
Dynamic Projection Environments for Immersive Visualization

Theodore C. Yapo Yu Sheng Joshua Nasman Andrew Dolce Eric Li Barbara Cutler

Department of Computer Science
Rensselaer Polytechnic Institute

{yapot, shengyu, nasmaj, dolcea, lie2, cutler} @cs.rpi.edu

a) b) c) d) e)
Figure 1. Our immersive and dynamic projection environment enables users to control visualization by manipulating the position and
orientation of the projection surfaces. We present a variety of interactive demonstration applications leveraging our new interface.

Abstract
We present a system for dynamic projection on large,

human-scale, moving projection screens and demonstrate
this system for immersive visualization applications in sev-
eral fields. We have designed and implemented efficient,
low-cost methods for robust tracking of projection sur-
faces, and a method to provide high frame rate output for
computationally-intensive, low frame rate applications. We
present a distributed rendering environment which allows
many projectors to work together to illuminate the projec-
tion surfaces. This physically immersive visualization envi-
ronment promotes innovation and creativity in design and
analysis applications and facilitates exploration of alterna-
tive visualization styles and modes. The system provides for
multiple participants to interact in a shared environment in
a natural manner. Our new human-scale user interface is
intuitive and novice users require essentially no instruction
to operate the visualization.

1. Introduction

We present a system for physically immersive visualiza-
tion supporting a number of different applications. In each
application, users are able to interact dynamically with the
application in real time via a number of movable projec-
tion surfaces. These surfaces can be used for displaying
application-generated data, as user interface elements, or
both in the same application. We use large projection sur-
faces to provide an immersive, human-body scale visualiza-
tion and mount these surfaces on wheels so the surfaces can

easily be moved by users. Our system tracks these projec-
tion surfaces, and provides a mechanism where applications
can easily project their output to one or more surfaces (Fig-
ure 1).

The resulting environment provides a platform on which
we prototyped several applications. In some applications,
the projection surfaces represent physical entities, such as
in architectural lighting simulations. In other applications,
the walls can represent user interface elements, such as be-
ing used as a “cut-plane” to visualize volumetric data. Our
third prototype application uses the projection surfaces as
paddles in a game of virtual ping-pong.

Our system is designed to provide an immersive feel:
users walk within the environment and move projection sur-
faces in real-time, and the application re-calculates the visu-
alization on the fly. Within this framework, we provide fa-
cilities for applications that may run at significantly slower
than real-time frame rates. We use a technique we call pro-
jection keyframing to provide continuity on moving surfaces
while waiting for simulations to complete. The system al-
lows multiple users to participate interactively with each
other and the visualization application. This shared expe-
rience allows users to actively collaborate on design or data
analysis tasks with enhanced interaction.

1.1. Related Work

Our system leverages previous research in Spatial Aug-
mented Reality (SAR) [4] that mixes physical elements
(projection surfaces) and virtual elements (projected enti-
ties) to create an enhanced experience. For example, ex-

1

>30 fps>30 fps

calibration

camera

projector

UI (iTouch)

calibration

textures

geometry
skeleton

w/blending
geometry

50 fps

33 fps 20−40 fps

20−40 fps

0.1−40 fps

recognizer
LED

detector

projection

projector

renderer
projector

renderer
projectordisplay

controller

application

renderer

keyframing

tracker/
predictor

surface

Figure 2. The architecture of our system is composed of several asynchronous computation modules. Once the skeleton geometry has
been detected from the camera imagery, the system splits into two paths: the application path, which may not maintain an adequately high
frame rate for real-time rendering, and a fast fixed frame rate path to ensure that the most recent application surface textures are projected
on the surfaces in their current locations. A distributed rendering process sends the data across a local gigabit Ethernet network to multiple
projection servers, each of which handles up to four projectors.

isting wall and desk surfaces can be used as projection
surfaces to extend the computer interface [18]. Similarly,
Raskar et al. [19] used these techniques to project vir-
tual textures on physical surfaces, for instance to project
light and shadows on the exterior of an architectural model.
In these systems, the geometry of the physical objects is
known and the surfaces are assumed to be a uniform dif-
fuse white material. These techniques were subsequently
extended to produce apparent motion on static scenes [20].

