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Abstract

Consider a projector-camera setup where a sinusoidal
pattern is projected onto the scene, and an image of the ob-
jects imprinted with the pattern is captured by the camera.
In this configuration, the local frequency of the sinusoidal
pattern as seen by the camera is a function of both the fre-
quency of the projected sinusoid and the local geometry of
objects in the scene. We observe that, by strategically plac-
ing the projector and the camera in canonical configuration
and projecting sinusoidal patterns aligned with the epipolar
lines, the frequency of the sinusoids seen in the image be-
comes invariant to the local object geometry. This property
allows us to design systems composed of a camera and mul-
tiple projectors, which can be used to capture a single im-
age of a scene illuminated by all projectors at the same time,
and then demultiplex the frequencies generated by each in-
dividual projector separately. We show how imaging sys-
tems like those can be used to segment, from a single image,
the shadows cast by each individual projector – an applica-
tion that we call coded shadow photography. The method
is useful to extend the applicability of techniques that rely
on the analysis of shadows cast by multiple light sources
placed at different positions, as the individual shadows cap-
tured at distinct instants of time now can be obtained from
a single shot, enabling the processing of dynamic scenes.

1. Introduction
In computer vision, many active illumination techniques

employ projector-camera systems to facilitate the extraction
of useful information from scenes. These approaches usu-
ally rely on the careful choice of an illumination pattern to
be projected onto the objects. The captured image is a func-
tion of the projected pattern and its interaction with the ob-
jects in the scene; as the projected pattern is known, it is
possible to exploit this information to recover properties of
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(a) (b)
Figure 1. The frequency of observed patterns is sensitive to the ge-
ometry of the scene. (a) Vertical stripes projected from a projector
placed at the left hand side of the camera. Notice the different
frequencies on the two slanted planes (left and right), and curved
lines on the penguin; (b) By projecting horizontal stripes, the fre-
quency of the observed patterns is geometry-invariant.

the imaged scene. Figure 1(a) illustrates this point. It shows
objects imaged under the illumination of a projector placed
at the left hand side of the camera. The projector sends ver-
tical white stripes to the scene, but the observed patterns in
the image vary according to the local orientation of the ob-
jects. Their local frequencies are useful cues for recovering
surface orientation.

In this work, we follow an opposite direction. Rather
than exploiting variations in the projected patterns due to
depth and orientation changes, we show how a projector-
camera setup can be built in a way that the imaged patterns
are the same across the scene, no matter what the geom-
etry of the objects is (see 1(b)). Our method is based on
a strategic alignment of the projector-camera configuration,
and on a particular choice of the projected patterns. The
technique is derived from a key observation from the epipo-
lar geometry of two cameras, and the fact that a projector
can be understood as a dual of a camera, sharing the same
geometric characteristics [12].

We then demonstrate the usefulness of this property for
demultiplexing frequencies of patterns simultaneously pro-
jected by multiple projectors. In this process, the goal is
to, given a single image of a scene illuminated by multiple
projectors, be able to determine the patterns and frequencies
observed at a given region of the image. Consequently, the
demultiplexation of patterns allows us to infer which projec-
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tors are casting shadows along a given region. As the ob-
served frequency is invariant to the geometry of the objects
in the scene, the complexity of the demultiplexing process
is greatly decreased, since the frequencies to be searched
for are fixed and known.

As an application for the frequency demultiplexing
scheme, we propose a technique called coded shadow pho-
tography. It determines a segmentation of the imaged scene,
where the image is partitioned according to the shadows
cast by the multiple projectors, allowing us to query, for a
given region, which projectors are casting shadows over it.
We describe a proof-of-concept implementation of a coded
shadow photography setup, and present experiments that
show how the choice of system parameters affects the re-
sults.

