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Abstract
The segmentation of tissues in whole-slide histology images is a necessary step for the
morphological analyses of tissues and cellular structures. Previous works have demonstrated the
potential of two-point correlation functions (TPCF) as features for tissue segmentation, however
the feature space is not yet well understood and computational methods are lacking. This paper
illustrates several fundamental aspects of TPCF feature space and contributes a fast algorithm for
deterministic feature computation. Despite the high-dimensionality of TPCF feature space, the
features corresponding to different tissues are shown to be characterized by low-dimensional
manifolds. The relationship between TPCF and the familiar co-occurrence matrix is highlighted,
and it is shown that costly cross correlations are not necessary to achieve an accurate
segmentation. For computation, the method of correlation updating, based on the linearity of the
correlation operator, is proposed and shown to achieve up to a 67X speedup over frequency
domain computation methods. Segmentation results are demonstrated on multiple tissues and
natural texture images.

1. Introduction
The adoption of digital slide scanning technologies in clinical and research settings is
providing Terabytes of high-resolution histology imagery. This data contains a potential
wealth of information that can be used to perform or large-scale comparative or correlative
analysis of tissue morphologies versus patient outcome or genomic features. A key
challenge in the effort to extract this information is the segmentation of tissues in whole-
slide images which present themselves as complex arrangements of cellular structures. A
popular approach to this problem has been to apply texture based segmentation methods [3,
12, 16]. Conceivably if distinct tissues are represented by different organizations of
components such as cell nuclei, cytoplasm, and extracellular matrix then texture
measurements can be applied to discover these distinct signatures.

Previous work has shown that popular texutre features such as Haralick features and Gabor
filters are insufficient to distinguish the subtle differences in some tissue layers [12]. Instead,
a new class of segmentation features, the two-point correlation functions (TPCFs), were
proposed and demonstrated effective in difficult scenarios [13]. Despite this advance,
problems remain with existing TPCF-based methods. Previous works have all utilized
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Monte-Carlo calculation methods without addressing difficult sampling considerations;
uncertainty in sampling requirements leads to large sample sizes and increased execution
times. For segmentation, due to the high-dimensionality of TPCF features, clustering
methods were applied without regard for structure in TPCF feature space. This is significant
since the feature space structure informs the method of segmentation or classification in
many applications [10, 11].

This paper contributes several results of practical interest on the structure of TPCF feature
space, and also a new fast and deterministic method for TPCF feature computation. We
show that despite its high dimensionality, TPCF feature space is characterized by
remarkably smooth and low-dimensional manifolds. Additionally, we show that costly
cross-correlation terms are not necessary to achieve accurate segmentations, and highlight
the links between TPCF and the familiar co-occurence matrix. For fast calculation of TPCF
features, we propose a deterministic method called correlation updating, that uses the
linearity of the correlation operator for iterative calculation of features with shared
neighborhoods. Experimental results show that correlation updating provides up to a 67X
speedup over a simple frequency-domain based implementation, significantly reducing the
computational burden for processing giga-pixel digital microscopy images.

The paper is organized as follows: Section 2 provides preliminary and background
information on two-point correlation functions. Section 5 describes the use of TPCF as
features in image segmentation. Section 3 presents the segmentation and TPCF feature space
results on both synthesized image and histological image. Summary and conclusions are
provided in Section 6.

2. Two Point Correlation Function
The two-point correlation function originates from the field of statistical geometry where it
has been used to study extremes of scale in both materials science [15] and cosmology [18].
Its power in predicting physical phenomena suggests a rich representation of spatial
information [7], and lead to its adaptation in computer vision and pattern recognition [6, 12,
13]. This section provides relevant background on the two-point correlation function, a more
detailed description can be found in the text by Torquato [15].

2.1. Phase Label Images
The term phase image is defined here to describe an image composed of discrete
constituents. The phase image I with P phases is a scalar field, partitioned into P exhaustive
and disjoint regions . For the purpose of development, assume I is a random entity in
sampling space Ω, and that ω ∈ Ω is one realization. For each phase i, an indicator function
is defined for x = (x, y) ∈ ℝ2 in I

(1)

In practice, the interpretation of phase is application specific. Phases could represent objects
in a natural scene, or different cell types in a microscopic image. The flexibility in defining
phase implies generalizability of the segmentation framework beyond microscopic tissue
images. Phase is discussed further in Section 3.
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2.2. n-Point Correlation Functions

Given the set of indicators , the n-point correlation function  is defined as the
probability of finding n points x1, x2,…, xn in phase i

.

