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Abstract

In this paper, we present a technique for distributed self-
calibration of pan-tilt camera network using multi-layered
belief propagation. Our goal is to obtain globally consistent
estimates of the camera parameters for each camera with
respect to a global world coordinate system. The network
configuration changes with time as the cameras can pan and
tilt. We also give a distributed algorithm for automatically
finding which cameras have overlapping views at a certain
point in time. We argue that using belief propagation it is
sufficient to have correspondences between three cameras
at a time for calibrating a larger set of (static) cameras with
overlapping views. Our method gives an accurate and glob-
ally consistent estimate of the camera parameters of each
camera in the network.

1. Introduction
In this paper, we present a distributed algorithm for self-

calibration of a pan-tilt camera network using multi-layered
belief propagation. The goal of our distributed calibration
algorithm is to obtain a globally consistent and accurate
estimate of each camera’s parameters (intrinsic as well as
extrinsic) with respect to a global world coordinate sys-
tem (WCS). As the cameras can pan and tilt, the camera
network contains various mutually exclusive sub-networks,
where, all cameras in a sub-network view a common re-
gion. For distributed calibration, we perform multi-camera
self-calibration at each camera in a sub-network and apply
belief propagation to obtain consistent camera parameters
in each sub-network. We then propagate belief between
sub-networks to obtain the globally consistent and accurate
estimates of the camera parameters for each camera in the
network.

In general, pan-tilt camera networks are well-suited for
wide area surveillance. Automated surveillance requires
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that the camera network be calibrated with respect to a
global WCS so that tasks such as 3D-tracking, recogni-
tion of objects, activities and events can be effectively per-
formed. Moreover, this also requires that the camera param-
eters be consistent and accurate with respect to one another,
which cannot be achieved by individually calibrating each
camera. Self-calibration of a pan-tilt camera network is nec-
essary as it is, in general, difficult and impractical to use an
external calibration object.

Distributed calibration is advantageous for pan-tilt cam-
era network, as it is more robust against failures. In case of
failure of a camera, the information can be retrieved from
its neighbors. Moreover, unlike failure of the central server
which may lead to shutting down of the system, failure of
a camera does not impact the complete network. Also, in
case of distributed calibration, addition of new cameras in
the network does not require re-calibration of the complete
camera network. Our distributed calibration also leads to
making the system scalable, as large camera networks span-
ning a wide geographical area would contain mutually ex-
clusive sub-networks, thereby, no communication and com-
putation among the cameras of these sub-networks would
be necessary for calibration. Therefore, in effect, cameras
which do not view a common scene in any of their pan-tilt
positions do not affect each other. Therefore, our distributed
algorithm calibrates the complete camera network by cali-
brating smaller sub-networks, making the system scalable.

Distributed calibration of the camera network may lead
to inconsistencies in the estimation of the camera parame-
ters since these parameters are computed at each node of
the network. We use belief propagation to leverage on the
information at each node of the camera network to arrive at
a consistent and accurate estimate of the camera parameters
of each camera in the network.

The configuration of a pan-tilt camera network is dy-
namic. The various sub-networks that exist in the system
change across time, that is, cameras in different pan-tilt po-
sitions become a part of different sub-networks across time.
Moreover, within a fixed time interval, a camera can be a
part of only one sub-network. We give a technique to au-



tomatically find the sub-networks as well as a method to
automatically control the cameras so that they become parts
of different sub-networks across time, which is essential for
propagating belief across various sub-networks. We discuss
the related work in the next section.

2. Related Work
Multi-camera calibration is a well-studied problem in

computer vision. Pan-tilt camera network calibration has
also become an important area of research. Most of the
multi-camera calibration methods are based on centralized
processing. As camera networks are becoming larger, dis-
tributed algorithms are becoming a necessity. Recently,
in [10], an online distributed algorithm has been proposed
for cluster based calibration of a large wireless static cam-
era network using features detected on known moving tar-
get objects. They assume that the intrinsic parameters are
known and that each target object has known multiple dis-
tinctive features. In [7], 3D features and geographic hash
tables are used while in [5] object motion is used for cali-
bration. Very recently, authors in [4], have proposed a dis-
tributed algorithm for calibration of a camera sensor net-
work, where they assume that one of the cameras is cali-
brated and use epipolar geometry based algorithms at each
node to obtain its calibration parameters. They show that a
globally consistent solution can be reached in a distributed
manner by solving a set of linear equations.