Finally, we point out that this method can be employed
to extend the applicability of techniques that rely on the
analysis of shadows cast by multiple light sources placed
at different positions. Those methods usually take multiple
pictures of the scene at different instants of time, with only
one light source being triggered during the capture of each
image. This often brings limitations for scenes with mov-
ing objects. Coded shadow photography can be employed
to obtain the shadows cast from multiple projectors with a
single shot, enabling the processing of dynamic scenes. As
an example, we present an experiment where we apply the
multiflash algorithm for finding occlusion boundaries [13]
having as input the shadows obtained using our method.

1.1. Contributions

The main contributions of this work are:

• We propose a projector-camera setup for which the
imaged frequency of a strategically chosen projection
pattern is invariant to the orientation and depth of ob-
jects in the scene;

• A frequency demultiplexing scheme based on the
aforementioned setup;

• An application of the frequency demultiplexing
scheme for segmenting shadow regions from a single
image captured under the illumination of multiple pro-
jectors. We call this coded shadow photography.

1.2. Organization

This paper is organized as follows: we begin by review-
ing related work in Section 2. In Section 3, we show how a
projector-camera setup for which the imaged frequency of
projected patterns is invariant to the scene geometry can be
achieved. In Section 4, a frequency demultiplexing scheme
based on a multiprojector setup is presented. In Section
5, we introduce the coded shadow photography technique,

which employs our setup to demultiplex, from a single im-
age, the shadows cast by multiple projectors at the same
time. We also present experiments that demonstrate how
various system parameters impact the results. In Section 6,
we describe an application that could benefit from a coded
shadow photography scheme: occlusion boundary detec-
tion using multiflash imaging. Finally, in Section 7 we dis-
cuss possibilities and limitations of the method, and in 8 we
present our conclusions and directions for further research.

2. Related Work
Many computational photography methods have ex-

ploited the variation of capture parameters (such as expo-
sure [3], focus [20], aperture [5], and viewpoint [15]) to
extract information from scenes and/or produce a new en-
hanced photograph. More recently, great attention has been
devoted to techniques that process images by coding these
parameters. Examples include coded exposure for motion
deblurring [11], coded aperture for passive depth estima-
tion [8], and coded viewpoint for active 3D reconstruction
[17].

More related to our approach, coded structured light
techniques have been studied for a long time in computer vi-
sion. Temporal coding methods [10, 6] exploit time-varying
patterns of projected light to recover depth with high qual-
ity, but are not suited for dynamic scenes. Spatial coding
methods [18] handle object motion by utilizing a coded light
pattern that varies spatially. However, innacurate results are
produced at depth discontinuities, as local surface smooth-
ness is assumed. Spatial-temporal coding [2, 19] combines
the advantages of both approaches, assuming object motion
coherence. Viewpoint coding [17] relies on multiple cam-
eras for coding structured light, allowing excellent depth re-
construction results without making any spatial or temporal
continuity assumptions about the scene. Our approach is
related to these methods in the sense that we also project
coded structured light onto the scene. However, we deal
with a different problem – how to keep the frequency of the
pattern invariant across object orientation and depth varia-
tions, facilitating frequency demultiplexing when multiple
projectors are used at the same time.

Coded illumination through multiflash imaging [13] was
proposed for the detection of occlusion boundaries in com-
plex scenes. The approach is based on strategically posi-
tioning flashes to cast shadows along depth discontinuities
in the scene. By detecting the shadows, occlusion bound-
aries can be reliably marked. This approach is not capable
of handling dynamic scenes well, as the illuminants are trig-
gered at different instants of time. In contrast, our frequency
demultiplexing technique allows us to code the shadows in
the spatial domain, thus being suitable for occlusion bound-
ary detection in motion.

Most frequency analysis approaches in computer vision
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are related to shape from texture methods [14]. These tech-
niques take advantage of the texture/frequency variation in
the scene due to perspective distortions in order to extract
the shape of surfaces. Active techniques [7] that project
patterns with fixed frequencies and analyze their variation
across the image have also been proposed for depth recov-
ery. Our approach takes the opposite path: rather than ex-
ploiting the projected frequency variation due to depth and
orientation changes, we show how the frequency can be
made invariant across the scene – a property that can be
very useful in other applications, as discussed in this paper.

