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Abstract

In this paper, we describe a new dense spatio-temporal

motion segmentation algorithm with application to track-

ing of people in crowded environments. The algorithm is

based on state-of-the-art motion and image segmentation

algorithms. We specifically make use of a mean shift image

segmentation algorithm and two graph based motion seg-

mentation algorithms. The resulting motion segmentation

is on the one hand accurate and on the other hand com-

putationally efficient. In addition our method is capable of

handling mutual occlusions. This shows that motion seg-

mentation can efficiently be used to simultaneously detect,

track and segment moving objects. We apply this to track-

ing people in surveillance videos, but the algorithm is not

limited to this class of scenes.

1. Introduction

Motion segmentation is a method for segmenting a video

sequence into segments of coherent motion. In addition to

a mere segmentation into some segments of similar motion,

our algorithm is capable of finding long term motion seg-

ments. Furthermore the proposed algorithm is able to as-

sociate motion segments through visual occlusion by other

objects. Therefore, the found motion segments reveal indi-

vidual entities that move through a scene.

The final result can therefore be called a tracking algo-

rithm because it is able to find and track individual people

in surveillance videos. It is important to note, however, that

this method originates from the idea of motion segmenta-

tion and not from a tracking approach. We have shown that

motion features alone give very precise tracking and seg-

mentation at the same time, without the use of any appear-

ance information.

We first present motivation and overview of the algo-

rithm and then explain every component in detail. Results

and a Conclusion are given at the end of the paper.

Figure 1. Schematic of the dense motion segmentation method.

2. Overview and motivation

As described above, the central premise of this algo-

rithm is to analyze the motion vector field generated from

a spatio-temporal intensity pattern (a video). The goal is

to find groups of points in this three-dimensional space that

belong together.

Clustering and segmentation algorithms are ideally

suited to find these groups of points. The disadvantage of

state-of-the-art algorithms, like mean-shift or normalized

cuts, is their high computational complexity and their in-

ability to explicitly model occlusions.

Our algorithm is based on the N-cut motion segmenta-

tion algorithm [5]. Here a graph with every node represent-

ing a pixel is built and then segmented. Because this results

in a huge graph, the original algorithm only works on a very

subsampled version of the original video.

We overcome this problem by adding a preprocessing

step: We use an image segmentation technique, namely

mean shift segmentation [2], and apply it to do a pre-

segmentation of the motion vector field at each frame. This

greatly reduces the number of motion observations from the

number of pixels in a frame to the number of motion seg-

ments in each frame.

The N-cut algorithm can find independent motions, but

it is not capable of matching motion segments through oc-

clusions. Therefore a post-processing step is added to join

the clusters found by the N-cut algorithm and to overcome

the problem of mutual occlusions.
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Figure 2. HSV based visualization of the optical flow (a) and the

same motion field after mean shift segmentation (b).

Figure 1 shows a schematic overview of the proposed

dense spatio-temporal motion segmentation algorithm. In

the first step, an optical flow algorithms is applied at each

pair of frames to generate the motion field. At each frame

separately this motion vector field is reduced in size by

mean shift segmentation. Then the N-cut algorithm is ap-

plied to find spatio-temporal clusters. In the last step, clus-

ters are grouped together with a min-cost max-flow algo-

rithm, which results in the final segmentation.

2.1. Definitions and optical flow calculation

The incoming video is represented as a space-time in-

tensity pattern. Let P denote the set of all points in this

spatio-temporal cube and let Pt ⊂ P denote all points in

frame t. Then obviously P = P1 ∪ . . . ∪ PN , where N is

the number of frames in the cube of interest.

Each point s ∈ P is associated with a color intensity vec-

tor c(s) and a motion vector z(s). We use the optical flow

algorithm described in [4] to calculate z(s). This algorithm

is an optical flow method based on block-matching.

2.2. Feature space reduction using mean shift

As mentioned in Section 2, the mean shift filtering is ap-

plied to the motion vector field for each frame separately.

Each frame Pt is segmented into a set of segments S
(i)
t .

This ensures that

Pt = S
(1)
t ∪ . . . ∪ S

(m(t))
t ∪ ℬt (1)

where ℬt denotes the set of pixels that belong to the back-

ground. Background pixels are those that do not move:

ℬt = {s∣ z(s) = 0, s ∈ Pt}.

