Shape Band: A Deformable Object Detection Approach
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Abstract challenge in computer vision. The second category tries
to detect/match a specific query object in a given image.
In this paper, we focus on the problem of detect- This has been a long standing problem, e.g. the General-
ing/matching a query object in a given image. We propose aized Hough Transform [1], and recent advances include the
new algorithm, shape band, which models an object within shape context [2], the SIFT [17], and the pyramid matching
a bandwidth of its sketch/contour. The features associated[12]. Ideally, one would have a unified systems for the two
with each point on the sketch are the gradients within the types of situations, and the difference is just in the tragni
bandwidth. In the detection stage, the algorithm simply image set. However, such a framework dealing with general
scans an input image at various locations and scales for objects, with satisfactory performance, is yet not avddab
good candidates. We then perform fine scale shape match- |n this paper we focus on the second category, to de-
ing to locate the precise object boundaries, also by taking tect/match objects based on a given template. However, our
advantage of the information from the shape band. The objective is not just to detect/match the identical temeplat
overall algorithm is very easy to implement, and our exper- in an input image. Rather, we hope that our system is able
imental results show that it can outperform stat-of-the-ar to capture the reasonable variation and deformation of the
contour based object detection algorithms. object in the same class. Unlike some the existing work in
which query objects are highly textured [15], we emphasize
shape based direction for objects without highly discrimi-
1. Introduction native appearances. The problem has wide range of appli-
cations in image search, medical image analysis, and video
Object detection can be roughly divided into two broad tracking. We work on edge maps, rather than extracted in-
categories: (1) task to detect classes of objects, e.g. facgerest points to explicitly explore shape based infornmatio
[25] and pedestrian [6]; (2) specific object retrieval and our method is a shape matching and exemplar based ap-

matching [2]. In the first category, a learning stage is of- proach without heavy learning, which is another important
ten required to learn the detector for the class of inter- ggpect in object detection.

est. A bounding box is usually given, if an object is de-

. . ) o X Here, we propose a new method for shape-based object
tected in an image, without detailed _|nd|cat|0n of the_objep_ etection and matchingShape Band It models an object
parts. Besides the successes achieved for detecting rigi

bi has f r hi bl X bi ithin a bandwidth of its sketch/contour. The features asso

objects, such as frontal faces, this problem remains a bigiaied with each point on the sketch are the gradients within
*Part of this work was done while the author was working at errsity the bandW|dth_- In the detection stage, the_ algorithm sim-
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idea to many the methods is to define a distance measures
between a given shape to the objects in the image. Usually,
the detection and matching steps are performed at the same
time.

Classical methods such as Shape Contexts [2]Jand Cham-
fer Matching [23] are mostly successful in matching shapes
already extracted from the images. Inner Distance Shape

Figure 1. The proposed Shape Band allows for nonrigid cantou ConteXtS(lDSC,) [16] improves the dlstancle.of the Shape
deformations. Three different mugs (the left three corgpoan ~ CONtext for articulated shapes. However, it is not directly
be put in only one Shape Band (the right image), where thekblac @pplicable for detecting and matching objects in cluttered
region denotes the Shape Band, and the red curves are tise tranimages. A hierarchical shape matching method proposed by
formed contours of the three mugs. Felzenszwalb et al. [8] requires the contour points to be or-