3. Geometry-Invariant Frequency Projection
Consider a setup composed by a perspective camera and

a perspective projector, which projects a sinusoidal pattern
f(x, y) = h

2 [1 + cos(ω1x + ω2y)] onto the scene, where
ω1 and ω2 denote the angular frequencies of the sinusoid,
in radians per pixel, and h is the amplitude of the mask (in
our experiments, h was set to 255, as we used 8-bit images
to represent the masks). As motivated in the introduction,
surfaces in the scene can have many possible orientations
(for example, tilted planes and curved objects) and can be
at different depths. In general, due to these variations the
sinusoidal patterns observed in the image captured by the
camera may differ from the projected pattern in frequency
and phase, as in Figure 1(a). As we will discuss in Section
4, this variability can be a nuisance in some applications.

We exploit a particular epipolar geometry case to over-
come this issue. Consider two perspective cameras pointing
at the same direction, having parallel optical axes orthog-
onal to the baseline, which is aligned with the horizontal
coordinate axis. This configuration is known in the stereo
vision literature as the canonical configuration [4]. For this
arrangement, the epipolar lines are parallel, and a row in
one of the image planes corresponds to the same row in
the other image plane. Figure 2(a) illustrates this. If we
replace one of the cameras by a perspective projector, the
same result holds, since a projector has the same geometry
[12]. Thus, if we project horizontal patterns from a pro-
jector aligned with the camera along the horizontal coor-
dinate axis, each projected horizontal line will be imaged
at the same horizontal line in the camera. Therefore, the
frequency of the observed sinusoidal patterns will be insen-
sitive to variations in the shape of the objects. In practice,
if the camera and the projector have different resolutions
or different focal lengths, the size in pixels of the imaged
lines can differ from the size of the projected lines, but the
frequency of the observed sinusoidal pattern is still inde-
pendent of the geometry of the objects in the scene.

The above reasoning suggests that a projector-camera
setup for which the frequency of the observed patterns is
geometry-invariant can be built by strategically choosing
two elements:

• Projector-camera alignment. The projector should
be placed in the same plane as the camera, such that
they point at the same direction and their optical axes
are parallel;

• Projected patterns. Patterns parallel to the direc-
tion of alignment between the camera and the projec-
tor should be projected. For example, for a projector
placed to the left or to the right of the camera, it is best
to project sinusoids with ω1 = 0 (horizontal stripes);
for a projector placed above or below the camera, it is
preferable to use vertical patterns (ω2 = 0).

By designing a setup with those properties, the frequency
of the observed patterns will be invariant to the geometry of
objects in the scene, as in Figure 1(b).

4. Frequency Demultiplexing

Let us now consider the problem of frequency demul-
tiplexing in a multi-projector, single-camera setup. Sup-
pose that all projectors send a distinct sinusoidal pattern
onto the scene at the same time, and the goal is to analyze
the frequencies of observed patterns in the image taken by
the camera in order to determine the regions being illumi-
nated by each individual projector. In general, variations in
the observed frequency due to the geometry of objects in
the scene make it very difficult to detect which frequency
came from which projector. On the other hand, if we use
the geometry-invariant setup described in the previous sec-
tion, then the complexity of the problem is greatly reduced,
as the observed frequencies are fixed and known. A ba-
sic setup for this purpose would consist of a camera and
multiple projectors placed in the same plane, such that each
projector-camera pair satisfies the conditions described in
the previous section. Also, the frequencies of the sinusoids
should be distinct among the projectors that share the same
direction of camera-projector alignment. Figure 2(b) illus-
trates an example of a setup that meets these requirements,
by projecting sinusoids with frequencies of π and π/2 radi-
ans per pixel.

