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Nicolas H. Lehment, Dejan Arsić, Moritz Kaiser, Gerhard Rigoll
Institute for Human Machine Communication

Technische Universität München
Arcisstr. 21, 80634 München, Germany

lehment, arsic, rigoll @ tum.de

Abstract

Current experiments with HCIs have shown a high de-
mand for more natural interaction paradigms. Gestures are
thereby considered the most important cue besides speech.
In order to recognize gestures it is necessary to extract
meaningful motion features from the body. Up to now
mostly marker based tracking systems are used in virtual re-
ality environments, since these were traditionally more reli-
able than purely image based detection methods. However,
markers tend to be distracting and cumbersome. Following
recent advances in processing power, it becomes possible
to use a camera system in order to obtain a depth image of
the test subject, match it to a pre-defined body model, and
thus track the body parts over time. We will present a full-
body system based on APF which enables full body track-
ing utilizing point clouds recorded with a 3D sensor. Fur-
ther refinement is provided by a specially adapted inverse
kinematics system. A GPU based implementation speeds up
processing significantly and allows near real time perfor-
mance.

1. Introduction
Over the last years, methods for interacting with com-

puters have continuously moved towards more natural
forms of communication. Following keyboard and mouse
interfaces, recent trends point towards more accessible and
intuitive interaction methods. Especially in the context of
virtual reality (VR) and augmented reality (AR), natural
methods of interaction with the virtual environment are
desirable and more pleasant. Using motion patterns and
gestures familiar from everyday use allows users to adapt
quickly to new applications and lowers the learning curve
for handling complex systems.
Currently such interactions are mostly achieved by track-
ing markers located on the person’s limbs or hand-held

controllers, followed by an analysis of the extracted
trajectories. This procedure usually requires time intensive
preparation and attaching active or inactive markers to the
person tracked. In order to provide a more comfortable
and realistic experience, it is desirable to avoid such
markers by using a simple camera instead. Many of the
HMI systems presented to date rely the on analysis of
monocular images and are still limited by self-occlusions
or ambiguities. While there are systems using multiple
viewing angles to avoid such problems, these are usually
unfit for everyday use outside of a laboratory. In order to
avoid these drawbacks, we use depth images provided by
a stereo camera to capture the tracked person. Analyzing
the extracted point clouds, we fit a body prototype to the
data using an annealing particle filter (APF) approach. This
model-based approach avoids most self-occlusion conflicts
and ambiguities, without requiring pre-learned motions or
dedicated detection of single body parts.
Stochastic methods like the APF are usually more robust
than deterministic methods ([9]) and have the additional
benefit of effectively utilizing modern parallel hardware, ei-
ther on a single computer or spread over several machines.
Annealing particle filters have already been utilized in
various pose tracking applications, frequently with multiple
camera angles ([5],[6],[8]) and have been shown capable
to handle depth information when using additional cues:
Azad ([2]) and Bernier ([3]) used skin cues as anchor points
for the wrists, Darby ([4]) relied on pre-learned motion
patterns.
Whereas most previous works in the field of pose tracking
relied on silhouettes, edges and specific anchor points like
hands or heads, our approach aims to be independent from
the source of the 3D point cloud. This practically means us-
ing only 3D data without any color or texture information,
since a number of devices operate by time-of-flight (TOF)
measurements, such as a photonic mixture device [1] or
other non-visual methods. Although this leads to a loss of
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precision and jitter, it is sufficient for gesture recognition
modules and allows for better interoperability with devices
ranging from stereo-camera systems to TOF cameras. To
compensate for the absence of a dedicated hand tracker,
we developed a self-adapting inverse kinematics system
for improved fitting of arms and legs. First trials were
performed using depth data obtained from a stereo camera,
as experience has shown a lack of detail with current PMD
sensors.
We will demonstrate that it is possible to perform full-body
APF based tracking using only depth-data in near real time
by intelligently reducing the number of particles required
and exploiting modern parallel computer hardware.