In [1], a method for self-calibration of purely rotating
cameras using infinite homography constraint is proposed.
Davis et al. [2] present a method for calibrating pan-tilt
cameras and introduce a complete model of the pan-tilt ro-
tation occurring around arbitrary axes. Both these methods
are for calibrating a single camera and not for calibration
of a pan-tilt camera network. Authors in [12], estimate both
the internal and external parameters of a pan-tilt camera net-
work without requiring any special calibration object. But,
their method is feature based and estimates the camera pa-
rameters by using the complete set of images captured at
each pan-tilt-zoom configuration of the camera.

Radke et al. [3], give a distributed calibration method
for a static camera network using belief propagation. They
assume that the cameras form a graph where cameras are
the nodes and an edge exists between the nodes if they
have overlapping views. In their case, since the cameras
are static, the configuration of the network does not change
with time and the cameras form one connected graph. We
extend this approach for distributed calibration of pan-tilt
camera network using multi-layered belief propagation. In
our case, many mutually exclusive graphs exist at the same
time and the same camera may belong to many different
graphs across time. We also address the issues of automat-
ically finding the various graphs in the system. In [3], they
assume that the camera network forms a connected graph,

whereas we give a method for automatically controlling the
cameras to create connected graphs. Also, we propose the
use of multi-layered belief propagation, first within a graph
for a consistent measure of the camera parameters within
the graph, and then between multiple graphs to get a consis-
tent estimate of the camera parameters in the pan-tilt camera
network.

The methods in [3, 10, 7, 4] are for distributed calibration
of static camera networks while we propose a technique for
distributed calibration of pan-tilt camera network. More-
over, unlike [4, 10], we do not require that the internal or
external parameters of any camera be known and do not re-
quire any external calibration object. Also, unlike [12], our
method does not consider every pan-tilt configuration of any
camera in the network.

3. Distributed calibration of pan-tilt camera
network: an overview

We assume that the camera network has N ≥ 3 cameras
and each camera has a unique number n ∈ {1, 2, . . . , N}
associated with it. We also assume that each camera has a
processing unit attached with it and that there exists an un-
derlying communication network such that each camera can
communicate with every other camera. A sub-network in a
pan-tilt camera network consists of cameras viewing a com-
mon area. The cameras which have overlapping views form
a complete graph G = (V,E) where, the cameras Ci ∈ V
and edge eij ∈ E between cameras Ci and Cj for all cam-
eras in the graph. In a pan-tilt camera network, there may
exist many such mutually exclusive graphs at any point in
time. Moreover, if a camera pans and/or tilts, then it may
cease to remain a part of one graph and become a part of
another graph. In Section 5, we give a distributed algorithm
for finding these graphs automatically.

We assume that the cameras remain in a certain pan-tilt
position for a fixed period of time. During this time in-
terval, the cameras in each graph are considered as static
cameras. Corresponding points between the views of the
cameras in each graph are found automatically and multi-
camera self-calibration is performed at each node of the
graph. It is well-known that finding automatic correspon-
dences between multiple views is not an easy problem. We
show that by using multi-layered belief propagation it is
sufficient to have correspondences between only three cam-
eras at a time for consistent calibration of a larger N > 3
static camera network. In Section 6, we give the method
to calibrate a large N > 3 (static) camera network us-
ing multi-layered belief propagation by iteratively calibrat-
ing its 3-cliques. We discuss belief propagation and multi-
layered belief propagation in Section 7 and discuss how
multi-layered belief propagation is applied at each camera
in the network. Since the information is combined from



Figure 1. Example of common points found in three images. Note:
All images are best viewed in color and at a high resolution.

graphs containing the cameras in various pan-tilt configura-
tions, it is unlikely that belief propagation will get stuck in
a local minima and hence, globally consistent estimates are
achieved.