When the projection surface geometry is not known a
priori, it must be captured in addition to determining the
projection imagery. Systems for projection onto planar sur-
faces have used cameras and structured light patterns to re-
construct the geometry of a multi-planar display prior to
projecting on the surfaces [1, 12]. Bandyopadhyay et al. [2]
project on movable objects using either optical or magnetic-
based trackers to capture the motion of the projection sur-
faces. Lee et al. [13] track movable projection surfaces us-
ing a structured light technique with light sensors embed-
ded in the projection surfaces, using an initial pass to obtain
surface positions and incrementally updating the position
estimates with less perceptible projected patterns. Lee et
al. [14] use a Nintendo Wii remote to track infrared LEDs
placed on moving and deformable (folding) projection sur-
faces, simulating, for example, a foldable newspaper. Lee et
al. [11] used a custom hybrid infrared and visible light pro-
jector to allow unobtrusive tracking of projection surfaces.
Invisible infrared structured light patterns are received by IR
sensors on projection surfaces, while visible light projects
appropriate images. A different approach to impercepti-
ble simultaneous scene capture and display was explored
by Cotting et al. [5]. A short-exposure camera captured
patterns produced by the pulse-width modulation of DLP
projector micro-mirrors for acquisition, which were imper-
ceptible to the eye.

While the systems described above tracked relatively
small surfaces that could be moved within a limited volume,

CAVE-style environments [6, 7] produce an immersive ex-
perience with large projection surfaces in a space that the
user can physically enter. Low et al. demonstrate the ad-
vantages of a life-sized projection surfaces with customized
geometry [15]; however, the projection surface geometry is
fixed and cannot be interactively moved by the users.

To produce accurate illumination on surfaces at various
locations and orientations, the angle and distance between
the projector and surface must be taken into account when
adjusting the focal length and relative pixel intensity [17].
Color correction is necessary to accommodate both slight
color mismatches between different projectors and projec-
tion surfaces with varying material properties [16, 8]. Fi-
nally, when projecting onto multi-planar scenes or non-
planar objects, there will be secondary scattering of the pro-
jected light. If the scene geometry and surface reflectance
properties can be estimated, inverse global illumination is
necessary to compensate for these inter-reflections [3, 22].

1.2. System Requirements

Our initial target application for the system was interac-
tive architectural lighting visualization. In this application,
architects and/or clients gather within the simulated envi-
ronment to evaluate the functionality and aesthetics of nat-
ural and artificial lighting for a proposed architectural de-
sign. Hence, interactivity and ease of use are of paramount
importance. To facilitate collaborative design, we require a
system which:
• Allows people to freely move and interact within the

design space without disrupting the system,
• Supports projection surfaces that can be moved in real-

time,
• Tracks surfaces despite varying illumination from pro-

jectors and ambient sources and the presence of users
within the scene, and
• Achieves real-time tracking and display rates.

a) full room lighting b) infrared camera image c) detected surfaces d) projection-applied “paint”
Figure 3. a) A variety of diffuse white projection surfaces are positioned within the active visualization volume. b) An overhead camera
captures the position of infrared LEDs marking the top edges of each surface. c) The surface configurations are matched to known distance
and angle constraints in a surface library. d) The surfaces can be “painted” different colors by the projectors.

1.3. Our Contributions

We have extended previous research to include:

• Moving (dynamic) projection surfaces, and

• A human-scale interactive immersive environment.

The distributed system we have created allows for:

• Projector keyframing - a technique to impart slow ap-
plications with a dynamic, responsive feel

• Tracking projection surfaces of known geometry with
simple IR-based LED markers, and

• A distributed rendering system which can be extended
to drive an arbitrary number of projectors.

