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Abstract

We propose a structure and motion estimation scheme
based on a dynamic systems approach, where states and
parameters in a perspective system are estimated. An on-
line method for structure and motion estimation in densely
sampled image sequences is presented. The proposed
method is based on an extended Kalman filter and a novel
parametrization. We derive a dynamic system describing
the motion of the camera and the image formation. By
a change of coordinates, we represent this system by nor-
malized image coordinates and the inverse depths. Then
we apply an extended Kalman filter for estimation of both
structure and motion. Furthermore, we assume only weakly
calibrated cameras, i.e. cameras with unknown and possi-
bly varying focal length, unknown and constant principal
point and known aspect ratio and skew. The performance of
the proposed method is demonstrated in both simulated and
real experiments. We also compare our method to the one
proposed by Civera et al. and show that we get superior
results.

1. Introduction

Estimation of 3D structure and motion from 2D images
is a central problem in computer vision. There exist es-
sentially two different approaches to solve this problem; (i)
batch approaches and (ii) iterative (recursive) approaches.
Batch approaches aim at providing an accurate result by us-
ing all the images at the same time. These approaches are
typically based on multi-view tensors, bundle adjustment or
convex optimization, see [9] for the former and [13] for the
latter. These methods are not suitable for mobile applica-
tions, both due to their complexity and due to the off-line
nature, requiring all images to be gathered before any com-
putations can be made. Iterative (or recursive) approaches
aim at real-time performance, by updating a current esti-
mate as soon as a new image becomes available. These
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approaches are either based on variations of methods used
for batch approaches, e.g. iteratively estimating the camera
pose and the structure, [3], or by fast estimation of relative
motion [18]. The first ones are not suitable for mobile appli-
cations either, due to their high computational complexity,
while the second ones have a higher potential.

Yet another approach is to formulate the camera mo-
tion and the imaging process as a dynamic system and ap-
ply non-linear observers to estimate the structure and the
translational and rotational velocities of the motion. The
standard approach is to apply an extended Kalman filter
to a dynamic system, with a perspective transformation in
the output equations. One of the pioneering approaches is
[2], where an extended Kalman filter is applied directly to
the dynamic system, without any re-parametrization. An-
other approach, based on tracking the essential matrix can
be found in [19].

For structure estimation only, i.e. known motion, a num-
ber of non-linear observers based on methods for automatic
control theory have been developed, e.g. [17, 12,4, 8, 1, 15,
14, 6]. Similar approaches, based on adaptive non-linear
observers, for full structure and motion estimation can be
found in [20, 21, 10].

Lately, [7, 5] developed a variation of the extended
Kalman filter, by using the inverse depth as one of the
parameters, adjusting the uncertainties to the imaging sit-
uation and fixing the imaging rays from the first camera
in order to gain stability. The method is highly over-
parameterized but performs well in most situations, both in
terms of accuracy and robustness. Another approach based
on inverse scaling can be found in [16]. These methods are
suitable for mobile applications, due to their recursive na-
ture and relatively low computational complexity.

This paper describes how a re-parametrization of the un-
derlying perspective dynamic system can be used to for-
mulate the structure and motion estimation problem as an
observer problem of a non-linear dynamic system, with
a linear output function. We will show that this novel
parametrization will result in a more accurate extended



Kalman filter. Moreover, we will allow a weakly calibrated
camera, i.e. a camera with unknown and possibly vary-
ing focal length, unknown and constant principal point and
known aspect ratio and skew.

2. Problem formulation

Consider a calibrated perspective camera that is observ-
ing a moving rigid object. Observe that it is just a philo-
sophical difference between assuming a fixed camera and a
moving object or a moving camera and a fixed object, since
it is only the relative motion that can be estimated, but for
modelling purposes one or the other might be preferable.
Assume a camera system where the camera is situated at the
origin and the optical axis is aligned with the z-axis. Let
y; denote the image coordinates and z; denote the (time-
varying) object coordinates. Introducing

E=(2 7). (1)

we can write down a dynamic system
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is the skew symmetric matrix obtained from the (possibly
time varying) angular velocity vector

w= (w1 w ws), “)

b= (b by b3) (5)

denotes the (possibly time varying) translational velocity,
and Cy and ¢ are intrinsic camera parameters. In our case

we have
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where s denotes the (known) skew, a the (known) aspect ra-
tio and f. the (unknown and possibly varying) focal length

and
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denotes the (unknown) principal point. After a suitable
change of coordinates, we may assume that

= (5 7). ®)

since s and ~y are assumed to be known.
We can now state the problem as follows:

Problem 1 (On-line structure and motion estimation)
Given the image coordinates y from (2), estimate recur-
sively the object coordinates x, the (time varying) motion
parameters w and b and the (time varying) focal length f.