dered/linked, which is not easy for real-world images. Like
) ) wise, other shape matching techniques require either good
for good candidates. We view shape band abape rep-  jpjtial positions or clean images (or both) to avoid (false)
resentation which has the tolerance for certain degree of |gcal minima [19, 24, 7, 5]. In Ferrari et al. [9, 10], a shape
within-class variation and deformation. Also, we can View codebook of contours is learned, followed by edge linking
the shape band as a search window. Though traditionalnethods named KAS or TAS to obtain many salient seg-
sliding-window based detection algorithms use rectangleSments before detection. Shotton et al. [21, 22] describes th
or circles as the search windows, we will show that, using shape of the entire object using deformable contour frag-
the shape band as tdetection windovis more appropriate.  ments and their relative positions. Since their distanca-me
As shown in Fig.1, although the contours of the three mugs syre using improved Chamfer Matching is sensitive to the
are different, all of them can be localized in a single band pgjse, many training samples are required for boosting the
when their center points are aligned. Since the global shapgjiscriminative shape features. Other works [29, 14, 11] de-
information is implicitly contained in the shape band, we compose a given contour of a model shape into a group of
do not need to know the order of the edges even when thezontour parts, and match the resulting contour parts to edge
local edges are not salient. Also, considering only the edgesegments in a given edge image. Zhu et al. [28] also use
cues in the band helps to alleviate the problem of accidentalcontour parts within a hierachical model for object detec-
alignment. tion. Recently, Wu et al. [26] proposed an Active Basis
Shape band can be considered as a special window, butifzode| that provides deformable template consisting of a

is different from the typical windows using bounding boxes small number of Gabor wavelet elements allowed to slightly
in[22, 9]. Given a template represented by contour/sketch,perturb their locations and orientations.

the window for shape band only considers the edges within

the band, which avoids the disturbances from the other parts3, Shape Band Template

on the background in a cluttered image. The major advan-

tages of the shape band are three-fold: (1) It is a simple rep- In this paper, we use a contour-based template to detect
resentation but able to capture certain variation. (2) Tiou ©objects in images and compute the similarity between the

it is based on contour/sketch, closed object boundary is notmage and the template. Given an image, we extract edges
required in detection, and thus, we avoid the complicated[18] first and assume that most the object boundaries are
edge linking to get a closed contour. (3) Detecting and contained in the edge map. The main challenge is that only

matching a shape using shape band can be done very efa small percentage of the edge map contains edges of the
ficiently, and it is not difficult to be extend to multiple tem- target object. Further, the edges of the target objects are

plates [20, 21, 22]. usually broken into many fragments and are surrounded by
distractor edges resulting from texture and other objects.
2 Related Work Our goal is to match a templat€ = {xi, Xa,...X, },

wherex; (i = 1,2,...,n) denote sample points of the tem-

Early work for object detection through template match- plate X, to an edge imag&' = {e1, es, ..., ¢|5| } €xpressed
ing can be dated to early 90s, e.g., the deformable templateas a set of edge fragments. The edge fragments are ob-
by VYuille et al. [27]. As stated before, learning is often tained by low level linking of thresholded edge pixels (we
involved to train a detector for detecting a class of object use a publicly available code [13]). The edge images are
[25, 6]. Recently, a large body of research work has beencomputed using [18].
proposed for shape-based object detection and matching. We assume that the templai€ is centered at the ori-
Shape-based approach has the advantage of being relativelgin of the coordinate system of a given imafjeBased on
robust against lighting and appearance change. A commorthe templateX, we can easily construct the Shape Band



Figure 3. The angular sectors faf = 6.

Figure 2. (a) is a gray image of a swan, (b) is the edge map of (a) gradient direction ok is in the interval[%w, %w) We

and (c) shows the sample poirfs obtained from (b). experimentally determinedy = 6 as shown in Fig. 3.
Given a particular location € I of the templateX in the
SB(X) of X using a set of disk& (x; ) centered at each. imagel, we define the Shape Band Distance based on the

similarity between the gradient direction of each template

In this paper, the radius of each disKx;) is constant and ) X o= - o
pointx and the gradient directions of edge points within the

it is equal tor. )
For a reference point € 1, X (c) denotes the template  adius ofr of x:
X centered at, i.e., X(¢) = X + ¢. The shape band of n
templateX (c) can be denoted as D(X(c),Es) = Z d(x; + ¢, Ey), (3)

i=1
SB(X(c)) ={y e I| I [ly = (xi+ o)l <7} (D)
where||-||2 denotes thé, norm. where