2. System Implementation Details
Our system comprises several parts, which we divided

into processes distributed over a number of quad-core com-
puters. Since the various components of the system may
run at different rates, we couple them asynchronously; each
process can obtain the latest output from the previous stage
at any time desired (Figure 2). In the sections below we will
describe all major components of the system, including: the
physical environment, detection and tracking of projection
surfaces, our rendering algorithms, and a method for deter-
mining the projector placement.

2.1. Physical Environment and Projection Surfaces

We constructed a set of six projection surface modules in
a variety of shapes. The projection surface of each module
is 2.44m tall and is mounted on 6.35cm tall casters. The sur-
faces of the wall modules are covered on one or both sides
with either thin plywood or stretched canvas and painted
with bright white diffuse paint. The venue for our project
is roughly 19m x 14.5m x 9m tall. The floor of the room is
covered with a 12m x 12m white vinyl dance floor, which
ideally would also have a diffuse surface; however, the ma-
terial available does show a non-zero specular reflec-

tion component. Most of the other surfaces in the room are
black.

Overall, the collection of modules (Figure 3a) are suffi-
ciently complex and expressive for use in a wide variety of
applications (presented in §3) and demonstrate our ability to
detect and project on non-convex and non-planar surfaces.

2.2. LED Detection

Our system uses a single camera to obtain images of
the scene and determine the projection surface geometry
(Figure 3b). We use a gigabit-Ethernet connected camera
of 1280x960 monochrome pixels. Since the height of our
working environment is only about half the width of the
desired active area, a wide-angle fisheye lens (1.4-3.1mm
varifocal CS-mount) is required to capture the entire scene.

Since people are free to move throughout the space, and
indeed having them move projection surfaces in real time is
a fundamental aspect of our system, we wish to ignore their
presence when tracking surfaces. To achieve this, we attach
three or four near-infrared (850nm) LEDs to each projection
surface. The spacing of the LEDs is designed so that the po-
sition and orientation of individual projection surfaces can
be robustly and uniquely inferred from the LED configu-
ration. The camera lens is fitted with an optical long-pass
filter that absorbs visible light from the projectors and am-
bient sources while passing the 850nm infrared light from
the LEDs. The resulting images are extremely high-contrast
and allow the LED positions to be detected with high accu-
racy. To avoid bias introduced by distortion of the fisheye
lens, we first detect the small set of pixels corresponding to
each LED’s image, then back-project to world coordinates
before estimating the LED position with the centroid of
the world-space points. Backprojection of pixels to world-
space coordinates is facilitated by calibrating the floor to lie
in the xz coordinate plane. Since the height of the projec-
tion surfaces above the floor is fixed and known, we can find
the intersection of the line of sight from the camera with a
plane at the height of the projection surface tops, yielding
an estimate of the 3D position of each LED.

constraint
surface
library

distance

failed failed

successful
match!

constraint
angle

Figure 4. The surface recognizer searches for each wall in the set
of detected LEDs by considering all n choose k possible configu-
rations and eliminating configurations which violate the distance
or angle constraints.

2.3. Surface Recognition & Tracking

The 3D LED marker coordinates for the current cam-
era frame are passed to the surface recognizer, which an-
alyzes potential scene configurations based on geometric
constraints in the known surface library. Each surface in
the library has a specified number of marker locations, cor-
responding to LEDs on the physical surfaces, as well as
a unique set of distance and angle constraints. Distance
constraints specify the distance between a pair of markers,
while angle constraints describe the clockwise or counter-
clockwise orientation of a set of three markers.