In Section 8, we give a protocol for automatically con-
trolling the cameras so that they become a part of various
sub-networks across time which is necessary for distributed
calibration of the pan-tilt camera network. Otherwise, the
network will remain divided into mutually exclusive sub-
networks and there will be no exchange of information
between various pan-tilt views of the same camera across
time. To perform multi-layered belief propagation between
two graphs containing the same camera in different pan-tilt
positions, we need to bring the cameras to their home (zero
pan and zero tilt) position in both the graphs. We show that
the camera matrix for the home position of the camera can
be computed by automatically finding pairwise correspon-
dences to compute the homography or a sequence of homo-
graphies between the camera’s pan-tilt view and the home
view. We also propose a protocol in Section 9, for aligning
all the cameras’ home positions to a global WCS, to get a
globally consistent estimate of the camera’s home position
(zero pan, zero tilt position). In the next section, we give a
method for automatically finding correspondences between
three images. The same method can be used for finding cor-
respondences automatically between a pair of images.

4. Automatically finding corresponding points
between three images

We propose a method for automatically finding corre-
sponding points in three images. It can also be used to find
correspondences in a pair of images or more than three im-
ages. But, as the number of images increase, the error in
correspondences also increase. Let I1, I2 and I3 be three
images taken by three different cameras of the same scene.
We perform the following steps to automatically find corre-
spondences between the three images. First, compute the
SIFT features in all three images and then, compute the
SIFT matches between the pairs I1−I2, I1−I3 and I2−I3.
Next, find the common SIFT matches between these three
pairs, denoted by X = {x1, x2, x3} for points in I1, I2 and
I3 respectively. Further, refine these points by fitting funda-
mental matrices between pairs of images and taking points

which are common in all the three images. This is done by
first fitting fundamental matrix to the pairs F12 = {x1, x2},
F13 = {x1, x3} and F23 = {x2, x3} and then, finding the
common points between the inliers in F12, F13 and F23, say
y1, y2 and y3. If the number of points are≥ 50, then we say
that there exists overlap between the three images and y1,
y2 and y3 are the correspondences in the three views. Fig-
ure 1 shows the common points found between three images
taken by three different cameras.

5. Finding the graphs
We develop an algorithm to automatically find the graphs

in the network. Starting with the camera with the smallest
number that does not belong to any graph currently, say Ci,
find the camera with the next smallest number, say Cj , that
has an overlap with Ci and which does not belong to any
graph. Form a graph G = (V,E) where, V = {Ci, Cj} is
the set of nodes and eij ∈ E is the edge between Ci and
Cj . Incrementally, find all those cameras (by automatically
finding the corresponding points) which have overlapping
views with Ci and Cj and are not a part of any graph cur-
rently. Add them as nodes of G and add edges between all
the nodes of G. Continue till either there is no camera that
does not belong to a graph in the system or no other camera
has overlapping views with the nodes in graph G.

Repeat this with all the cameras in the network that are
not a part of any graph. In general, there will be more than
one graph in the pan-tilt camera network. Moreover, each
graph will be a complete graph. A priori knowledge of the
camera network topology can be used to reduce the amount
of communication across cameras as well as the number of
computations for SIFT matches. For example, in a wide
area pan-tilt camera network it is possible that two sets of
cameras are geographically so far apart that there will be no
overlapping view between these two sets of cameras. There-
fore, no communication or computation needs to be carried
out between such mutually exclusive and distant camera
sub-sets.

6. Camera calibration within a graph
We assume that the cameras in a graph, say Gk, remain

static for a certain time period. Thus, standard multi-camera
self-calibration techniques can be used for calibrating the
cameras within a graph. In a distributed system, multi-
camera calibration is carried out at each node of the graph,
Gk. The crucial point here is to automatically find multi-
view correspondences at each node. Since this is not an
easy task, we show that it is possible to calibrate a graph of
size N > 3 by calibrating its 3−cliques and using multi-
layered belief propagation to reach a consistent estimate of
the camera parameters of all the cameras in the graph.

We consider all possible 3-cliques of the graph Gk. Let



Figure 2. These images are from one pan-tilt camera taken at different pan and tilt positions. To find the homography between (a) and (f),
where (f) is the home position, we find a sequence of homographies: between (a) and (b), then (b)=(c) and (d) and then (d) = (e) and (f).
The point correspondences for finding the homographies are automatically found as explained in text.