2. Acquisition of 3D Data

As the purpose of our approach was to create a versatile
pose tracker for a number of different data sources, we
aimed to become independent from specific products or
systems. So while we used a proprietary system for image
acquisition and the calculation of 3D data, all further
processing steps are designed to be compatible with depth
data from any source.
Stereo images were captured using a Point Grey Bum-
blebee XB3 camera. Before calculating the 3D data, the
foreground was extracted using a gaussian mixture model
as described in [10]. From the masked image, the tracked
person’s 3D cloud was then calculated with the Point Grey
Triclops library. The data were then reformatted into an
array of 3D points and passed on to the pose estimator.

3. Matching to 3D point cloud

3.1. Annealing Particle Filter

Particle filters are a powerful, stochastic method for
exploring high-dimensional solution spaces and variations
have been used in a number of tracking scenarios. Com-
pared to deterministic methods, which had been the main-
stay of tracking research until recently, they show superior
robustness and precision while enabling full use of modern
parallel hardware. Based on Monte-Carlo methods, parti-
cle filters rely on random sampling to approximate solution
space PDFs without requiring exact knowledge of the un-
derlying functions. This is especially advantageous in track-
ing scenarios, where there is often only limited knowledge
of the observed scene. Usually, an initial set of particlesXt,
each representing a set of parameters, is matched against
data Zt from observations. The particle set can be formal-

ized as follows:

x = [Tbase,Rbase, θ1, . . . , θDoF ] (1)

Xt = [x(0), . . . ,x(X)] (2)

Xπ
t = [(x(0), π(0)), . . . , (x(X), π(X))] (3)

Based on the quality of the matching a score
w(x(i),Z) = π(i), also called weight, is assigned to
each particle x(i). The particles are then resampled based
on their weight and yield a new particle set which can be
used to estimate a solution. After mutating the parameters
in the new set, the resulting set Xt+1 can then be used for
the next observation.
The annealing particle filter concept is a variation on com-
mon particle filters described in great detail by Deutscher
([5]) and Gall ([7]). The basic idea is to replace the single
weighting step of the particle filter by several gradual
steps (the simulated annealing), thereby achieving a better
exploration of the configuration space and avoiding local
maxima of the weighting function. This approach, as all
particle filters, allows for an easy parallelization and has
the added advantage of requiring fewer particles.

3.2. Designing The Weighting Function

While the conceptual framework of the annealing parti-
cle filter can be applied to a number of different problems,
the specific weighting function for the individual particles
needs to be tailored closely to the application. Since we
are working solely with a cloud of 3D data points signify-
ing the detected surface of the tracked person, we aim to
minimize the difference between the detected cloud and the
mesh of a cylinder-based stickman model. The full-body
model used consists of 15 cylinders, with a mesh of 4 x 5
points, projected onto the visible side, and currently allows
for 30 degrees of freedom. An exemplary stickman is there-
fore represented by a total of 300 3D points (M) which have
to be matched against the cloud of 3D data points (Z).
To achieve best matching, we use three separate weight-
ing criteria: Matching of skeleton points against the point
cloud, matching cylinder edges against the point cloud and
finally reverse-matching the point cloud against the skeleton
points. In the following we will briefly explain the reason-
ing and method behind the weighting process. Matching the
3D cylinder points against the 3D point cloud aims at min-
imizing the euclidean distance between each cylinder point
and the closest cloud point. The first weight is therefore
computed as:

wM2Z
′ =

∑
m∈M

e10 minc(deukl(m,z)), (4)

wM2Z = e1.0−wM2Z
′
. (5)



Since the visible edges of the cylinders are especially
sensitive to disalignment with the cloud point, we can use
these for a more precise fitting. We therefore modify the
skeleton-to-cloud scoring (4) to use only edge points Me

which leads to

wE2Z
′ =

∑
me ∈Me

e10 minc(deukl(me,z)), (6)

wE2Z = e1.0−wE2Z
′
. (7)