First, the algorithm attempts to locate each surface in the
library within the scene by enumerating all possible permu-
tations of the detected markers (Figure 4). Each marker,
pi, is associated with Ni measured distance constraints and
a maximum error value, ei, equal to the spatially varying
expected LED position error (our fisheye lens yields bet-
ter accuracy in the center of the space). For each distance
constraint, d0, we calculate d, the distance between the cor-
responding markers for the permutation under considera-
tion. If |d− d0| > ei + ej , the configuration is deemed in-
valid and the corresponding branch of the permutation tree
is pruned. If all distance constraints are satisfied (within
the error threshold), then a normalized error value between
markers pi and pj is computed as follows:

Eij =
(

ei

Ni
+

ej

Nj

) (
|d− d0|
ei + ej

)
(1)

This normalization ensures that the total error for an accept-
able configuration will not exceed the sum of the maximum
expected errors of its markers, a property that is important
during the next step of recognition. Each permutation is also
checked for agreement with the known angle constraints,
and each valid surface configuration is assigned an error
equal to the sum of the normalized error values of all its
distance constraints.

Next, the recognizer combines individual surface con-
figurations into the optimal scene configuration (Figure 3c)
using a best-first tree search. At each step, the partial scene
configuration with minimum total error is expanded by cre-
ating new partial configurations that add one more surfaces

Figure 5. Our jigsaw puzzle application demonstrates the system’s
capability to “paint” a texture on a surface wherever it is placed in
the visualization volume and the ability to swap in a new textures
in response to the relative wall position — the piece edges snap
together when matching edges are placed in close proximity.

into the scene in all locations identified in the previous step.
Configurations that re-use LEDs are eliminated. The total
error of a given configuration is equal to the sum of the con-
figuration error for each placed surface plus a penalty for
each unused LED (equal to the maximum calibration error
at that spatial location). Equation (1) ensures that the total
cost for including a surface in the configuration is less than
the penalty for the un-used LEDs.

The surface tracker and predictor module compensates
for system latency by predicting future surface locations.
This module tracks markers by maintaining a Kalman filter
for each marker output by the surface recognizer and uses
the detected locations to update the corresponding Kalman
filters and generate the posterior state estimations, includ-
ing locations and velocities. The predicted surface loca-
tion is the sum of posterior location estimation from the
Kalman filter and a displacement computed by multiply-
ing the Kalman-corrected velocity and a timestep tuned to
match the latency of the current application.

Our current surface library with six moving projection
surfaces contains a total of 22 markers (Figure 5). During
typical use of the system, we occasionally receive one or
two falsely detected markers as a result of noise from ex-
traneous infrared sources. These erroneous markers could
produce an incorrect scene configuration with lower total
error than the correct solution. The frequency of incorrect
solutions was found to be negligible in our normal test en-
vironment, but could become problematic in scenarios with
significant noise. For this dataset, the LED detector, surface
recognizer, and surface tracker and predictor modules each
run significantly faster than the maximum transfer speed of
our current camera (33 fps).

2.4. Dynamic Projection Surfaces
Our projection system differentiates between two classes

a) b) c)

Figure 6. If the visualization application does not have a real-
time frame rate, our system a) captures the surface data as textures,
and b) maps these textures to the walls as they move. When the
application finishes recalculation c) the new textures are used.

of applications: real-time and interactive. For real-time ap-
plications, where the computed frame rate is at least as fast
as the camera’s frame rate, the application directly renders
to the projector displays. For interactive frame rate appli-
cations, where the computation time per frame is too long
to provide smooth display updates while the surfaces are
in motion, we introduce a two-pass approach called projec-
tion keyframing. Raskar et al. [18] use a two-pass scheme
to project images corrected for a tracked viewer’s perspec-
tive; our method uses a similar scheme to solve a different
system problem: mismatched application updates and dis-
play rates. In projection keyframing, the application does
not generate projection frames directly; instead, it generates
textures for each projection surface. The projector renderer
then renders the scene using these infrequently updated tex-
tures (Figure 6).