Gik be the ith 3-clique of Gk. The corresponding points be-
tween the nodes ofGik are found automatically as discussed
in Section 4. Standard multi-camera self-calibration tech-
nique is used at each node of Gik to get estimates of camera
parameters of each camera in Gik. Belief propagation (dis-
cussed in Section 7) between the nodes of Gik gives a con-
sistent estimate of the camera parameters for each camera in
Gik. This is done for each of the 3-cliques ofGk, which will
not be more than

(
n
3

)
for a graph of size n. Therefore, there

will be
(
n
3

)
estimates of each camera after belief propaga-

tion is carried out within each 3-clique. Then, multi-layered
belief propagation at each node ofGk is carried out between
the estimates of the camera parameters of that node in the
various (at most

(
n
3

)
) 3-cliques. If this procedure is carried

out iteratively, then it is not necessary to calibrate all the(
n
3

)
3-cliques. It is possible that a consistent estimate of the

camera parameters for each camera in Gk can be reached
with a lesser number of 3-cliques than

(
n
3

)
. Thus, we are

able to calibrate the complete graph of N > 3 cameras
without knowing multi-view correspondences among all the
nodes of the graph. Figure 4 shows a result of this tech-
nique for calibrating a graph of five cameras by using five
3-cliques of the graph. An important point to be noted here
is that the camera matrices have to be aligned to a common
WCS for this graph before propagating belief at a node be-
tween the subgraphs. The common WCS for this graph can
be a predefined WCS or we can take the lowest numbered
camera in the graph to be at the origin of the WCS.

7. Belief Propagation within a graph
For distributed calibration of cameras in a graph, sayGk,

multi-camera self-calibration is carried out at each node, us-
ing the automatically found corresponding points. There-
fore, at each node Ci of Gk, we obtain an estimate of the
camera parameters P kj for all j cameras in Gk. Let yi be
the true camera parameters for the ith camera. Our aim is
to find yi from the estimates of the camera parameters com-
puted at each node of Gk, using belief propagation. The
estimates of the camera parameters of all cameras in Gk
computed at each node are considered as the beliefs at each
node. In general, belief propagation algorithm is used for
solving inference problems based on local message pass-

ing [11]. Each node updates its beliefs by using the esti-
mates it receives from its neighbors in the form of “mes-
sages”. These beliefs are iteratively updated until there is
no change in the belief at a node. As has been shown in [3],
belief propagation can be directly applied on a graph which
has cameras viewing a common scene as its nodes. In this
case, the update equations are of the form:

Σ̃i,k ← [Σ−1
i,k +

∑
j∈N(i,k)

Σ−1
j,k]−1

µ̃i,k ← Σ̃i,k ∗ [Σ−1
i,kµi,k +

∑
j∈N(i,k)

Σ−1
j,kµj,k] (1)

Here, µi,k and Σi,k are the estimate and covariance of the
camera parameters computed at the ith cameraCi in the kth

graph, Gk. N(i, k) denotes the set of neighbors of camera
Ci in graph Gk. Moreover, the ith node, Ci receives µj,k
and Σj,k from Cj , its jth neighbor, j ∈ N(i, k). µ̃i,k and
Σ̃i,k are the estimates of the camera parameters after belief
propagation within graph Gk. The covariance matrix is cal-
culated based on the forward covariance propagation from
bundle adjustment. We consider the diagonal terms of the
covariance matrix only, resulting in it being a diagonal ma-
trix which is positive definite and invertible. Moreover, we
use all the 11 camera parameters [6] as the belief at a node.

7.1. Multi-layered Belief Propagation

Since the graphs are dynamic and the same camera Ci
can be a part of two graphs, say Gk−1 and Gk, in different
pan-tilt orientations at different points in time, we perform
belief propagation between graphs at each node, Ci, which
is common in both Gk−1 and Gk. Here, the belief at Ci in
Gk−1 is the estimate of the camera matrix of Ci (after be-
lief propagation withinGk−1) at its home position, obtained
by using the homography between Ci’s view in Gk−1 and
the image taken at the home position of Ci. Similarly, the
belief atCi inGk is the estimate of camera matrix ofCi (af-
ter belief propagation within Gk) at home position obtained
using homography between the view of Ci in Gk and the
home view of Ci.