The detection and matching can be considered as a pro- 0 3z € BE,NB(x) g(2) = g(x)
cess of selecting a reference paifite I and a subsekb™ dx.E) =401 3:cE.nB B i
of E such that X, E) 1 Jze E,NB(x) g(z) = g(x)
0.5 else
D(X(c*),E*)= min D(X(c),E), (2) (4)

ceh Brek where+1 is moduloN. The equalityg(z) = g(x) + 1

whereD is a Shape Band Distance defined is Section 4. It expresses the fact that template poinand edge point
is worth to mention that detecting multiple objects is also have adjacent (quantized) gradient directions. For exampl
possible if we consider each candidate as one with the cosin Fig. 3, direction 6 is adjacent to 5 and 1. The meaning

smaller than a threshold. of equation 4 is: If there is an edge pointfit{x) with very
] similar tangent direction, we return 0; A relatively small
4. Shape Band Distance value 0.1 is returned when their tangent directions are not

very dissimilar, since shapes from the same class may have
some locally deformation and rotation.
For a given templat&’, w find its optimal location in the

The goal of this section is to identify the possible posi-
tions and scales of the the templaeon the imagd with
respect to edge fragmenis. Since the shape of the tar-

get object in the image may be significantly different from Imagec” €
the shape of our templat¥, and we do not want to miss % .
the true location of the target object, we perform a rough D(X(e"), Bs) = rglel?D(X(C)’ E) ®)

shape dissimilarity estimation, which we call Shape Band
Distance (SBD), for every possible center point location : i ,
¢ € I of the templateX. SBD measures the similarity of equwa_le.nt.to Eq. 2, since we can infer the subset of edges
sample points orX (c) to the edge points inside its shape that minimizes Eq. 2 from Eq. 5, as we show below.
bandSB(X(c)) . To reduce the computation, each edge Since the objects from the same class may be in different
fragment inE is sampled with fewer points than the origi- SCales, we use a templatin 5 scale§w = wy, ..., ws)

nal number of pixels linked to form the edge fragment. Let for computing SBD. o _

E, = {s1,52, ..., 5,5, } the set of all sample points obtained ~ BY repeating the computation in Eq. 5 for the different

by computing the distance in Eq. 3 for everg 1. Eq. 5is

example ofF,. optimal scalaws:
Let g be a function that assigns to every paird quan- . )
tized gradient directiong(z) = k for k = 1,2, ..., N iff the D(X(c",w"), Ey) = C@}TLD(X(@ w), Es),  (6)



where X (¢, w) denotes templat& centered at and with
scalew.

However, in a heavily clutter image, the optimal position
c* € I of the template, may not be the true position of the A
target object. For the examples shown in Fig. 4(a) and (d),?_*j '
the optimal positions are not the true positions. Espagiall N
in Fig. 4(d), the edge segments (in red) near to the optimal
position are very similar to the input model (in green). This
case can be considered as an accidental matching. Therd=igure 5. (a) shows the candidate center point positionse(i)

fore, we define a distance ma@n\/ over the imagd as of a mug template obtained as local minimalof\/, (b) shows
g the selected segments for the center position in blue, ani (c

DM(c) = D(X(¢,w*), E;) = min D(X (c,w), Ey) (7) th_e _fin_al_ matching result based on the selected segment3 by (b
w minimizing Eq. 9.

(a)

We then select a small set of possible target object position

inimagel as.the local minim.a oDM_. The Iogal minimare  f edge segments from.S(c;) that maximizes the shape
computed with respect to eight neighbors/inwe denote similarity to X (c;, w;). Let SC denotes the shape context

by €' = {c1,¢2,...,¢ic1 } the set of local minima oD M, distance between two sets [2]. We define the minimal shape
and withW = {wy,ws, ..., w|c|} the set of corresponding  jistance as

optimal scales. These are our candidate detection position

and as demonstrated by our experimental results, the true SD(c¢;) = min SO(U S, X (¢i,w;)) 9
position of a target object usually belongs to theSgtee SCAS (i)

also Fig. 4(b) and (e). In our experiments, the number of .4 the subses C AS(c;) that minimizesSD(c;) as

the candidate detection positions in each image is usuaIIyMS(Ci) for matching segment template position;. The

between 10 and 30. term SC(UJ S, X (s, w;) in Eq. 9 evaluates the shape con-
. . text distance between the shape formed by a supssft

5. Segments Selection and Shape Matching edge segments and templaféc;, w;). Since each segment

4 can beselectedbr notselectedthere are2l45(e:)l possible

configurations, which prohibits brute force computation of

MS(CZ').