Our system is modular and can be used with a variety
of projector configurations. We tested the system with 4,
6, and 10 projectors. We implemented a distributed render-
ing system for both real-time and interactive applications
across multiple desktop machines. In our current 10 pro-
jector setup, we use three rendering machines that either
directly run real-time applications or alternatively run the
projection keyframing rendering program for lower frame
rate applications. Two additional machines process cam-
era frames, update the positions of the projection surfaces,
calculate blending weights to seamlessly transition between
different projectors based on surface normals and occlu-
sions, and run the computationally-intensive, less than real-
time frame rate applications, such as architectural lighting
visualization. For each camera frame, the updated positions
of projection surfaces are used to build a skeleton geometry
which is sent to each of the rendering machines. The slower
frame rate applications prepare new surface textures (pro-
jector keyframes) that are sent via network to the rendering
machines. The rendering machines then generate images
from the projectors’ perspective views with the textures and
skeleton geometry. To ensure that the rendering machines
display projection images simultaneously, we use Message
Passing Interface (MPI) barrier calls between each frame.

Figure 7. A snapshot from our visualization application showing
the 10-projector configuration we selected for our current instal-
lation. Two central projectors primarily illuminate the floor; the
remaining eight illuminate vertical surfaces.

2.5. Projector Placement

In our system, where projection surfaces can be freely
moved through an active volume, the placement and orien-
tation of projectors can greatly affect the quality of the expe-
rience produced by the resulting system. Poorly positioned
projectors can result in areas which are not covered, ap-
pear dimly lit, or suffer from low resolution. Additionally,
when multiple projection surfaces are used, occlusions may
prevent parts of projection surfaces from being lit. An ef-
fective placement of projectors will minimize these effects.
Through a simple interactive visualization application, we
investigated various placement options considering the in-
stallation constraints of the physical space. To evaluate the
relative merit of various layouts, we calculated coverage for
a collection of several hundred models representing archi-
tectural designs created by fourth- and fifth-year architec-
ture students.

We used 10 projectors to create the results for this pa-
per, 5 of these projectors have resolution 1400 x 1050 and 5
have resolution 1920 x 1080 (Figure 7). This arrangement
has proven to be quite satisfactory in practice; in our system
testing, objectionable occlusion artifacts were not observed.
The active view volume was designed to provide full sur-
face coverage to 2.5m tall projection surfaces throughout
an active volume with diameter of 12m. Our surface texel
resolution is approximately one pixel per cm.

2.6. Calibration

System calibration begins with calibrating the intrinsic
parameters of the camera and fisheye lens using the model
presented by Scaramuzza et al. [21]. Their model accurately
calibrates the camera, producing an error of ±0.36 pixels
(≈ 0.42–1.3 cm in the center and edge of the space, respec-
tively). To determine the extrinsic camera parameters, we
use a calibration grid of points on the floor and position an
infrared LED marker on each grid point. To calibrate the
projectors, a photodiode-based sensor is placed on each cal-
ibration point, and Gray-coded structured light patterns are

Figure 8. The dynamic projection surfaces can be arranged to sketch out an architectural interior. The projectors display the results of a
global illumination daylighting simulation on the surfaces. The user controls other variables of the design including the virtual wall color,
placement of windows, and time of day through a handheld wireless interface.

emitted from each projector in turn, allowing the location of
the sensor in projector image coordinates to be determined.
We collect data for each grid point on both the floor and
2.5m above the floor. Using the resulting 2D-3D correspon-
dences, we apply Tsai’s algorithm [24], to yield the intrinsic
and extrinsic parameters of each projector.

The accuracy of the calibration is within a pixel through-
out most of our viewing volume. When a projection surface
is not actively moving, the edge of the projected “paint”
usually reaches correctly to the edge of the target surface
and does not spill onto the floor. When the projection sur-
face is in motion, in particular when it is abruptly accelerat-
ing or decelerating, we do observe some texture sliding, as
expected. The physical assembly for some of the projection
surfaces is less rigid and these modules do not always main-
tain their assumed true vertical orientation during motion,
which yields geometric estimation errors and projection in-
accuracy. This is most apparent on the “L”-shaped walls
and could be addressed by improving the structural rigidity
of the walls or “shrinking” the target projections when these
surfaces are in motion. Alternatively, these shapes could be
more robustly scanned and/or tracked with additional cam-
eras or other methods.