Given the single image captured using multiple projec-
tors, and the frequencies of the observed patterns, the objec-
tive is to, for each projector pi, determine the image regions
that contain sinusoids with the frequency imprinted by pi.
Gabor filters [1] can be used to detect regions where a tex-
ture with a specific frequency is present. If p1, p2, . . . , pn
are the n projectors, let ωobsi

be the observed frequency
of the sinusoid from projector i. Create n Gabor filters
Gi tuned to detect frequencies ωobsi , i ∈ {1, . . . , n}. Let
S be the grayscale image taken using a single shot. For
i ∈ {1, . . . , n}, compute Hi, the result of applying the filter
Gi to the image S. The filtered images Hi should have low
values in regions where the frequency ωobsi

is not present.
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Figure 2. Geometry of the capture setup. (a) correspondence between epipolar lines in the canonical stereo configuration, considering
perspective cameras; (b) sample configuration with a camera and four projectors; (c) experimental table-top prototype; (d) the scene being
imaged.

We observe that the problem of segmenting the regions
depending on the present frequencies can be understood as
a general texture segmentation problem, where the textures
being searched for are known a priori (patterns that can be
decomposed into a sum of sinusoids, where one of the sinu-
soids has frequency ωobsi ). We have described a detection
algorithm using Gabor filters, but more sophisticated seg-
mentation methods suitable for this task could be applied.

5. Coded Shadow Photography

The solution to the frequency demultiplexing problem
from the previous section can be interpreted as a shadow
segmentation procedure, where the goal is to determine the
regions that are in shadow for each individual projector,
starting from a single image captured while all projectors
simultaneously cast shadows. The frequency of each sinu-
soid is a code that allows us to identify regions illuminated
by each projector, and the geometry invariance property fa-
cilitates the shadow demultiplexing process. We call this
application coded shadow photography.

In order to demonstrate the ideas, we present experi-
ments carried out using a proof-of-concept setup. We have
built a table-top prototype of the capture setup using a four-
megapixel Canon G3 digital camera and two Mitsubishi
PK20 pocket projectors (native resolution of 800x600 pix-
els). The projectors have been placed to the left and to the
right of the camera, with a camera-projector baseline dis-
tance of roughly 17cm. Figure 2(c) shows a picture of our
setup, and Figure 2(d) shows the scene being imaged. The
objects are at a distance of about 1.2m from the camera,
some of their surfaces are curved, oblique occlusion bound-
aries are present, and a few objects occlude other objects.
In order to demonstrate the geometry-invariance property
while avoiding frequency variations due to scene albedo, a
scene for which the albedo is locally constant in most places
was chosen (see Section 7 for a discussion on the effects of
texture and possible alternatives to address them).

5.1. Proof-of-concept

To illustrate the entire shadow demultiplexing process,
consider the image in Figure 3(a), captured using our setup.
It shows a color image of a green eraser in front of a
yellow background. Figure 3(b) shows the same image
in grayscale. The left projector projects a sinusoid with
frequency (ω1 = 0, ω2 = π) rad/pixel, while the fre-
quency for the right projector is (ω1 = 0, ω2 = 2π/3)
rad/pixel. Notice that only one of the patterns is present in
the shadowed regions, while both patterns appear in other
regions. As mentioned in Section 3, the frequencies of the
observed sinusoids may differ from the frequencies of the
projected sinusoids, due to differences in resolution and fo-
cal length of the projectors and the camera. For a given pro-
jector, if a frequency ωprojected is projected, a frequency
ωobserved = k · ωprojected is observed. The observed fre-
quency can be determined by taking a picture of a blank
sheet of paper under the illumination of that projector only,
locating a cycle of the sinusoidal pattern and then counting
the number of pixels spanned by the cycle. The new fre-
quency ωobserved will be equal to 2π

#pixels . An alternative to
counting the number of pixels is to have a predesigned filter
bank tuned to detect a few sample frequencies, run the im-
age through the filters in the filter bank, and choose the fre-
quency that corresponds to the filter of maximum response.
For the imaging setup used to capture the image in Figure
3(a), the observed frequencies that correspond to the pro-
jected frequencies of π and 2π/3 are approximately 4π/7
and 8π/21, that is, the multiplicative factor k is roughly
4/7.