While these two weights give a good indication of how
well a skeleton fits inside the point cloud, we also want to
make sure that the point cloud is totally filled by the skele-
ton. Due to the size of the cloud, we segment it into smaller
subsections for improved fitting of smaller regions Zi. The
segmentation is achieved by k-means clustering of the point
cloud. Outlying regions with only a few points, like hands
and feet, therefore tend to have their own clusters, giving
them equal weight to larger, more central regions like the
torso. Thus, problems arising from the unequal distribution
of data points over the body are largely avoided. To ensure
that all parts of the point cloud are close to some part of the
skeleton, we use the following relationship:

w(i)
Z2M
′ =

∑
z∈Zi

e10 mins(deukl(z,m)), (8)

w(i)
Z2M = e1.0−w

(i)
Z2M

′
, (9)

wZ2M =
∏

i

w(i)
Z2M. (10)

Now we can multiply these weights to get the final score for
a single particle:

wscore = wZ2M × wE2Z × wM2Z (11)

The different characteristics of the individual weighting
functions are illustrated by a simplified 2 DoF example in
fig. 1. The simplified example consists of an arm-torso
model, in which the arm is spread slightly away from the
torso, with the lower arm parallel to the body at 10 cm
distance. It becomes obvious that the wZ2M function leads
to the best fitting, avoiding ambiguities arising from mis-
placement of limbs close to the torso (discernible as vertical
ridges in the two other functions).
In addition to the point cloud based weighting, other mech-
anisms influence the particle score as well: Self-collision
checks between limbs and joint limit checks are included in
order to avoid illegal poses and can impose severe penalties
on unwanted configurations. However, a full description of
these would exceed the focus of this paper. Using the final
score to judge the quality of a given pose particle, we can
now use the framework of an APF to estimate the best pose
fitting the observations.

3.3. Resampling of Particles

The weighted particle set Xπ
t,k at timestep t, annealing

step k, consists of Xπ
t,k = [(x(0), π(0)), . . . , (x(X), π(X))].

The particle x(i)
t, k itself contains the encoded joint angles and

basic transformations, while the weight, w(i)
t, k , is computed

from the fitting of the particle to the observed data. Re-
sampling was performed by stochastic universal sampling,
generating Xt, 0 from Xt-1, K with a wide random scattering
over the legal range of the parameter

b
(i)
IF =

1

12
(x(i)max − x

(i)
min)2 ∀x(i) ∈ x (12)

B = Diag(bIF) (13)

x
(n)
t,0 = x

(n)
t−1,K + cIFR(0,B) ∀x(n)

t−1,K ∈ Xπ
t−1,K

(14)

and Xt,k from Xt,k-1 with a random scattering set propor-
tional to the covariance of the parameters in the particle set.

B = Cov(X) (15)

x
(n)
t,k = x

(n)
t,k−1 + cstepR(0,B) ∀x(n)

t,k−1 ∈ Xπ
t,k−1

(16)

The different resampling and scattering schemes are sum-
marized in the algorithms 2 and 3.

Inverse Kinematics: The regular APF approach is well
suited for fitting complex functions with independent vari-
ables. However, the human body consists of a number of
kinematic chains, where the position of the wrist depends
on four different joint angles. So in order to improve the
matching of an arm with a low number of particles, it may
not be sufficient to randomly mutate the angles. Instead, we
use a simplified inverted kinematic chain to inject a number
of modified particles in the resampling step, exploring alter-
native poses of the arm.
While such approaches usually rely on individual tracking
of the hands as anchor points for the inverse kinematics as in
[2], we instead utilize the wrist position from the last pose
estimate. Although this is less accurate, it eliminates the
need for a dedicated hand tracking and consequently speeds
up processing. To generate the modified particles, we start
with the last ’optimal’ estimate. The elbow is rotated out
of its current ’optimal’ position and the resulting shoulder
and elbow angles φS, x, φS, y, φS, z, φElbow are used to build a
new particle (see algorithm 1.Without fixed and reliable an-
chor points such as separately tracked hands, the APF tends
to curl up the arms close to the body. We counteract this ef-
fect by artificially extending the arms during the calculation
of the inverse kinematics, as shown in fig. 2.
Static Particles: Nine basic arm poses were selected (arms
forward, to the left/right and hanging down in all combina-
tions) and are combined with particles from the current pop-
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Figure 1. Components of the final weighting mechanism, from left to right: wM2Z, wZ2M, wE2Z, π(n)
t,m. All results normalized. Simplified