Of particular interest is the two-point correlation function (TPCF)

(2)

If I is statistically homogeneous, S2 is invariant under translation and depends only on x1,2 =
x1 − x2. If I is also statistically isotropic then S2 is rotation invariant and depends only on
distance r = |x12|. In this case the TPCF is denoted S2(r), and can be visualized as a variation
of the familiar Buffon’s Needle problem (Figure 1).

The assumptions of an isotropic and homogeneous random field are used for illustration. In
practice, images are typically anisotropic and the TPCF is measured as a sample average
under the isotropic assumption. This produces statistics that are insensitive to orientation, a
property that is desirable in many classification and segmentation applications.

The relation in Equation 2 defines the two point autocorrelation function, between a phase i
and itself. Similarly, the two point cross-correlation may be defined between phases i and j

(3)

The methods presented in this paper exclusively use the auto correlation functions for image
segmentation. Previous works have included cross correlation information for segmentation,
but as demonstrated in Section 5 this is not always necessary to achieve reasonable
segmentations in difficult settings.

2.3. Relationship to Co-Occurrence Matrix
The TPCF represents the probability that phases are separated by a given distance, and is
closely related to a popular method for texture image analysis, the co-occurrence matrix.
Perhaps most widely known for use in calculating the Haralick features [4], the co-
occurrence matrix Cx represents the frequencies that image values i, j are separated by x in
the intensity image G

(4)

The diagonal frequencies of CX are related to the sample TPCF of G through a
normalization by the total comparisons in Equation 4

(5)

where N and M are the horizontal and vertical image dimensions. Despite this relationship
the use TPCFs for image segmentation is fundamentally different from cooccurrence based
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approaches. The primary differences are the range of calculation, and the use of raw TPCF
values as features rather than as an intermediate representation.

2.4. Sample TPCF Calculation

Given an M × N digital phase image I  is calculated from the indicator autocorrelation

(6)

where Δx, Δy ∈ ℤ. The correlation of indicators effectively counts the number of pixels of
phase i separated by (Δx, Δy), e.g. (0, 0) represents full-overlap and R(0, 0) the pixel count
of phase i in I. The values of R are normalized by the overlapping area at each lag to
calculate probabilities

(7)

where 1m × N is an M × N matrix of ones, ./ is element-wise division, and * is convolution.

The normalized elements of R̂ represent the anisotropic but homogeneous TPCF . A

process of circumferential sampling is used to calculate the isotropic  from .
Samples taken at distance r from R̂(i) (0,0) are averaged over angle

(8)

where Δθ is the angular interval. This sampling procedure is depicted in Figure 1. Samples
off the discrete grid of R̂(i) can be inferred using bilinear interpolation. Due to the symmetry
of R̂(i), the sampling angles can be restricted to [0,π).

3. TPCF features for Image Segmentation
The TPCF segmentation workflow consists of four stages: phase labeling, TPCF feature
calculation, dimensionality reduction, and feature clustering. The process begins with the
identification of phases from a color or grayscale image to generate a phase label image.
Feature vectors containing the TPCFs of each phase are then calculated for local regions in a
sliding window, throughout the phase image. The TPCF feature vectors typically conform to
low-dimensional manifolds, and so the dimensionality of the feature vectors is reduced prior
to clustering in feature space. The clustered feature labels are then mapped back to the
image domain and refined if necessary to eliminate edge effects and aberrations. Each of
these stages is described in further detail below.

3.1. Phase Labeling
Given a color or intensity image, the phase labeling process assigns a label i ∈ {1, 2,…, P}
to each pixel. The notion of phase is borrowed from the materials science community where
it represents the different constituents in a composite material. In the imaging context phase
is a flexible concept that provides a general approach to treating images as mixtures of
constituents. These constituents can be identified by either low-level information such as
intensity or color, or high-level information such as shape or size. Any number of mode-
identifying segmentations such as mean shift [1] or K-means can be used to label
constituents. A simple quantization may be effective if the color/intensity is relatively
uniform. For high level information phase is certainly application specific since it likely
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represents meaningful units e.g. distinct cell types in tissue. A more complex labeling
approach that incorporates domain classifications is needed in this case.