3. The parametrization

Considering (2) and introduce the scalar parameter v and
the vector z by

V== 2=, )
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which can be interpreted as the inverse distance to the ob-

ject. Observe that £, according to (1) and by the definition

of z in (9), also can be expressed as
Z1 2\7
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This means, using (9) and the definition of £ in (1), that the
vector z which then can be expressed as
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can also be assumed known. This vector can be interpreted
as the image coordinates on a spherical image plane.

In the case of calibrated cameras, z is a measurable sig-
nal, and can therefore be considered an output of the sys-
tem (2). The parametrization exploits this fact, and aims at
rewriting the system (2) so that z appears explicitly in the
equations. In the self-calibration case, i.e. where the focal
length f. and the principal point (xg,yo) are unknown, z
is measurable up to a transformation involving the intrinsic
parameters of the camera.

Using (2) and the fact that " Az = 0 since A is skew-
symmetric, gives, introducing

go(z) =1 — 22" (12)

a rewritten dynamic system, corresponding to (2), on the
form
Z= Az + go(2)by

7 =22 (13)
y=CrE+9.

For the motion of more than one point a dynamic system
corresponding to (13) is obtained as

2= A"+ go(2")by'
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where N denotes the number of feature points. Equation (9)
together with (13) and its multipoint version (14), constitute
the desired dynamic vision parametrization, from which we
shall proceed. Observe that the dynamic system contains 4
state variables; 3 for z and 1 for v and that z has to fulfill
the constraint |z| = 1.



4. The extended Kalman filter

The extended Kalman filter estimates the system state sy
given a previous estimate 5;_1, a new measurement g and
state transition and observation models s, = f(si—1) and
tx = h(sk). At every time-step the new state and the state
covariance P are predicted,

Skjk—1 = f(Bp—1jk—1)

. (15)
Pyp—1 = Fe 1 Pe_1jp—1Fy_1 + Qr—1
and, given a new measurement jij, corrected to
Spk = Skpp—1 + K (e — h(Skjp—1)) (16)
P = Pyjp—1 — K H Pyjpo—1
where
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and @) and R the assumed process and measurement noise
covariances, respectively.

Adapting the dynamic system (14) to the EKF setting,
the state vector is taken to be

s = <b1v7 wTa fC7 o, Yo, ('Zl)T’ ’yla ) (ZN)T7 ’yN)T7 (18)
while the measurement vector is given by
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with components
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The update equation is a discretized version of (14):
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where |2%| = 1 is enforced.

Note that we assume a camera-centric coordinate system
and estimate only linear and angular velocities, which must
be integrated over time to recover the absolute motion.

Adding features

A main advantage of the camera-centric coordinate sys-
tem is the ease with which new features can be inserted into
the filter; the uncertainty of new features is independent

of any extrinsic camera parameters, unlike in the unified
inverse depth method. Removing features simply means
deleting the corresponding entries, rows and columns in the
state vector and covariance matrices, but if a feature is only
temporarily occluded or otherwise not detected, it can still
be kept in the filter if it is assigned an infinite measurement
uncertainty.

Complexity

The computational complexity of the filter can be made
lower than that of e.g. the unified inverse depth parametriza-
tion. First note that since the output function h is linear if
the measured image coordinates are first transformed us-
ing equation (11), it is fully represented by the Jacobian H,
and very sparse. In fact, all non-zero elements equal one,
and multiplying a matrix by H amounts to removing rows
or columns of the matrix. Thus four matrix multiplications
can be avoided in the filter update step. The update equa-
tion, however, is not linear, due to the camera-centric rep-
resentation, and the Jacobian F' will no longer be (nearly)
diagonal, as in the world-centric case. But it will still be
rather sparse, with the first 6 columns full and the rest block
diagonal with 4-by-4 blocks. The a-priori covariance up-
date can thus still be performed quite efficiently. The fact
that only 3 or 4 parameters are required per feature is a con-
siderable advantage compared to the unified inverse depth
scheme, where features must eventually be converted to a
Cartesian parametrization to maintain frame rate.