Therefore, we propose a simple heuristics, which as our
experimental results demonstrate is successful, sinceethe
of adjunct segmentd.S(c¢;) provides a good initialization
that is close to the optimal st S(c;).

To minimize Eq. 9, we utilize a simple iteration process
by deleting a segment from.S(c;) at each iteration that
makes the shape context distance decrease most until the
distance does not decrease any more. An example is shown
in Fig. 6, since the initial segment selectionAty(¢;) pro-
dvides a very good initialization, the final result is correct

If we search for a single instance of the template shape,
then the final detection positigfp is the one with the small-
est shape distance

While the goal of the Shape Band Distance in Section
was to filter out the unlikely center point positions of tem-
plate X', and reduce it to a small set of likely positio6's
the goal of this section is to detect true positions and scale
of the target object. We achieve this goal with a global shape
similarity method.

For eache; € C, we first consider all edge segments
around X (¢;, w;). Then, we refine the set of these edge
segments so that the shape similarity betw&én;, w; ) and
the reduced set of segments is maximized.

For each edge segment in E, we compute its mini-
mum distance to the shape templaéc;, w;), and select
these segments with minimum distance below a threshol
T = ar (o > 1) as the segments adjunct to the detection
position. The minimum distance of to X is defined as

e X = Bl o el o = argmin, ecSD() (10
8

where K is the point set consisting of the two end points Clearly, we can also set a threshold on shape distarige
and the center point of segment to obtain multiple object instances or to conclude that the

If minDist(ej, X (c;,w;)) < T, thene; is adjunct to target object is not present in the image.
X (c¢;,w;). For each template position € C, we denote The whole method can be considered as a coarse-to-fine
the set of adjunct segments.d§(c;). One example can be procedure for object detection. The Shape Band distance is
seen in Fig.5 used as the coarse process to select the candidate points of

Then we evaluate the configuration of the adjunct seg- detection while the Shape Context distance is used as the
ments of each candidate detection paintising the global  fine process to decide the optimal point of detection. Can-
shape context descriptor. Our goal is to select the subsetlidate point selection by Shape Band distance is a process



(d) (e) (f)

Figure 4. In each image, the green points are the points ohtbeomodel with a reference center point (in blue), and ggeents (in
red) are the edge segments adjacent to the model. (a) andofd)detection results at local minima BfM that are not the true positions
of the objects. (b) and (e) show detection results with allotinima of DM that are the true positions of the objects. (c) and (f) are the
final matching results.

Figure 7. The contour models used as the queries in our experi
(a) (b) (¢) ments on ETHZ dataset [9].

Figure 6. (a) shows a set of segments (in red) selected widima ¢ .
didate center point marked in blue. The giraffe contour temep 6. Experlments

is shown in Fig. 7. (b) shows the final matching results afeded .
ing several redundant segments, and (c) shows the remoged se We tested our system on the challenging ETHZ dataset

ments in different colors The colors of the points in the titieft [9]. It has 5 different object categories with 255 images in

subimage illustrate the order of removing these segmentsuby ~ fotal. All categories have significant intra-class vadas,
algorithm. scale changes, and illumination changes. Moreover, many