3.2. TPCF Feature Vector Extraction
Define Φ(x, y) as the w × w sliding region-of-interest with upper left corner I(x, y). The
anisotropic sample TPCF is computed inside Φ(x, y) for r = 0 to w/2 and for each phase i ∈
{1, 2,…, P} to form the P(w/2 + 1)-dimensional feature vector

Feature vectors are computed at each position of the the sliding ROI Φ(x, y) ∈ {0, 1,…N −
w}×{0, 1,…M − w}.

3.3. Dimensionality Reduction and Clustering
Although the feature vectors vx,y reside in P(w/2 + 1) space, their energy is typically
concentrated in relatively few modes. Prior to segmentation the dimension of the feature
vectors is reduced by projecting vx,y onto the first D primary two-point functions obtained
through principal component analysis.

To achieve a segmentation of the image the reduced dimension feature vectors are clustered
in the feature space and the clustering result is mapped back to the image space to form a
segmentation. The TPCF feature vectors tend to be either restricted to a smooth low-
dimensional manifold or distributed among a mixture of low-dimensional linear structures,
so we choose to use the unsupervised lossy coding method of [10].

4. Correlation Updating
Previous works using TPCF as a feature for segmentation relied on the use of Monte Carlo

methods to estimate . Using a simulation similar to Figure 2.4, a needle is repeatedly cast
onto the phase image ROI and the endpoints recorded. This process raises the issue of
sampling, which certainly depends on image characteristics. In contrast, the deterministic
approach described above is exhaustive, effectively integrating information from all possible
comparisons over the region. The deterministic method has been employed in the materials
science community, where it is implemented using frequency-domain methods [8]. The
application of image segmentation if fundamentally different, however, in that TPCFs are
calculated in a small sliding window with significant overlap between adjacent regions. This
section describes the existing frequency domain method, its weaknesses in segmentation,
and proposes a new faster method for deterministic exhaustive calculation that exploits
region overlap to reduce computation.

4.1. Frequency Domain Method
The most computationally demanding portion of the TPCF calculations are the correlations
of Equation 6, that may be computed efficiently using the Fast Fourier Transform (FFT).

The binary mask  is padded to the size 2w − 1

(9)
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and transformed forward to the discrete frequency domain to obtain the spectrum .
The power spectrum is calculated by taking the magnitude of the complex elements and the
inverse transformation is computed to obtain the autocorrelation R

(10)

The dimension 2w − 1 is critical for the performance of the FFT calculations [2]. The
padding of Equation 9 may be manipulated to achieve favorable sizes by adding zeros to
achieve the next most favorable size.

4.2. Sparse Sampling
The FFT calculates all (2w − 1)2 elements of the autocorrelation R, however only a small set
of these are required for the circumferential sampling procedure. This is apparent in Figure

2, where only 10% elements of R(i) are used to interpolate . Although algorithms exist
for computing subsets of FFT outputs [5, 9], the available implementations of ordinary full-
output FFT are optimized to the extent that only a relatively large transform will benefit [2].

4.3. Updating
In addition to the sampling sparsity, the shared content between neighboring ROIs also
points to significant amounts of wasted computation. For example, although Φx,y, Φx+1,y
differ by only two w-length columns of pixels, a straight-forward FFT method calculates
correlations from scratch for each.

The observations of sparsity and shared content may be simultaneously addressed using the
linearity of correlation. Rather than computing R(i) from scratch for each ROI, the portions
of neighboring ROIs, say Φx,y and Φx+1,y, that are not shared may be used to update R(i)

from Φx,y to Φx+1,y instead. Furthermore, if this updating is performed directly in the image
domain then the updates can be restricted to those locations used in sampling.

Given two horizontally adjacent w × w ROIs Φx,y, Φx+1,y with corresponding indicators

(11)

where c are w-length pixel columns. The autocorrelation of  is denoted . Given that

 are distinguished only by cx, cx+w, the autocorrelation  can be calculated

from  by adding the contribution of cx+w and removing the contribution of cx.

Define the correlation sums between the columns and their respective regions

(12)

The update matrices containing these correlation sums represent the contributions of cx to

 and cx+w+1 to 
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The relationship between the autocorrelations for adjacent regions is then

(13)

This updating procedure clearly applies to vertically adjacent ROIs as well.

Since only a subset of R is sampled for S2, the corresponding elements of A+, A− may be
calculated individually. Each element will then require only 2w multiply-add operations
from one ROI to the next. Numerical accuracy is not compromised within the updating
procedure. Since R represents integer counts of pairwise-separations there is no error
accumulation through repeated rounding operations. The updating procedure also provides
flexibility in choosing w since performance is not subject to FFT size penalties.