5. Experiments

In the following experiments, no priors on the struc-
ture or motion are given. Features are initialized at an ar-
bitrary depth and with large uncertainty in the v coordi-
nate. The linear and angular velocities are assumed con-
stant, and acceleration is modelled as zero-mean Gaussian
process noise. When assuming varying focal length, the
variation is also modelled as process noise, while an un-
known principal point is assumed fixed but initialized with
some uncertainty at the center of the image.

As has been reported in [5], the EKF can converge un-
der these circumstances; however, it is found that fixing
the depth of one point, thus determining the overall scale,
greatly aids convergence. Further, the normalization step of
the update equation (21) has been found not to be strictly
necessary (when using the full parametrization) and in fact
does not significantly impact the results.

Constant and known intrinsic parameters

We repeat an experiment in [16] and show that the pro-
posed parametrization does not suffer from the underes-
timation of uncertainty associated with the inverse depth
parametrization of [5] and typically converges faster as a



result (Fig. 1 and Fig. 2). This issue of inconsistency is
common to many SLAM algorithms and is analyzed in e.g.
[11].
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Figure 1. Position and covariance estimates after observing 30
frames of simulated data (black: ground truth, blue: estimate +o).
The inverse depth parametrization underestimates the errors, here
leading to slower convergence, while the proposed parametrization
more accurately captures the depth uncertainty.

Varying focal length and unknown principal point

In experiments on noisy simulated data the filter is able
to track varying focal length and determine an offset in the
principal point (Fig. 4 and Fig. 5). Observe that even if the
convergence rate for the principal point is relatively low,
the motion estimation and structure estimation is converg-
ing much faster.

Real data

We also apply the proposed and unified inverse depth
methods to a real video sequence. The camera motion and
3D coordinates of 7 feature points tracked (using the KLT
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Figure 2. Convergence plot of the Cartesian coordinates of a point
in a simulated reconstruction problem. Top: inverse depth, bot-
tom: proposed parametrization.

algorithm) over 70 frames of a desktop sequence are recon-
structed. Some geometry is overlaid to verify the results
(Fig. 3). A (subjective) assessment indicates that the pro-
posed method gives a more consistent reconstruction than
unified inverse depth.

In a more general setting we use the following structure
and motion framework:

e From the first frame, extract SURF features and add
them to the state vector. The observed features are ini-
tialized to lie in a plane at unit depth. To set the overall
scale, the depth of one feature is fixed by assigning
zero uncertainty in the v coordinate.

e For subsequent frames:

1. Extract and match features to those active in the
filter. Remove outliers by fitting an affine trans-
formation between the observed feature loca-
tions and their predicted locations in a RANSAC
scheme.

2. Assign active features not detected in the current
frame infinite measurement uncertainty. Features
not detected for a set number of frames, e.g. 100,
are removed from the filter by deleting the appro-
priate entries.

3. Update the filter state.

4. If the number of active features is too low, select
new ones from the unmatched features in the cur-
rent frame and initialize their depth as the mean
depth of the currently visible active features.

While SURF features are computationally expensive (com-
pared e.g. to the approach in [7]), they facilitate the rede-
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Figure 5. Re-projection error in the above experiment. The error
increases towards the end of the sequence as the camera moves
further from the point cloud.

tection of previously observed landmarks. In Fig. 6 the al-
gorithm is applied to a typical augmented reality scenario.
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Figure 4. Result of experiment on simulated data. 15 intermittently
visible features were observed by a circling camera at a noise level
of about 1 pixel. The focal length varied while the principal point
remained fixed. Dashed lines: ground truth.

Figure 3. Visual result of integrating geometry into a tracked video sequence (from left to right, frames 1, 50 and 70 are shown). The green
box shows the solution using the proposed method, while the red was computed using the inverse depth parametrization. Although the
re-projection errors are similar, the proposed method produces a more accurate motion estimate.

6. Conclusions

We have used a novel parametrization in order to develop
an extended Kalman filter for full structure and motion es-
timation. The filter is shown to perform well on both simu-
lated and real data and has been compared to other state-of-
the-art approaches. We have furthermore successfully dealt
with unknown and varying focal length and unknown prin-
cipal point. The relatively low computational complexity

of the proposed filter should make it feasible for use on on
mobile devices.
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