arm-torso model with 2 DoF in Shoulder and Elbow.
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Figure 2. Artificially extending the elbow during calculation of the inverse kinematics.

ulation. The static particles are required to help initializa-
tion and recover the arms after a number of common track-
ing failures.
Randomizing: To counteract premature convergence on
local optima, we insert about 10% of randomized particles.
These are particles drawn by stochastic universal sampling
from the existing population and then scattered by large ran-
dom mutation (Rscatter) of the joint angles. This allows for a
more thorough exploration of the configuration space even
as the regular particle set is converging.

3.4. Utilizing GPU and Multicore Processing

A typical skeleton, calculated from a single particle,
consists of 300 points. Using 300 particles and assuming
a 3D cloud of a thousand points, 90 × 106 point-to-point
distances have to be calculated. While this would be
prohibitive on a regular CPU, modern GPUs are perfectly
fitted for just such a task. By exploiting the simple basic
structure of the euclidean distance calculation and the
weighting functions, we were able to run large parts of
the weighting process on a regular NVIDIA Geforce GTX
275 graphics card. To this end, the euclidean distance
calculation d(m, z), the search for the minimal distance
min(d(. . .)) and the final weight calculation were imple-
mented in CUDA as kernel functions.
To further improve performance, parts of the processing
pipeline were parallelized into threads running on different
cores of a multi-core CPU. While the APF is calculating
the pose for a point cloud, the image processing is al-
ready preparing the point cloud for the next time step. This

leads to an improved utilization of CPU und GPU resources.

4. Performance Evaluation

The algorithm has been tested on a 2.66 GHz Intel
Core2 Quad CPU with 3 GB RAM and NVIDIA GTX 275
graphics card, achieving 2.5 fps (250 particles, 8 annealing
steps). However, GPU memory management is not yet
optimized and a number of functions, like pose calculation,
k-means clustering and resampling, are still to be moved
from the CPU to the GPU. We therefore expect further
significant increases in processing speed, up to real time
capability.
For testing, a set of 80 different movement sequences was
analysed with four iterations each, giving 320 sequences.
Four different persons performed a number of gestures and
poses of varying complexity, ranging from simple waving
to complexer poses like ducking, bowing or dragging
virtual objects. At 300 particles and 8 annealing steps,
we observed 80.6% successful tracks. Of these, 31.0%
suffered brief lapses and were recovered successfully.
By introducing 10% particles with inverse kinematics,
the tracking error on hands and elbows was decreased
by 12.74% compared to an otherwise identical tracking
algorithm with no inverse kinematics. Some exemplary
poses are shown in fig. 3 with an overlaid body model .
However, the tracking experiences a fair amount of jitter.
This is in part due to the missing anchor point tracking, but
also caused by the rather basic cylinder based body model
used.



Figure 3. Different poses with the matched body prototype overlaid, full body and upper body only

Figure 5. Examples of a quick adaption from full-body tracking to upper-body tracking.

