minima ofDM ,
and withW = {w1, w2, ..., w|C|} the set of corresponding
optimal scales. These are our candidate detection positions,
and as demonstrated by our experimental results, the true
position of a target object usually belongs to the setC; see
also Fig. 4(b) and (e). In our experiments, the number of
the candidate detection positions in each image is usually
between 10 and 30.

5. Segments Selection and Shape Matching

While the goal of the Shape Band Distance in Section 4
was to filter out the unlikely center point positions of tem-
plateX , and reduce it to a small set of likely positionsC,
the goal of this section is to detect true positions and scales
of the target object. We achieve this goal with a global shape
similarity method.

For eachci ∈ C, we first consider all edge segments
aroundX(ci, wi). Then, we refine the set of these edge
segments so that the shape similarity betweenX(ci, wi) and
the reduced set of segments is maximized.

For each edge segmentej in E, we compute its mini-
mum distance to the shape templateX(ci, wi), and select
these segments with minimum distance below a threshold
T = αr (α > 1) as the segments adjunct to the detection
position. The minimum distance ofei to X is defined as

minDist(ej, X(ci, wi)) = min
xi∈X,p∈K

||p − (wixi + ci)||2,

(8)
whereK is the point set consisting of the two end points
and the center point of segmentej.

If minDist(ej, X(ci, wi)) < T , thenej is adjunct to
X(ci, wi). For each template positionci ∈ C, we denote
the set of adjunct segments asAS(ci). One example can be
seen in Fig.5

Then we evaluate the configuration of the adjunct seg-
ments of each candidate detection pointci using the global
shape context descriptor. Our goal is to select the subset

(a) ( )b ( )C

Figure 5. (a) shows the candidate center point positions (inred)
of a mug template obtained as local minima ofDM , (b) shows
the selected segments for the center position in blue, and (c) is
the final matching result based on the selected segments of (b) by
minimizing Eq. 9.

of edge segments fromAS(ci) that maximizes the shape
similarity to X(ci, wi). Let SC denotes the shape context
distance between two sets [2]. We define the minimal shape
distance as

SD(ci) = min
S⊆AS(ci)

SC(
⋃

S, X(ci, wi)) (9)

and the subsetS ⊆ AS(ci) that minimizesSD(ci) as
MS(ci) for matching segmentsat template positionci. The
termSC(

⋃

S, X(ci, wi) in Eq. 9 evaluates the shape con-
text distance between the shape formed by a subsetS of
edge segments and templateX(ci, wi). Since each segment
can beselectedor notselected, there are2|AS(ci)| possible
configurations, which prohibits brute force computation of
MS(ci).

Therefore, we propose a simple heuristics, which as our
experimental results demonstrate is successful, since theset
of adjunct segmentsAS(ci) provides a good initialization
that is close to the optimal setMS(ci).

To minimize Eq. 9, we utilize a simple iteration process
by deleting a segment fromAS(ci) at each iteration that
makes the shape context distance decrease most until the
distance does not decrease any more. An example is shown
in Fig. 6, since the initial segment selection inAS(ci) pro-
vides a very good initialization, the final result is correct.

If we search for a single instance of the template shape,
then the final detection positionfp is the one with the small-
est shape distance

fp = argminci∈CSD(ci) (10)

Clearly, we can also set a threshold on shape distanceSD

to obtain multiple object instances or to conclude that the
target object is not present in the image.

The whole method can be considered as a coarse-to-fine
procedure for object detection. The Shape Band distance is
used as the coarse process to select the candidate points of
detection while the Shape Context distance is used as the
fine process to decide the optimal point of detection. Can-
didate point selection by Shape Band distance is a process
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Figure 4. In each image, the green points are the points of a contour model with a reference center point (in blue), and the segments (in
red) are the edge segments adjacent to the model. (a) and (d) show detection results at local minima ofDM that are not the true positions
of the objects. (b) and (e) show detection results with at local minima ofDM that are the true positions of the objects. (c) and (f) are the
final matching results.

( )a ( )c( )b

Figure 6. (a) shows a set of segments (in red) selected with a can-
didate center point marked in blue. The giraffe contour template
is shown in Fig. 7. (b) shows the final matching results after delet-
ing several redundant segments, and (c) shows the removed seg-
ments in different colors The colors of the points in the bottom left
subimage illustrate the order of removing these segments byour
algorithm.

of pruning to prune points that are clearly not points of de-
tection. We used Shape Band as a initialization for Shape
Contexts matching for two reasons: 1) Shape Band re-
moves many redundant segments for improving the match-
ing speed. 2) Without a good selection of segments, SC
matching cannot give good results.