Figures 3(c-d) show the output of the application of two
Gabor filters to the image in 3(b), tuned to detect the fre-
quencies 4π/7 and 8π/21. The intensities are normalized
to be in the [0, 1] interval, where darker regions indicate
lower response. In order to segment the shadow regions, we
applied a simple thresholding operator to the Gabor filter
outputs, by selecting the pixels with response values lower
than 0.15. The segmented regions are shown in Figures 3(e-
f). However, the regions are noisy, even for other thresh-
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 3. Shadow decoding. (a) color image of an eraser, cap-
tured using two projectors, one to the left and one to the right;
(b) grayscale version of (a); (c) normalized output of the Gabor
filter tuned to detect the frequency of the left projector (darker val-
ues indicate lower response); (d) normalized output of the Gabor
filter tuned to detect the frequency of the right projector; (e) re-
gions of low response in (c); (f) regions of low response in (d); (g)
segmented shadows for the left projector, by considering only the
pixels in (e) that have a large difference between their intensities
in (c) and (d); (h) same as (g), for the right projector.

old values. Another interesting observation is that, in the
shadow regions for one of the projectors, the filter response
for the other projector is usually much higher. By filtering
the results from Figures 3(e-f) by selecting only the pixels
with a large difference between the responses of both Ga-
bor filters, the detection was much more robust, as shown in
Figures 3(g-h). In the result, if a given pixel had responses
R1 and R2 in Figures 3(c-d), it was considered as a pixel
with large difference between the responses of the Gabor
filters if |R1 −R2| > 0.45.

5.2. Effects of Capture Parameters

In this section, we evaluate how changes in some of the
capture parameters impact the final results. Variations in
the camera-projector baseline distance lead to changes in
the size of the shadows, and can cause shadow detachment
for thin objects. Figure 4(a) shows an image captured using
a 17cm baseline, using frequencies of π rad/pixel on the left
projector, and 2π/3 rad/pixel on the right projector. Fig-
ure 4(b) displays the segmented shadows. We repeated the
experiment by placing the projectors on a shorter baseline
(12cm), and on a longer baseline (22cm). Figures 4(c-d)
show the results for the 12cm baseline, while Figures 4(e-f)
show the results for the 22cm baseline.

Overall, the segmentation is very good, except for the
jaggedness near oblique and curved occlusion boundaries.
This is due to the use of Gabor filters to detect the shadow
regions. These filters require a spatial support in the vertical
direction in order to detect a given frequency, leading to res-
olution loss near discontinuities in frequency (which appear
on oblique and curved edges for horizontal patterns). On
the other hand, the segmentation contours are very accurate

near vertical occlusion boundaries, as they are not affected
by these complications. For the shorter baseline, there is
a noticeable increase in failures in the segmentation of the
shadows of the triangular object. This is due to the shorter
baseline distance, that results in relatively narrow shadows
cast by these occluding edges. This reduces the size of the
region that contains only the frequency of a single projec-
tor, making the detection more difficult for the Gabor filter.
Another interesting observation is that with the increase in
baseline, the shadows cast over the orange ear plugs begin
to detach, but are still captured by our method.

Another important parameter is the frequency of the pro-
jected sinusoids. We carried out a set of experiments by us-
ing different frequencies on the right projector, while keep-
ing the left projector fixed with a frequency of π rad/pixel.
The baseline was 17cm, and we used the frequencies of
π/2, π/3 and π/4 rad/pixel on the right projector. Figure 5
displays the results. As the frequency decreases, the resolu-
tion of the shadow contours near curved and oblique occlu-
sion boundaries is considerably reduced, due to the spatial
support requirement of the Gabor filters. This suggests that
it is best to use the highest possible frequencies.

As the experiments demonstrate, the main source of in-
nacuracies in the detected shadows is due to the resolution
loss imposed by the Gabor filter near frequency discontinu-
ities. We performed an additional experiment by reducing
the resolution of the output of the Gabor filter (by Gaus-
sian filtering and then subsampling) before executing the
shadow detection step. This helped to reduce the number of
inaccuracies, with the cost of decreasing the resolution of
the final output. Figures 6(a-b) show the results of subsam-
pling by factors of 2 and 4, respectively. The images are
rescaled to the original size in order to be displayed. Sim-
ilarly, we performed another experiment by smoothing the
output of the Gabor filters using a circular averaging filter
(pillbox) of radius 5 before detecting the shadows. The re-
sults are shown in Figure 6(c). Notice that the contours are
very smooth and free of gaps, at the expense of creating a
curvy appearance.