To evaluate the effectiveness of the extending inverse
kinematics injection, the relative error for several injec-
tion percentages was computed from manually labeled
reference points and normalized to a range from 0.0 to
1.0 to gain the relative improvement. As shown in fig. 4,
the relative limb error drops significantly with increased
injection of modified particles. While one may suspect
that this might also be due to more stable particles being
artificially introduced into the particle set, the lack of
improvement on the rest of the body shows that this is
most likely not the case. If the introduction of particles
derived from the optimal pose were to affect the tracking
of the body in general, this would result in a significant
drop for all other body parts as well. The fact that the rest
of the body tracking remains virtually unaffected by the
insertion of modified particles (the mean error varies only
by ∆eOther = 0.0016 meters) shows that the arm tracking
is indeed improved by the inverse kinematics and not some
other effect.
We were able to convert the full body tracker to an upper

body tracker without any modification of the algorithm
itself simply by providing a modified body model (fig. 5).
This underscores the flexibility gained from abandoning
pre-learned motion models in favor of a purely depth-
centered approach. However, this flexibility comes at
the price of decreased stability and robustness. With the
introduction of affordable and more precise TOF cameras
as an alternative to stereo-based vision systems the conflict
between flexibility (using only depth data) and precision
(using additional cues such as skin-tracking) is expected to
become more pronounced.
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Figure 4. Relative error based on percentage of particles modified
by inverse kinematics (0% - 20%), with 1.0 being the maximum
error for each group. Mean error ranges in meter: ∆eArms =
0.0219, ∆eOther = 0.0016.

5. Conclusion and Outlook

In this paper we have shown a purely depth data based
approach for tracking full body movements in frontal view
by APF. By reducing particles, exploiting parallelism and
intelligently exploring the pose space we achieved near real
time performance on off-the-shelf hardware. Furthermore
an approach to inverse kinematics independent from typical
anchor points such as hands was demonstrated.
For our future work, we expect to reach real time capability



by moving further functions onto the GPU and optimizing
memory management. With further refinement of the
body prototypes and improvements and accelerations on

Algorithm 1 Calculation of shoulder angles after elbow ex-
tension and rotation by α, all vectors in shoulder reference
system

a = TE0

S
b = TH0

S −TE0

S
c = TH0

S

β = arccos
((
|a|2 + |c|2 − |b|2

)
/ (2 |a| |c|)

)
m = |a| cos(β)

c

|c|
n0 = a−m
βext = 0.6β

mext = |a| cos(βext)
c

|c|
next = |a| sin(βext)

n0

|n0|
aext = next + mext

cext =

√
|b|2 − |next|2

c

|c|
bext = cext + aext

γext = arccos
((
|a|2 + |b|2 − |cext|2

)
/ (2 |a| |b|)

)
φElbow = γext − π
q0 = QuaternionFromAxisAngle(cext, α)
n = q0 next q

−1
0

h1 = (0, 0, 1)T

h2 =
aext

|aext|
δ1 = VecOnVecRoundAxis(h1, h2, h1 × h2)
q1 = QuaternionFromAxisAngle(h1 × h2, δ1)
q2 = QuaternionFromEuler(φElbow, 0, 0)
q3 = q1 q2

h3 = q3 h1 q
−1
3

δ2 = VecOnVecRoundAxis(h3, b, aext)
q4 = QuaternionFromEuler(0, 0, δ2)
q5 = q1 q4

(φS, x, φS, y, φS, z) = QuaternionToEuler(q5)

Algorithm 2 Resampling between timesteps
St+1,norm = SUS(St,M ) + Rscatter

St+1,inverse = InverseKinematics(soptimal
t,M ) + 0.1Rscatter

St+1,static = StaticPoses(St,M ) + 0.1Rscatter
St+1,0 = [St+1,norm, St+1,inverse, St+1,static]

Algorithm 3 Resampling between annealing steps
St+1,norm = SUS(St,M ) + Rcovariance
St+1,crossover = Crossover(St,M ) + Rcovariance
St+1,random = SUS(St,M ) + Rscatter
St+1,0 = [St+1,norm, St+1,crossover, St+1,random]

the occlusion detection we expect significantly increased
tracking precision. Ultimately we hope to build a versatile
pose tracking module fit for fast re-adaption to different
data sources and application scenarios.
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