The segmentation (1) is done with the mean shift algo-

rithm. This is a straightforward application of this well

known and highly optimized algorithm. The only differ-

ence is that the feature points which are being clustered are

not (2+3)-dimensional, but only (2+2)-dimensional. The

spatial dimension stays at two, but in the range domain we

have two motion vectors instead of three color components.

The segmentation returns the mean velocity vectors ẑ
(i)
t

Figure 3. Associating patches to build a graph.

for each segment, which can formally be defined as:

ẑ
(i)
t =

∑

s∈S
(i)
t

z(s)

∣S
(i)
t ∣

(2)

Figure 2b shows the results of the segmentation method.

In this figure, the motion vector field is visualized using the

mapping to the HSV color space1. In this image the prob-

lem size is reduced to roughly 200 clusters. In comparison

to the optical flow image (Figure 2a), the differences are mi-

nor. This confirms that the clustering of the motion vectors

is a valid way of reducing the problem size without losing

essential information.

2.3. Carving blocks using normalized cuts

The N-cut algorithm [5] clusters data based on an undi-

rected graph G = (V, ℰ). The graph is represented by its

weight matrix W . In order to apply N-cut segmentation,

this weight matrix has to be built first.

In the mean shift segmentation step, a set of motion co-

herent segments has been generated at each frame. Each of

these segments for all frames is associated with a node in

the graph G. Figure 3 illustrates this. The N-cut algorithm

does not require all nodes to be connected. In fact, we only

connect segments which overlap with segments in Δt of the

adjacent frames.

The affinity between the adjacent elements should have

two properties: (1) Affinity should be high if the segments

are likely to belong together spatially and (2) the affinity

should be high if the segments have similar motion. Each

segment is therefore projected to its adjacent frames using

the mean motion vector. Then the overlap with segments

present in that frame is calculated, as well as their motion

similarity.

More precisely, for each frame t, each segment S
(i)
t is

projected to its Δt = 1 . . .Δtmax adjacent frames using the

mean motion vector:

S
(i)
t+Δt∣t =

{

s+Δt ⋅ ẑ
(i)
t ∣ s ∈ S

(i)
t

}

(3)

1The direction of the motion vector is mapped to the H-component, the

V-component is set to the magnitude and the S-component is set to one.



The cut set of the projection with the points in the corre-

sponding frame is given by

Ŝ
(i)
t+Δt∣t = S

(i)
t+Δt∣t ∩ Pt+Δt (4)

This cut set reveals the overlap of the i-th segment in frame

t with all the segments j in frame t + Δt. More precisely,

the overlapping area of the j-th segment in frame t + Δt
with the projected segment i of frame t is given by

A
(i→j)
t→t+Δt =

∣

∣

∣
S
(j)
t+Δt ∩ Ŝ

(i)
t+Δt∣t

∣

∣

∣
(5)

The motion similarity is measured by

d
(i→j)
t→t+Δt =

∥

∥

∥
ẑ
(j)
t+Δt − ẑ

(i)
t

∥

∥

∥
(6)

The affinity between segment i in frame t and segment j
in frame t+Δt is then defined as

a
(i→j)
t→t+Δt = A

(i→j)
t→t+Δt ⋅ exp(−(d

(i→j)
t→t+Δt)

2/2�2) (7)

All the affinity measures a are plugged into the affin-

ity matrix W , thus forming the undirected graph G. Since

the affinities are only processed in one direction, the graph

affinity matrix will have upper triangular form. To build

an undirected graph, the symmetric affinity matrix is calcu-

lated using Ŵ = W +WT .

This graph can now be segmented using the N-cut algo-

rithm. The algorithm cuts the graph into two pieces and re-

peats this procedure recursively. The clustering is stopped

when the N-cut value drops below a predefined threshold

which is set so as to oversegment the scene into relevant

chunks. This threshold is a function of the definition of the

affinity value a, and of the size of the chunks that one wants

to find. The size of the chunks is known for a given class of

videos and thus has to be set only once.