As is well-known [6], two views of a camera in differ-
ent pan-tilt positions are related by a 3 × 3 image to image



homography. Therefore, we automatically compute the ho-
mography between the pan/tilt view and the home view of
a camera by automatically finding corresponding points be-
tween the two images, using SIFT matches further refined
by fitting fundamental matrices to the points obtained, as
described in Section 4. This homography is then used to
get the camera matrix of the home position from the camera
matrix of the pan-tilt position. Let Pθφ be the camera matrix
at pan θ and tilt φ position, Phome be the camera matrix at
the home position, and H be the homography between the
home view and the pan-tilt view. Then, if x = PhomeX ,
x′ = PθφX and x = Hx′,⇒ Phome = H ∗Pθφ. Similarly,
we can get to the pan-tilt position as: Pθφ = H−1 ∗ Phome.
In case, the pan-tilt view of the camera does not have any
overlap with the home position’s view, a sequence of ho-
mographies can be used, again calculated automatically, as
shown in Figure 2. Let µ̃i,k be the estimate of the cam-
era parameters of Ci after belief propagation within graph
Gk, where Ci is in pan θk and tilt φk position. Homogra-
phy or a sequence of homographies is used to calculate the
camera parameters for the home position of Ci, denoted by
Pihome,k. These parameters, taken as a vector, are the belief
at Ci in Gk denoted by µihome,k. Let µ̃k−1

ihome
and Σ̃k−1

ihome
be

the estimates of the camera parameters and the covariance
matrix after the (k − 1)th iteration, at the home position
of Ci, of multi-layered belief propagation between k − 1
graphs containing Ci in different pan-tilt positions. The
home position is calculated in each graph using the image-
to-image homography before applying the update equations
for multi-layered belief propagation. The belief is updated
using Equations 2.

Σ̃kihome
← [(Σ̃k−1

ihome
)−1 + Σ−1

ihome,k
]−1

µ̃kihome
← Σ̃kihome

[(Σ̃k−1
ihome

)−1µ̃k−1
ihome

+Σ−1
ihome,k

µihome,k](2)

where, µ̃kihome
denotes the estimate of the camera parame-

ters and Σ̃kihome
is the estimate of the covariance matrix of

the home position of Ci after the kth iteration.

8. Forming new graphs
The multi-layered belief propagation mechanism can be

utilized only if the graphs change across time. We de-
velop a protocol for automatically controlling the pan-tilt
of the cameras so that the network configuration changes
after a fixed time period. We define a set of landmarks
L = {L1, L2, . . . , Lm} in the scene with respect to the
global WCS. Initially, the graphs are found using the tech-
nique discussed in Section 5. Once the estimate of the cam-
era parameters for cameras have been computed in each
of these graphs by multi-camera self-calibration and belief
propagation within each graph, these cameras are aligned
to the global WCS. The camera parameter estimates after

alignment are then used for controlling the cameras to form
new graphs in the network. The protocol is:

1. For each camera, compute the pan-tilt rotations re-
quired to view all the landmarks. (It is possible that
a camera may not be able to view all the landmarks,
therefore, only those that are visible are considered).

2. For each camera, rotate by the smallest pan-tilt angles
such that it views a landmark other than the one it is
currently viewing.

3. Send a message to all the other cameras about the new
landmark that it is viewing. If it is known a priori that
two cameras will never have overlapping views, they
need not inform each other about the new landmark
they are viewing, thereby reducing unnecessary com-
munication.

4. Each camera will have information of all other cam-
eras about the landmark they are viewing. It takes into
consideration all the cameras, say set S, that are view-
ing the same landmark as itself.

5. For each camera, check whether the cameras in its set
S form a graph by using the procedure given in Sec-
tion 5.

This also makes our system scalable as the correspondences
have to be calculated among only those cameras which view
the same landmark and in step 3, the messages have to be
passed only between those cameras which can have over-
lapping views in some pan-tilt configuration. In general,
these will be much smaller in number compared to the size
of the camera network. The above algorithm ensures that
the graphs in the camera network change over time. This
is essential because if the graphs remained static, since they
are mutually exclusive no information would be shared be-
tween the graphs and it would not be possible to calibrate
the complete network. It is possible that there will be cam-
eras which do not have overlapping views with any other
camera or graphs that have less than 3 cameras. In the cur-
rent time period these cameras are not considered for cal-
ibration and therefore, remain idle. In the next time pe-
riod, they shall repeat the above protocol and become part
of graphs with ≥ 3 nodes and hence, will be used for cali-
bration and multi-layered belief propagation.