6. Application: Single-Shot Multiflash Photog-
raphy

The multiflash technique for occlusion boundary detec-
tion [13] uses multiple flashes placed close to the camera,
at different locations. A collection of images is acquired,
where, for each individual image capture, one of the dif-
ferent flashes is triggered. The algorithm then performs
shadow detection in each of the captured images. From
the detected shadows and prior knowledge about the rela-
tive camera-light placement, the location of the occlusion
boundaries is computed. We refer the reader to [13] for
more details on multiflash imaging.
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(a) (c) (e)

(b) (d) (f)
Figure 4. Multibaseline experiment. (a) image captured with a baseline of 17cm; (b) segmented shadows for the image in (a); (c) image
captured with a baseline of 12cm; (d) segmented shadows for the image in (c); (e) image captured with a baseline of 22cm; (f) segmented
shadows for the image in (e).

(a) (c) (e)

(b) (d) (f)
Figure 5. Experiment with varying frequencies. (a,c,e) images captured with a frequency of π/2, π/3 and π/4 on the right projector,
respectively; (b,d,f) zoom to the spherical object with superimposed shadows for (a), (c), and (e). Notice the decrease in accuracy near the
sphere’s contours as the frequency is reduced.

(a) (b) (c)
Figure 6. Effects of reducing resolution. (a) shadows detected from a lower resolution version (subsampled by a factor of 2) of the Gabor
filter outputs; (b) shadows detected from a lower resolution version (subsampled by a factor of 4) of the Gabor filter outputs; (c) result
obtained by smoothing the Gabor filter outputs using a circular averaging filter (pillbox) of radius 5 before detecting the shadows.

The method usually produces high quality results for
static scenes, but the detection of depth edges in scenes with

moving objects is a challenging problem that remains unre-
solved. Since there is movement during the time interval
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between two consecutive captures, the occlusion boundary
locations (along with the corresponding shadows) change
from image to image. Therefore, it is difficult to reli-
ably find shadow regions, as the images contain misaligned
features. Even if a high-speed camera with synchronized
flashes is used, it is still not possible to assume that the oc-
clusion boundary locations will coincide in the sequentially
captured images.

As shown in the previous section, the coded shadow pho-
tography setup can be applied to find shadows from multiple
illuminants (projectors) from a single shot, at the expense
of resolution. This would enable the use of multiflash pho-
tography for moving objects or a moving projectors-camera
setup. As it is known that at least three light sources are
necessary to cast shadows along all possible orientations
of occlusion boundaries in a general scene [16], we built
a setup with four projectors, as in Figure 2(b). We captured
an image of a scene and applied the shadow demultiplexing
algorithm to segment the shadow regions. In the presence
of four projectors, we first process the image to filter out
either horizontal or vertical frequencies, and then use the
same algorithm as before in both resulting images. The oc-
clusion boundary algorithm from [13] was then applied to
the detected shadows, in order to find the location of depth
edges. Figure 7 shows the results.

7. Discussion
Overall, the experiments show that the frequency demul-

tiplexing scheme can be successfully applied. The geome-
try invariance property greatly decreases the complexity of
the problem, and this reflects in the simplicity of the pro-
posed method. In practice, obtaining a perfect alignment of
the camera-projector pairs can be difficult. However, our
experiments were performed using approximately aligned
projectors arranged manually, and we were still able to ob-
tain good results.

Single-shot coded shadow photography is a promising
technique for use in dynamic scenarios. Although the
scenes used in the experiments are static, this is merely due
to the limited luminance of the pocket projectors we used,
requiring an exposure time of 1/6 second during the im-
age capture. Using brighter projectors would enable the use
of shorter exposure times. Vision and graphics techniques
such as multiflash imaging and relighting could be applied
to scenes with moving objects, due to the single-shot char-
acteristic of the method.