After the segmentation process, the scene P is clustered

into disjoint spatio-temporal blocks Ci:

P = C(1) ∪ . . . ∪ C(imax) ∪ ℬ (8)

where ℬ denotes all the spatio-temporal points that belong

to neither object and thus are background.

The block’s centroid ĉi and the mean velocity vector ẑi
are defined as

ĉi =

∑

s∈Ci
s

∣Ci∣
(9)

ẑi =

∑

s∈Ci
z(s)

∣Ci∣
(10)

Figure 4 shows the results of the normalized cut cluster-

ing procedure on the surveillance video. Interesting to note

is that the big chunks of motion have been found success-

fully. Those chunks do not necessarily have to have all the

Figure 4. Results of the spatio-temporal normalized cut clustering.

same motion; the motion only has to be similar from one

frame to the next. Therefore, non-linear motions can also

be correctly clustered into single blocks. Note also that the

scene is still widely oversegmented and complete trajecto-

ries have not been found yet. The reason for this overseg-

mentation is given in the next section.

3. Global data association to find trajectories

In the original normalized cut segmentation algorithm,

the clusters resulting from the N-cut step are declared to be

the final segmentation. The problem with this method is the

inability to handle occlusions. The trajectory of a moving

object which is divided in the middle by another occluding

object will be clustered into two segments. This is because

there will be no affinities between the two ends of the two

pieces.

In the previous section we have explained how affinities

are calculated between segments that are up to Δt frames

apart. This readily allows us to recover short time occlu-

sions. One could just increase Δt in order to increase the

ability to handle bigger occlusions, but that would lead to

an exponential growth of the computational complexity. In-

stead, we propose another approach: We intentionally per-

form the segmentation in the normalized cut clustering so

as to oversegment the scene. This way, final trajectories are

not found yet, but the identified blocks Ci are likely to be-

long to single coherent blocks of motion.

Knowing single coherent pieces allows us to reason

about occlusion. In the final processing step, we use a data

association technique to stitch these pieces together into tra-

jectories in a way to account for longterm occlusions. A

MAP definition is used of matching observations to trajec-

tories. This description can be mapped into a min-cost max-

flow network, which then can be solved with linear pro-

gramming methods.



3.1. Finding Trajectories with a MAP Approach

Let X = {xi} be the set of observations. In our case

the observations are xi = {Ci, ĉi, ẑi}, where Ci is the

set of points belonging to block i, ĉi is the centroid of the

block and ĉi is the mean velocity vector over all points of

the block.

A trajectory is defined as the set of observations that be-

long to the trajectory: Tk = {xk1
,xk1

, . . . ,xkl
}. More than

one trajectory is possible, so that the whole set of observa-

tions is given by T = {Tk}. We want to find the optimal set

of trajectories given the observation. The MAP formulation

is given by

T ∗ = argmax
T

P (T ∣X )

= argmax
T

P (X∣T )P (T )

= argmax
T

∏

i

P (xi∣T )P (T ) (11)

The last step in Equation (11) assumes conditional in-

dependence of the likelihood probabilities given T . Opti-

mizing this equation directly is infeasible due to the huge

number of possible combinations of trajectories. Instead a

non-overlap constraint is introduced that states that a given

observation can only belong to one trajectory.

Tk ∩ Tl = ∅, ∀k ∕= l (12)

Furthermore, it is assumed that the trajectories Tk are

independent of each other. Then using the constraint (12),

Equation (11) can be written as:

T ∗ = argmax
T

∏

i

P (xi∣T )
∏

Tk∈T

P (Tk) (13)

s.t. Tk ∩ Tl = ∅, ∀k ∕= l (14)

The first term of Equation (13) is the likelihood function

of observations. A Bernoulli distribution is used to model

the observation probability. Here �i denotes the false alarm

probability of observing the object.

P (xi∣T ) =

{

1− �i ∃Tk ∈ T , xi ∈ Tk

�i otherwise
(15)

The second term of Equation (13) is modeled as a

Markov chain with initialization probability Pentr, termi-

nation probability Pexit and transition probability Plink:

P (Tk) = P ({xk0
, xk1

, . . . , xklk
})

= Pentr(xk0
)Plink(xk1

∣xk0
) . . .