5. Experiments and Results
Segmentation experiments were performed using both natural texture and histology images.
Natural texture images from the Brodatz collection were used to compare TPCF features
with raw co-occurrence and traditional Haralick features. Microscopic images of human
follicular lymphoma and mouse placenta were used to demonstrate the ability of TPCF
features to resolve tissue boundaries. Mouse placenta images were used to demonstrate the
time performance of the correlation updating method as well.

5.1. Natural Textures
Three images were selected from the Brodatz collection and arranged as in Figure 3(a). This
grayscale arrangement was quantized to two bits to produce a four phase image. Three sets
of features were calculated: raw co-occurrence, Haralick, and TPCF. Each feature set was
reduced to D = 10 using PCA and clustered using K-means with K = 3. Feature were
calculated in a sliding window w = 32. TPCF features were calculated at distances r = 0,1,
…, 16 to generate 68-dimensional features. Raw Co-occurrence features are the unwrapping
of Cx into a 16-dimensional vector, with Cx computed at

 for d = 1,2,…,16, and then averaged
to form 256-dimensional features. The Haralick features of contrast, correlation, energy, and
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homogeneity were calculated from the co-occurrence matrices averaged over angle to form
64-dimensional features.

The energy of the TPCF feature set is concentrated in relatively few modes, 88% in the first
three (compare to 79% and 73% for co-occurence and Haralick respectively). Segmentation
accuracies are comparable at 94.1%, 97.3%, and 96.6% for Haralick, co-occurrence, and
TPCF respectively, with all errors occuring within w/4 of the texture boundaries. In this case
the presence of cross-correlation information within Haralick and co-occurrence features
does not offer significant benefit in terms of segmentation accuracy.

A three-dimensional visualization of the TPCF features using PCA and is presented in
Figure 3(c) and (d). The features conform to a smooth manifold-like structure, with different
regions representing different textures.

5.2. Follicular Lymphoma Segmentation
The segmentation of follicles in H&E stained lymphoma images presents a challenging
tissue segmentation problem [14]. To test the performance of TPCF segmentation a small
5X resolution region of follicles was obtained from the Virtual Slidebox, hosted at the
University of Iowa Pathology Department (see Figure 4). A gaussian mixture model was
used to cluster the H&E stained region into four classes corresponding roughly to nuclei,
cytoplasm, background, and extracellular matrix. Using an ROI size w = 16, length r = 0,1,
…, 8, and angular interval Δθ = π/8 produced 36-dimensional feature vectors that were then
reduced to ten-dimensional space. The reduced features were clustered using the lossy
coding method with ℰ = 0.01 [10]. The resulting segmentations are shown in Figure 4. The
follicle areas are clearly distinguished.

A visualization of the tissue groups identified by segmentation is shown in Figure 5. The
visualization was obtained by projecting the TPCF features into three-dimensional space.
The groups remain well-separated in this low dimensional space. Overall they appear as a
mixture linear structure with each component corresponding to a separate group. The
yellow, dark blue, and red group features representing follicles, perifollicular space, and
blood vessels all lie near a two-dimensional surface. The light blue group features
representing the edge group vary in a direction normal to this surface.

5.3. Placenta Layer Segmentation
TPCF-based segmentation was applied to a sequence of mouse placenta images in a study
similar to [12], where the aim is to characterize the role of the RB gene in mouse
development by analyzing variation in tissue morphology [17]. The placenta contains
several tissue layers including labyrinth, spongiotrophoblast, trophoblast, and glycogen. The
aim of the example segmentation application here is to distinguish the labyrinth layer from
the spongiotrophoblast layer as they are the least distinctive pair of adjacent layers. This
experiment contrasts with previous works in only autocorrelation TPCFs are utilized in
segmentation, no cross correlation information between phases is included.

One 1000 × 1000 pixel area was selected from 25 placenta images to contain approximately
half labyrinth layer and half other tissue layers. A Gaussian mixture model maximum-
likelihood classifier was applied to these areas to classify the pixels into red blood cell,
cytoplasm, nuclei, extracellular matrix and background. These classifications serve as five-
phase images from which TPCF feature vectors are calculated. The parameters ROI size w =
32, length r = 0, 1,…, 16, and angular interval Δθ = π/8 produced 68-dimensional feature
vectors that were then reduced to ten-dimensional space prior to clustering using KNN with
one tile as training data. The resulting segmentations are shown in Figure 6. A reasonable
segmentation is achieved despite the absence of cross correlation information. The top-left
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corner indicates that the autocorrelation functions were even able to distinguish an error in
the manual segmentation where giant cells from the spongiotrophoblast were included in the
labyrinth.