In our experiments, we observed that the spatial sup-
port requirement of Gabor filters can lead to resolution loss,
causing jaggedness at the contours of the segmented re-
gions. Also, small shadows can be missed for the same
reason. However, more sophisticated texture segmentation
approaches, such as the one proposed in [9], might miti-
gate this problem. In applications where large resolutions

are not essential, subsampling or smoothing the output of
the Gabor filters before segmenting shadows can be a vi-
able alternative, as suggested by our experiments. As the
sensor and display technologies evolve, higher resolutions
are achieved in cameras and projectors. Our method would
directly benefit from those improvements, producing higher
quality results.

The experiments demonstrate the usefulness of the ge-
ometry invariance property, and the technique works well
in scenes with locally constant albedo. Although the pres-
ence of textured objects can introduce variations in the fre-
quency of the observed patterns, this limitation still can
be addressed in some situations. In the presence of high-
frequency texture, the frequency of the projected patterns
could be decreased at the expense of resolution. Also, while
objects with high-frequency texture can cause problems in
the visible domain, they may have constant albedo in the
infrared domain. This suggests that the use of infrared pro-
jectors with an infrared camera might help to address this
issue.

As other active illumination methods in computer vision,
coded shadow photography is not suitable for use in outdoor
environments, when the sun is much brighter than the pro-
jected light. Specular reflections can also cause problems,
due to the saturation of the captured patterns. The patterns
may not be visible due to low albedo of objects in the scene,
but the use of brighter projectors would attenuate this issue.

8. Conclusions and Further Research
In this paper, we have proposed a projector-camera setup

technique for which the imaged frequency of a strategically
chosen projection pattern is invariant to the geometry of
the objects in the scene. We have shown the usefulness of
this configuration for demultiplexing frequencies projected
by multiple projectors at once, and proposed an application
called coded shadow photography, which is able to recover
shadows cast by individual projectors from a single image
captured under the illumination of multiple projectors. Fi-
nally, we have applied the technique to obtain single-shot
occlusion boundary detection using multiflash imaging. As
our technique detects shadows from a single image, it may
be applied to dynamic scenes.

This work also paves the way for further research top-
ics. We presented an algorithm for single frame processing,
but, when video data is available, one could use space-time
consistency [19, 2] to combine information from multiple
frames, in order to improve the results. Also, the feasibility
of projecting other types of patterns might be investigated.

The capture setup is strategically built in a way that the
geometry of the surfaces being imaged does not distort the
frequency of the projected patterns, in order to facilitate the
detection. Following the opposite path, if we choose pat-
terns that exhibit changes on slanted and curved surfaces,
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(a) (b) (c)
Figure 7. Using coded shadow photography for single-shot depth edge detection. (a) original image, captured under the illumination of
four projectors; (b) shadow detection results; (c) depth edges extracted using the multiflash algorithm.

then the amount of distortion could be exploited to recover
the orientation of surfaces in the scene. Indeed, shape from
texture methods analyze variations in texture present in ob-
jects in order to recover their geometry [14]; the use of pro-
jectors would enable the generation of textures over texture-
less objects, allowing for shape from texture techniques to
be applied with the objective of recovering 3D geometry.

Finally, the codification and decodification scheme for
shadows proposed in this paper is an inspiration to the in-
vestigation of a technique for general multiplexing and de-
multiplexing of illuminants. In this paper, coded shadow
photography generates a binary (lit/non-lit) output for each
projector. However, a technique to recover the intensity of
the observed patterns (with gray-level / color output) would
allow us to decompose a single captured image taken using
N coded illuminants into N individual images with lower
resolution, as if they had been captured under the illumina-
tion of only one of the light sources. We envision the ap-
plication of this technique in future settings, when improve-
ments in the resolution of cameras and projectors could al-
low for the use of extremely high frequencies.
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