Plink(xklk
∣xklk−1

)Pexit(xk0
) (16)

The definition of these probabilities and their relation to

the observed clusters is described later in Section 3.3.

Figure 5. The cost flow network.

3.2. Mapping to a Min-Cost Max-Flow Network

The basic idea is that non-overlaping trajectories can be

mapped to a cost flow graph, as has been proposed in [8].

In this work, a cost flow graph is used for the data asso-

ciation step. Figure 5 illustrates such a graph. In this, each

observation is represented by two nodes connected with a

directed edge. This edge holds the cost of using this obser-

vation. Each node pair is connected to observations nearby,

also with a directed edge. This edge holds the cost of as-

sociating the connected node pairs. Furthermore, each node

pair is connected to a global source and the sink node. In ad-

dition to the edge costs, each edge is set to have at most one

unit of flow. This allows for modeling of the non-overlap

constraint. A flow, starting at the source node, searches its

way through the graph to reach the sink node in a way that

minimizes the overall cost.

A mathematical definition of the flow network will be

given next. To this end, flow indicator functions holding

only 0 or 1 are defined:

fen,i =

{

1 ∃Tk ∈ T , Tk starts from xi

0 otℎerwise
(17)

fex,i =

{

1 ∃Tk ∈ T , Tk ends from xi

0 otℎerwise
(18)

fi,j =

{

1 ∃Tk ∈ T , xj is after xi in Tk

0 otℎerwise
(19)

fi =

{

1 ∃Tk ∈ T , xi ∈ Tk

0 otℎerwise
(20)

For a given set of trajectories T these indicator functions

are determined. Therefore any valid configuration of the

indicator functions also determines the trajectories. T is



non-overlap if and only if

fen,i +
∑

j

fj,i = fi = fex,i +
∑

j

fi,j , ∀i (21)

It can be shown [8], that the maximum a posteriori for-

mulation of Equation (13) is equivalent to calculating the

max flow, if and only if the costs associated with each graph

edge are defined as

Cen,i = − logPentr(xi) (22)

Cex,i = − logPexit(xi) (23)

Ci,j = − logPlink(xj ∣xi) (24)

Ci = log
�i

1− �i

(25)

Note that all the costs are positive except for Ci, which

may be negative if �i < 0.5.

For each observation xi two nodes ui, vi are created. In

addition, one source node s and one sink node t are created.

The costs and flows are set as follows: c(ui, vi) = Ci,

f(ui, vi) = fi; c(s, ui) = Cen,i, f(s, ui) = fen,i;
c(vi, t) = Cex,i, f(vi, t) = fex,i; c(vi, uj) = Ci,j ,

f(vi, uj) = fi,j .

The max-flow problem can be solved with the Ford-

Fulkerson algorithm, Karger’s algorithm [1], or the scaling

push-relabel method [3]. We use the Torsche scheduling

toolbox [7], which uses linear programming to solve the

flow problem.

The optimal flows returned by the algorithm are mapped

back to find the trajectories using the indicator functions

(17)-(20). The number of trajectories found by the opti-

mization is dependent on the flow sent from node s to node

t. If the flow is set to q, then q non-overlapping trajectories

are found. Therefore for different flows, different solutions

are obtained. We simply run the optimization algorithms for

all possible values of q and take the q which minimizes the

flow costs.

q∗ = argmax
q

f(G(q)) (26)

where f(G(q)) is the flow returned by optimizing the graph

G set with flow q. It can be shown that instead of brute-force

enumeration of all possible q values, a binary search can be

applied, because f(G) is a convex funtion in q.

3.3. Estimating Model Parameters from Clustering

For the algorithm to work as desired it is essential to have

good estimates for the model probabilities, namely Pentr,

Pexit, Plink as well as for the false alarm rate �.

In our case, the observations are defined as xi =
{Ci, ĉi, ẑi}, where Ci it the set of points belonging to the

block, ĉi is the centroid of the block and ĉi is the mean

velocity vector over all points of the block.