objects are surrounded by extensive background clutter and

have interior contours. Similar to the experimental setup i

[29], we use only a single hand-drawn model as shown in
of pruning to prune points that are clearly not points of de- Fig. 7 for each class.
tection. We used Shape Band as a initialization for Shape The results of our algorithm are summarized in Fig.11.
Contexts matching for two reasons: 1) Shape Band re-We also compare it to the results in [10] and in [29]. Preci-
moves many redundant segments for improving the match-sion vs Recall (P/R) curves are used for quantitative evalu-
ing speed. 2) Without a good selection of segments, SCation. To compare with the results in [10] that are evaluated
matching cannot give good results. by detection rate (DR) vs. false positive per image (FPPI),



we use the translation of their results into P/R values done

by [29]. As argued in [29], P/R is a more objective measure

than DR/FPPI, because DR/FPPI depends on the ratio of m

the number of positive and negative test images and hence

is biased. Fig. 11 shows P/R curves for the Contour Selec-

tion method in [29] in black, the method in [10] in green, Qr\

and our method in blue. Our approach is significantly better m

than the method in [10] on all five categories, and it signif-

icantly outperforms the Contour Selection method [29] on

four categories. Figure 9. The second row shows the contour parts used as-the in
We also compare the precision to [29] and [10] at same puts for part-ba_sed detection, which are taken from theiraig

recall rates in Table 1. The precision / recall pairs of [29] contours in the first row.

and [10] are quoted from [29]. Notice that our result for

class Mugs are much better than the others, the main reaso :# -

is that for the class of Mug, there are many clutters inSide um

their boundaries. Using Shape Band allows us to ignore ===

the clutters inside the contour, e.g., see Fig. 5, which is no

possible when using classical rectangular windows. La.
From the sample results shown in Fig. 8, we can observe ;&

that even though the contour templates are not very simi- =

lar to the objects, the final results are very robust and the

our method performs well even if target objects are slightly Figure 10. Example detection results for contour parts pstin

rotated. The last row in Fig. 8 shows some of our worst ex- templates. The points (in red) denote part templates atdbke p

amples, but we observe that the output edges are similar tdions with the minimal Shape Band Distance.

the templates.

Some details about the experiments are mentioned here:

: . which models an object within a bandwidth of its con-
:Eg rn ;drirlljk;e(:foef ;zﬁ s:rr"ndpslesep:) ;r;t;fgr aer?c(i: ?Stirgp:f\;?]\;s i?O, tour/sketch and is natural to think of. The shape band can

N is smaller, more local minima will be found but can not also be wewgd as another type 9f window for detectl_on. It
be distinguished, while iV is larger, less local minima will Is robust against large degree of intra-class appearanee va

be found and the true position maybe be missed. In our ex_ation and certain extent of deformations. Our algorithm is
periments, we foundv — 6 is appropriate Althouéh scan- related to the shape context algorithm [2] and the active ba-

ning with Shape Band is very fast (no more than 3 seconds),S's. Wct)rcI; £26]t" we Zhowtngnlflcantly |mpr(t)r\]/ed rfe?.ults flor
the average time cost for the whole detection framework is object detection and maitching over many the existing algo-

between 1 and 2 minutes due to the iterative matching with 2:2”;3' ()Itutraz;ef)’ri?rl]?rzciaslhe/ég f(:(\;vi;eclg;isn tlnart::jehiiteac\s:/ci)ge
Shape Contexts. ge. g9 Yy p

In addition we show that Shape Band has a potential to range of vis_ion applications_. It has t_he particular advan-
be applied in part-based detection/matching. Fig. 9 ShOWStage of working on cluttered images with extracted edges in

the contour parts used for testing on Weizman Horse dataseiragments. In addition, we also show promising resuits us-

[3]. We use Canny edges [4] as the edge maps here. Thdng shape band for detecting object parts. One of our future

detection results are shown in Fig. 10, and we notice that thedlrec?ons IS tol?_und a graphl((j:a;: model,b_stlll un(:er a SuTg.l
part templates and the corresponding parts of the objeets artemp ate, ono ject pa_rts and detect objects of articuiatio
not equal. We did not use Shape Contexts for the refinemenf’]lnd non-rigid deformation.

here, since we want to show that Shape Band Distance is a

promising direction in multi-template, contour part based Acknowledgements
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