3. Applications
Using the basic paradigm of tracked moving projection

screens, we envision three general classes of applications
that would make use of our system and present a proto-
type example for each. In the first category of application,
typified by architectural visualization, the projection sur-
faces represent physical entities, such as walls in a build-

ing. In the second type of application, projection surfaces
are used to interactively explore volumetric data by defining
cross-sections. Finally, we developed applications where
the moving projection surfaces are used as general purpose
user-interface elements.

3.1. Architectural Visualization

In architectural visualization applications, the moving
projection surfaces become walls of a proposed interior de-
sign; in this way, users may experience an immersive feel
for the space as they may walk through it and experience
it at full-scale. Significantly, several users may experience
the environment simultaneously; for example, an architect
and client may collaborate on the design in real-time. This
interaction mode is in contrast to virtual reality systems
employing head-mounted displays or viewpoint-tracking,
where typically only a single user experiences and controls
the environment.

The users position a set of large mobile partition walls
to sketch the full-scale 3D geometry of their design. The
locations of windows, material properties of the virtual sur-
faces, environmental parameters of the simulation, and a
time-lapse animation mode are specified through a hand-
held wireless input device (Figure 1b). The system inter-
prets the sketch, computes a global illumination solution,
and displays the solution directly on the walls (Figure 8).

Accurate global illumination and sharp shadows are im-
portant visual factors in architectural daylighting analysis.
We use radiosity to compute the indirect illumination and
shadow volumes to generate the direct illumination from the
sun. Form factors between surface patches must be recom-

Figure 9. Visualization of volumetric data.

puted when the geometry is edited; i.e., when the projection
surfaces are moved. Visualizations that involve relighting a
fixed scene, such as changing the materials or the time of
day, are sufficiently fast for interactive analysis and design
(3-5 fps), but still benefit from our projection keyframing.

Although our initial application concentrates on lighting
simulations, we envision other architectural simulations and
visualizations would benefit from online immersive simula-
tions. For example, spatially-varying heating, cooling, or
airflow data could be simulated for a given room and then
projected using pseudo-color or isoline techniques, possibly
annotated with numerical data. Since the system allows for
intuitive geometric design interaction, we expect that these
applications would enjoy the same benefits as lighting sim-
ulations. Due to the computational complexity of many of
these simulations, our projector keyframing method (§2.4)
will be necessary to achieve smooth real-time updates as the
projection surfaces are moved (Figure 6).

3.2. Volumetric Data

By substituting the 2D textures used for architectural vi-
sualization applications with 3D textures, a volumetric vi-
sualization system is created (Figure 9). First, a volumet-
ric texture, for example computed tomography or magnetic
resonance imaging medical data, is fixed to the coordinate
axes. Then, a projection surface can be used to slice through
the data, displaying the resulting cross-section on its sur-
face. Similar systems using small-scale surfaces and single
projectors have been previously described [10, 9, 23]. The
utility of the visualization system is enhanced by the ease
with which the cut plane(s) can be moved, and the tangible
feedback and interactivity of the system provide an intuitive
experience for exploring the volumetric data. We found this
system easier to use than manipulating the cut-plane on a
traditional monitor, while facilitating multi-user interaction.

Since, in this application, the volumetric dataset is an-
chored “in space”, any number of projection surfaces plus
the floor can be swept through it to produce novel views of
multiple sections simultaneously (Figure 1c). This mode
of use facilitates easier visualization of structures in the
dataset, and the tangible interface enhances the experi-
ence of interaction. Although our initial applications for
this mode are explorations of medical data, any volumetric

Figure 10. A game of immersive augmented reality ping pong.

dataset could be experienced in a similar manner. In fact,
the dataset need not be static; we are particularly excited
about the prospect of volumetric simulations that can also
be affected by movement of the projection surfaces.