We observe that trajectories are likely to be true obser-

vations if they are big. We therefore model the false alarm

rate as:

�i =

(

1

2

)

∣Ci∣
��

(27)

where ∣Ci∣ denotes the volume of cluster i and �� denotes

the reference volume. Any object bigger than the reference

volume will result in a �i < 0.5 and thus will have negative

cost in the flow graph. Those objects therefore are encour-

aged to be part of some trajectory. Consequently, objects

with volume smaller than �� will have positive cost and are

only added in the graph if they help to form a trajectory.

To calculate the transition probabilities Plink(xj ∣xi), an

affinity measure has to be generated. This step is crucial

in overcoming the occlusion problem. Clusters are likely

to belong together if they have (1) high similarity in their

mean velocity and (2) high spatial continuity.

To meet the first requirement, the motion similarity is

measured by

dj∣i = exp(−∥ẑi − ẑj∥
2
/2�2) (28)

For the second requirement, the spatial continuity is

measured. The key to do this is the use of 3D morphologic

operations. We use a morphologic dilate operation for each

observation separately using a structure element which en-

codes the motion of the object. Doing so extends the 3D

spatio-temporal blob of the object in time.

First, each object i is dilated, which results in a spatio-

temporal prediction:

Ĉi = (Ci ⊕ℳi) ∖ Ci (29)

where the ⊕-operator denotes morphologic dilate and ℳi

is a structure element which has the form of a line from the

origin in the direction of the mean velocity vector Δt ⋅ ẑi. In

our experiments ℳi is generated with the Bresenham line

interpolation algorithm. The scaling factor Δt specifies the

length of the structure element and thus defines the number

of frames the cluster is projected into the future.

The spatial overlap is calculated as

sj∣i =
∣

∣

∣
Ĉi ∩ Cj

∣

∣

∣
(30)

The link probability is then assembled to take spatial and

motion continuity into account:

Plink(xj ∣xi) =
sj∣i ⋅ dj∣i

∑

j sj∣i ⋅ dj∣i
(31)

The enter and exit probabilities are modeled explicitly.

In our video sequences, objects are likely to appear on ei-

ther the left or the right side of the frame, or the lower edge

of the frame. In addition, objects might already exist in



Figure 6. Results of the dense motion segmentation. This fig-

ure shows the spatio-temporal blocks that have been automatically

segmented.

the first frame. Therefore any object that exists in the first

frame is likely to be the beginning of a trajectory. Analo-

gously, object trajectories must be terminated at the end of

the sequence and therefore have high termination probabil-

ity near the end. The probabilities are therefore modeled

appropriately in a way to capture these relations.

4. Results

Results are shown for a video sequence from the Trecvid

dataset [6]. The final clustering for this surveillance video

is seen in Figure 6, which shows a 3D visualization of the

found clusters in the spatio-temporal data volume. Figure 7

depicts a selected frame from this sequence. In this frame,

the sequence was segmented into six clusters.

These results show that the major motions are automat-

ically found and correctly labeled. Small cluttered blocks

which would result from noise have successfully been re-

moved. Important to note is that the method is capable of

keeping identity through occlusions.

It is also very interesting to note that this kind of segmen-

tation not only finds major motions, but is also able to very

precisely segment the objects. This is remarkable, given

that only motion information and no appearance informa-

tion is processed.

However, there are also some false positives. The orange

cluster, for example, would be considered such a false posi-

tive. This cluster somewhat detects the shadow and the feet

of the person labeled in green. Ideally this green person and

the orange feet cluster should be clustered together. The

reason for this false positive is that the shadow seems to be

a significant independent motion. This shows that the algo-

rithm is not mainly a people tracking algorithm, but rather a

generic motion segmentation algorithm. In order to gear the

algorithm more to a specific domain like people tracking,

(a) (b)

Figure 7. (a) Original frame from a surveillance video; (b) Seg-

mentation results.

prior knowledge about the object class would be necessary.

4.1. Conclusion

In this paper we have presented a motion segmentation

algorithm which extends the normalized cut motion seg-

mentation method and allows to (1) handle long scenes (2)

at high resultion and (3) is capable of handling a significant

amout of mutual occlusions. It can be seen that motion seg-

mentation alone can simultaneously give detection, track-

ing and segmentation. We have shown that this method can

readily be applied to tracking multiple highly articulated ob-

jects like humans.
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