Figure 7. The contour models used as the queries in our experi-
ments on ETHZ dataset [9].

6. Experiments

We tested our system on the challenging ETHZ dataset
[9]. It has 5 different object categories with 255 images in
total. All categories have significant intra-class variations,
scale changes, and illumination changes. Moreover, many
objects are surrounded by extensive background clutter and
have interior contours. Similar to the experimental setup in
[29], we use only a single hand-drawn model as shown in
Fig. 7 for each class.

The results of our algorithm are summarized in Fig.11.
We also compare it to the results in [10] and in [29]. Preci-
sion vs Recall (P/R) curves are used for quantitative evalu-
ation. To compare with the results in [10] that are evaluated
by detection rate (DR) vs. false positive per image (FPPI),



we use the translation of their results into P/R values done
by [29]. As argued in [29], P/R is a more objective measure
than DR/FPPI, because DR/FPPI depends on the ratio of
the number of positive and negative test images and hence
is biased. Fig. 11 shows P/R curves for the Contour Selec-
tion method in [29] in black, the method in [10] in green,
and our method in blue. Our approach is significantly better
than the method in [10] on all five categories, and it signif-
icantly outperforms the Contour Selection method [29] on
four categories.

We also compare the precision to [29] and [10] at same
recall rates in Table 1. The precision / recall pairs of [29]
and [10] are quoted from [29]. Notice that our result for
class Mugs are much better than the others, the main reason
is that for the class of Mug, there are many clutters inside
their boundaries. Using Shape Band allows us to ignore
the clutters inside the contour, e.g., see Fig. 5, which is not
possible when using classical rectangular windows.

From the sample results shown in Fig. 8, we can observe
that even though the contour templates are not very simi-
lar to the objects, the final results are very robust and the
our method performs well even if target objects are slightly
rotated. The last row in Fig. 8 shows some of our worst ex-
amples, but we observe that the output edges are similar to
the templates.

Some details about the experiments are mentioned here:
the number of the sample pointsn for each template is 50,
the radius of each bandr is set as 30, andα is 1.5. ForN , if
N is smaller, more local minima will be found but can not
be distinguished, while ifN is larger, less local minima will
be found and the true position maybe be missed. In our ex-
periments, we foundN = 6 is appropriate. Although scan-
ning with Shape Band is very fast (no more than 3 seconds),
the average time cost for the whole detection framework is
between 1 and 2 minutes due to the iterative matching with
Shape Contexts.

In addition we show that Shape Band has a potential to
be applied in part-based detection/matching. Fig. 9 shows
the contour parts used for testing on Weizman Horse dataset
[3]. We use Canny edges [4] as the edge maps here. The
detection results are shown in Fig. 10, and we notice that the
part templates and the corresponding parts of the objects are
not equal. We did not use Shape Contexts for the refinement
here, since we want to show that Shape Band Distance is a
promising direction in multi-template, contour part based
object detection. For horse images,n is 25 for each contour
part, andr is 20, the other parameters are the same with
before.

7. Conclusion

In this paper, we exercise the idea of performing shape-
based object detection and matching using a single tem-
plate. We have proposed a new representation,shape band,

Figure 9. The second row shows the contour parts used as the in-
puts for part-based detection, which are taken from the original
contours in the first row.

Figure 10. Example detection results for contour parts as input
templates. The points (in red) denote part templates at the posi-
tions with the minimal Shape Band Distance.

which models an object within a bandwidth of its con-
tour/sketch and is natural to think of. The shape band can
also be viewed as another type of window for detection. It
is robust against large degree of intra-class appearance vari-
ation and certain extent of deformations. Our algorithm is
related to the shape context algorithm [2] and the active ba-
sis work [26]. We show significantly improved results for
object detection and matching over many the existing algo-
rithms. It takes, typically, a few seconds in the detection
stage. Our algorithm is easy to implement and has a wide
range of vision applications. It has the particular advan-
tage of working on cluttered images with extracted edges in
fragments. In addition, we also show promising results us-
ing shape band for detecting object parts. One of our future
directions is to build a graphical model, still under a single
template, on object parts and detect objects of articulation
and non-rigid deformation.
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