3.3. General User Interface Elements

Since the positions of the projection surfaces are tracked
in real-time, they can be used as general-purpose user in-
terface elements, replacing mice or joysticks. Information
relevant to the application can be projected on the surfaces,
and user input taken from the motion of the surfaces.

Using this paradigm, we implemented a ping-pong game
in which players manipulate the projection surfaces as phys-
ical game paddles (Figure 10). The court lines and a virtual
ball are projected on the floor surface, and additional pro-
jection surfaces are used to keep track of the current score.
The game play is an interesting mix of singles and dou-
bles strategies, with two players working as a team to move
a single projection surface (paddle). In our informal pre-
sentation of this interface to people outside of our research
group, we found little to no instruction was required to use
this natural and intuitive user interface.

4. Conclusions and Future Work

We have presented a novel human-scale dynamic pro-
jection visualization environment and demonstrated a vari-
ety of engaging applications that make use of this system.
We found that relatively simple system components can be
connected to produce a very usable visualization system,
although each component could be enhanced for particular
applications. For interactive games, for instance, fast pro-
jection surface tracking and high frame rates are of great
importance; thus, for these applications, tracking and ren-
dering engines can be optimized. Other applications may
require more flexibility in size or shape of projection sur-
faces; to enable these, only the tracking component need
be modified. Similarly, although the common, inexpen-
sive, “gaming-class” video cards used to drive projectors in
our current system proved adequate for most visualization
tasks, more sophisticated cards which allow genlocking of
the video output would provide a more seamless experience.

Acknowledgments
The authors wish to thank Eric Ameres, Mick Bello, and

Robert Bovard from Rensselaer’s Experimental Media and
Performing Arts Center for their technical support of our
research. We also thank Bill Bergman for assistance in con-
structing the projection surfaces. This work was supported
by NSF CMMI 0841319, NSF IIS 0845401, and a grant
from IBM.

References
[1] M. Ashdown, M. Flagg, R. Sukthankar, and J. M. Rehg. A

flexible projector-camera system for multi-planar displays.
In 2004 Conference on Computer Vision and Pattern Recog-
nition (CVPR 2004), pages 165–172, June 2004. 2

[2] D. Bandyopadhyay, R. Raskar, and H. Fuchs. Dynamic
shader lamps: Painting on movable objects. In ISAR ’01:
Proceedings of the IEEE and ACM International Sympo-
sium on Augmented Reality (ISAR’01), page 207, Washing-
ton, DC, USA, 2001. IEEE Computer Society. 2

[3] O. Bimber, A. Grundhöfer, T. Zeidler, D. Danch, and P. Ka-
pakos. Compensating indirect scattering for immersive and
semi-immersive projection displays. In VR ’06: Proceedings
of the IEEE conference on Virtual Reality, pages 151–158,
Washington, DC, USA, 2006. IEEE Computer Society. 2

[4] O. Bimber and R. Raskar. Modern approaches to augmented
reality, 2007. ACM SIGGRAPH 2007 Course Notes. 1

[5] D. Cotting, M. Naef, M. Gross, and H. Fuchs. Embedding
imperceptible patterns into projected images for simultane-
ous acquisition and display. In ISMAR ’04: Proceedings of
the 3rd IEEE/ACM International Symposium on Mixed and
Augmented Reality, pages 100–109, Washington, DC, USA,
2004. IEEE Computer Society. 2

[6] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti. Surround-
screen projection-based virtual reality: The design and im-
plementation of the cave. In Proceedings of SIGGRAPH 93,
Computer Graphics Proceedings, Annual Conference Series,
pages 135–142, Aug. 1993. 2

[7] M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno,
A. Kunz, E. Koller-Meier, T. Svoboda, L. V. Gool, S. Lang,
K. Strehlke, A. V. de Moere, and O. Staadt. blue-c: A spa-
tially immersive display and 3d video portal for telepresence.
ACM Transactions on Graphics, 22(3):819–827, July 2003.
2