5.4. Correlation Updating Performance
Experiments were performed to examine the performance gain of correlation updating over
a direct FFT-based implementation. The above implementations were tested on a single
node from the BALE system at the Ohio Supercomputer Center, equipped with an AMD
Opteron 2218 CPU and 8GB DDR2 DRAM. The data used to compare these
implementations consists of ten 1000 × 1000 five-component images of H&E stained mouse
placenta. TPCF features were calculated for the ten test images using the parameters of
Table 5.4, chosen to reflect typical application values. In the power of two cases the 2w − 1
DFT was padded to 2w. The transforms for the non power of two cases were not padded to a
power of two. This choice is justified since a this padding is detrimental in the w = 130 case,
and is only marginally beneficial for w = 34.

The average per-image execution times and speedup are presented in Table 5.4. There is a
strong penalty for non power of two cases for the direct-FFT method. This penalty is absent
for the correlation updating implementation. Overall there is a significant speedup for
correlation updating, ranging from 7.9–67X. The larger speedup factors correspond to the
non-power-of-two sizes due to the large penalty on FFT performance.

6. Conclusion and Discussion
This paper presents results on the structure of TPCF feature space and a new fast and
deterministic algorithm for feature computation. The examples provided demonstrate that in
spite of their high dimension, TPCF features can form to smooth manifolds and mixture
linear structures in low-dimensional space. For histological images these low-dimensional
structures represent distinct tissue regions that can be identified using clustering methods
such as lossy coding clustering [10] that are well-suited to these arrangements. Future work
on feature space structure will explore the space for a larger number of cases, and pursue
applications including tissue recognition and synthesis in this space of texture manifolds.

Deterministic calculation of TPCF features avoids the complex sampling issues associated
with a Monte Carlo calculation method, and permits exhaustive calculation of TPCF over a
region of interest. An FFT-based method offers deterministic and exhaustive calculation but
is accompanied by rigid requirements on w. The FFT method also neglects the sparse
autocorrelation sampling pattern and the content shared between neighboring ROIs resulting
in significant wasted computation. Correlation updating simultaneously addresses these
considerations without any compromise of numerical accuracy. Using the linearity of
correlation, the autocorrelation calculations can be updated from one ROI to the next, rather
than computed from scratch. Furthermore, performing these updates directly in the image
domain permits the sampling locations to be selectively updated, and frees the algorithm
from the sensitivity to ROI size. The improvements of correlation updating result in a
speedup from 8–67x over the direct-FFT method.
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Figure 1.
Two point correlation function. (a) Placing line segments of length r with random

orientation on ω, the fraction of times the endpoints both land in phase i represents .
(b) A phase image contains pixels labeled according to phase. (c) Each phase has an

associated indicator. The indicator autocorrelations are used in calculating  (d)

Circumferential samples are averaged at radius r from R̂(i) to calculate .
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Figure 2.
Sparsity of circumferential sampling. (a) Only a small portion of the autocorrelation matrix
is used for TPCF calculation. Here, w = 32 and Δθ = π/8. In this case only 395 of 3969 total
grid locations of R are used for interpolation. (b) Zoom of (a). Red indicates interpolation
locations, black indicates on-grid autocorrelation locations required for bilinear
interpolation.
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Figure 3.
Natural texture segmentation using TPCF. (a) Brodatz textures grass, holes, straw. (b)
Segmentation map for TPCF features. (c), (d) TPCF features form a smooth manifolds in
low-dimension.
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Figure 4.
Segmentation of follicles in lymphoma. (a) Follicle areas appear as large elliptical areas. (b)
Follicles segmented using TPCF with lossy coding clustering.
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Figure 5.
Visualization of lymphoma TPCF features. The features exhibit a low-dimensional mixture
distribution. Colors are coded to correspond with the classes of Figure 4.
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Figure 6.
Placenta segmentation without cross correlation information. The blue line represents the
manual segmentation. The green line indicates TPCF segmentation.
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Table 1

Correlation updating test parameters, average execution times, and speedup.

case small-pow2 small large-pow2 large

w
Δθ

32
π/8

34
π/8

128
π/16

130
π/16

FFT(s) 1280 11637 43129 126489

updating(s) 162 178 3474 3557

speedup 7.9X 67.0X 12.4X 35.6X
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