9. Aligning cameras to a global world coordi-
nate system

We want the position and orientation of each camera’s
home position with respect to a global WCS. Moreover, be-
lief propagation can be carried out only if all the cameras
are aligned with respect to a common coordinate system in
the world. For the cameras to align themselves to a global



Figure 3. (a) Re-projections after belief propagation within the
graph. (b) and (c) Re-projection after randomly choosing cam-
era parameters after multi-camera self-calibration at each node of
the graph G1. The yellow and green ‘+’ denote the reprojections,
the red ‘o’ are the input points.

Table 1. The re-projection statistics for graph, G1. (Refer Fig 3)

After belief propagation within the graph:
CamId 1 2 3
mean 0.85 1.32 0.85

std. deviation 0.82 1.36 0.75
Random Set 1:

CamId 1 2 3
mean 20.00 7.74 21.26

std. deviation 19.37 8.60 20.38
Selected from node C1 C2 C3

Random Set 2:
CamId 1 2 3
mean 9.58 20.71 2.12

std. deviation 8.89 33.38 2.76
Selected from node C2 C3 C1

coordinate system in a distributed manner, we follow the
following protocol. Within each graph Gj , the camera with
the smallest number is said to be at the origin of a common
coordinate system. Its lowest numbered neighbor is said to
be on the x−axis at a unit distance. These two conditions
establish a common coordinate system at the lowest num-
bered camera, say Ci, in each graph formed in the camera
network. All other cameras in Gj are aligned to this com-
mon coordinate system. If camera Ci pans/tilts it becomes
a part of another graph, say Gk. The two views of cam-
era Ci, in Gj and in Gk are aligned using the pan and tilt
rotation matrices between the two pan-tilt positions of the
camera. Thus, the cameras in the two graphs are aligned
to the common coordinate system at the lowest numbered

Table 2. The re-projection error for the graph with 5 cameras. (Re-
fer Figs. 4, 5, 6)

After multi-layered belief propagation at each node
CamId 1 2 3 4 5
mean 1.80 2.60 1.79 1.63 2.01

std. deviation 0.77 1.78 0.98 0.90 1.42
Random Set 1:

CamId 1 2 3 4 5
mean 8.67 14.91 13.34 28.62 10.97

std. deviation 8.35 14.26 9.43 21.21 8.10
Sub-graph G1 G3 G2 G5 G4

Random Set 2:
CamId 1 2 3 4 5
mean 13.41 8.90 30.08 15.48 6.69

std. deviation 7.25 5.74 16.42 11.31 2.95
Sub-graph G3 G1 G5 G4 G2

camera among the two graphs. This is done for every graph
formed. The lowest numbered camera in the network is then
aligned to the global WCS in case it is pre-defined. In case
the global WCS is not pre-specified, the lowest numbered
camera in the network may be assumed to be at the origin
of the global WCS.

10. Results and Discussion

We use 6 SONY EVI-D70 PTZ cameras for our ex-
periments. For multi-camera self-calibration, within each
graph, we use the code by Svoboda et al. [13] and for de-
tecting and matching SIFT features we use the code by
Lowe [9]. Moreover, for fitting the fundamental matrix
to the SIFT matches we use Peter Kovesi’s code [8]. The
objective of our experiments is to show the following: (a)
that a pan-tilt camera network can be calibrated in a dis-
tributed manner using multi-layered belief propagation; (b)
that multi-layered belief propagation leads to accurate and
consistent estimates of the camera parameters, both within
a graph and across multiple graphs; (c) that it is possible to
calibrate a static camera network of size N > 3, by know-
ing correspondences between only 3 views at a time and
using multi-layered belief propagation. Figure 3 shows one
of the graphs in the network with 3 nodes. The correspond-
ing points among the 3 nodes are found automatically as
described in Section 4. Multi-camera self-calibration is car-
ried out at each node of this graph. Therefore, each node
Ci computes the camera parameters Pi of all the cameras in
the graph. If we randomly select one camera (all its param-
eters) from each node, for example, P1 from node C2, P2

from C3 and P3 from C1, then as seen in Figure 3(b) and
(c) the reprojection error is high and vary based on which



Figure 4. The five cameras are calibrated by first distributed calibration and belief propagation within the 3-cliques and then multi-layered
belief propagation across the nodes of the graph. The red circles denote the input points and the green ’+’ are the reprojections of the
3D-points found by triangulating the input points using all five cameras.(Note: same notation for the two images below)

Figure 5. Random set 1: The five cameras are calibrated by first distributed calibration and belief propagation within the 3-cliques and then
randomly chosen from the different cliques.