[8] A. Grundhöfer and O. Bimber. Real-time adaptive radiomet-
ric compensation. IEEE Transactions on Visualization and
Computer Graphics, 14(1):97–108, Jan./Feb. 2008. 2

[9] K. Hirota and Y. Saeki. Cross-section projector: Interactive
and intuitive presentation of 3d volume data using a hand-
held screen. In 3D User Interfaces, 2007. 3DUI ’07. IEEE
Symposium on, pages –, March 2007. 7

[10] J. Konieczny, C. Shimizu, G. Meyer, and D. Colucci. A
handheld flexible display system. In Visualization, 2005. VIS
05. IEEE, pages 591–597, Oct. 2005. 7

[11] J. Lee, S. Hudson, and P. Dietz. Hybrid infrared and visible
light projection for location tracking. In UIST ’07: Proceed-
ings of the 20th annual ACM symposium on User interface

software and technology, pages 57–60, New York, NY, USA,
2007. ACM. 2

[12] J. C. Lee, P. H. Dietz, D. Maynes-Aminzade, and S. E. Hud-
son. Automatic projector calibration with embedded light
sensors. In ACM Symposium on User Interface Software and
Technology (UIST), 2004. 2

[13] J. C. Lee, S. E. Hudson, J. W. Summet, and P. H. Di-
etz. Moveable interactive projected displays using projector
based tracking. In UIST ’05: Proceedings of the 18th annual
ACM symposium on User interface software and technology,
pages 63–72, New York, NY, USA, 2005. ACM. 2

[14] J. C. Lee, S. E. Hudson, and E. Tse. Foldable interactive
displays. In UIST ’08: Proceedings of the 21st annual ACM
symposium on User interface software and technology, pages
287–290, New York, NY, USA, 2008. ACM. 2

[15] K.-L. Low, G. Welch, A. Lastra, and H. Fuchs. Life-sized
projector-based dioramas. In ACM Symposium on Virtual
Reality Software and Technology, pages 93–101, 2001. 2

[16] A. Majumder and R. Stevens. Color nonuniformity in
projection-based displays: Analysis and solutions. IEEE
Transactions on Visualization and Computer Graphics,
10:177–188, March 2004. 2

[17] C. Pinhanez. The everywhere displays projector: A device to
create ubiquitous graphical interfaces. In Ubiquitous Com-
puting (Ubicomp), September 2001. 2

[18] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and
H. Fuchs. The office of the future: A unified approach
to image-based modeling and spatially immersive displays.
In Proceedings of SIGGRAPH 98, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 179–188, July
1998. 2, 5

[19] R. Raskar, G. Welch, K.-L. Low, and D. Bandyopadhyay.
Shader lamps: Animating real objects with image-based illu-
mination. In Rendering Techniques 2001: 12th Eurographics
Workshop on Rendering, pages 89–102, June 2001. 2

[20] R. Raskar, R. Ziegler, and T. Willwacher. Cartoon diora-
mas in motion: Apparent motion effects on real objects with
image-based illumination. In International Symposium on
Nonphotorealistic Animation and Rendering (NPAR), June
2002. 2

[21] D. Scaramuzza, A. Martinelli, and R. Siegwart. A flexi-
ble technique for accurate omnidirectional camera calibra-
tion and structure from motion. In ICVS ’06: Proceedings
of the Fourth IEEE International Conference on Computer
Vision Systems, page 45, Washington, DC, USA, 2006. IEEE
Computer Society. 5

[22] Y. Sheng, T. C. Yapo, and B. Cutler. Global illumination
compensation for spatially augmented reality. Computer
Graphics Forum: Eurographics Conference, 29, 2010. 2

[23] M. Spindler, S. Stellmach, and R. Dachselt. PaperLens: Ad-
vanced magic lens interaction above the tabletop. In Pro-
ceedings of ACM International Conference on Interactive
Tabletops and Surfaces, Nov. 2009. 7

[24] R. Y. Tsai. An efficient and accurate camera calibration tech-
nique for 3d machine vision. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
364–374, 1986. 6