Figure 6. Random set 2: The five cameras are calibrated by first distributed calibration and belief propagation within the 3-cliques and then
randomly chosen from the different cliques.

camera is selected from which node. That is, the camera pa-
rameters are inconsistent. When belief is propagated within
this graph, as seen in Figure 3(a) it leads to a consistent es-
timate of the camera parameters for each of the three cam-
eras in the graph. The reprojection error statistics are given
in Table 1. Figure 4 shows a graph formed by five cam-
eras in various pan-tilt positions. We consider five 3-cliques
of the graph for calibrating this graph. First, multi-camera
self-calibration and then belief propagation within each of
the five 3-cliques is computed. Then, belief is propagated
between these 3-cliques at each node of the graph. We con-
sider the camera coordinate system at the first camera to be
the global WCS and align each camera with it. We observe
that if belief propagation is performed within the 3-cliques
and then the cameras are randomly chosen, from the five
sub-graphs then the reprojection errors are high and there
is an inconsistency in the reprojections, as shown in Fig-
ure 5 and Figure 6. Multi-layered belief propagation at the
nodes of the graph results in consistent and accurate cam-
era parameters as seen in Figure 4. The re-projection er-
ror statistics are given in Table 2. This experiment shows
that a static camera network of size N > 3 can be cali-
brated in a distributed manner by knowing correspondences

among 3 cameras at a time. Moreover, it is not necessary to
consider all possible 3-cliques of the network. Figure 7(a),
shows the reprojection on the first camera of the network
at its home position. The camera parameters are found by
multi-layered belief propagation at C1 from 7 graphs in the
network which contained C1 in various pan-tilt positions.
The multi-layered belief propagation is carried out by find-
ing Phome for C1 in each camera using the automatically
computed homography matrices. Figure 7(b) shows the re-
projection after belief propagation within the graph contain-
ing C1 at its home position. The reprojection error statistics
are given in Table 3. Figure 8 shows that the reprojection
of input points in all 6 cameras in their home position is
accurate. These reprojections are calculated using the final
estimates of the camera parameters for each camera in the
pan-tilt camera network. The reprojection error statistics
are given in Table 4.

11. Conclusion

We have presented a multi-layered belief propagation
based distributed algorithm for self-calibration of a pan-
tilt camera network. We have shown that by using multi-



layered belief propagation it is possible to get accurate and
globally consistent estimates of the camera parameters for
each pan-tilt camera in the network with respect to a global
world coordinate system. We have given a method that
shows that if multi-layered belief propagation is used, then
it is sufficient to know correspondences between three cam-
eras (at a time) for distributed calibration of a large (static)
camera network. Our system does not require that all the
cameras should have overlapping views at all times. More-
over, we have shown that by propagating beliefs between
graphs, it is possible to calibrate cameras in the network
even if they do not have any overlap in their views at any
point in time. Our method gives an accurate and globally
consistent estimate of the camera parameters for the home
position of each camera and using the method for automat-
ically finding correspondences in two views, homographies
between the home view and any pan/tilt view can be au-
tomatically computed. Therefore, it is possible to obtain
accurate and globally consistent camera parameters for any
pan/tilt position of the pan-tilt cameras in the network with
respect to a global world coordinate system.

Table 3. The re-projection statistics for home position of C1. (Re-
fer Fig 7)

CamId mean std. deviation
Multi-layered BP 1 0.98 0.67
BP within a graph 1 3.13 1.66

Table 4. The re-projection statistics for home position of all cam-
eras after multi-layered belief propagation. (Refer Fig. 8)

CamId 1 2 3 4 5 6
mean 0.98 0.68 0.79 0.81 0.31 0.67

std. deviation 0.67 0.39 0.37 0.47 0.23 0.51
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