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Abstract

This paper presents a view-invariant approach to gait

recognition in multi-camera scenarios exploiting a joint

spatio-temporal data representation and analysis. First,

multi-view information is employed to generate a 3D voxel

reconstruction of the scene under study. The analyzed sub-

ject is tracked and its centroid and orientation allow recen-

tering and aligning the volume associated to it, thus ob-

taining a representation invariant to translation, rotation

and scaling. Temporal periodicity of the walking cycle is

extracted to align the input data in the time domain. Fi-

nally, Hyperspherical Radon Transform is presented as an

efficient tool to obtain features from spatio-temporal gait

templates for classification purposes. Experimental results

prove the validity and robustness of the proposed method

for gait recognition tasks with several covariates.

1. Introduction

Gait analysis is a promising research direction towards

contact-free biometrics for person recognition. Automatic

gait recognition is attractive because it enables the identi-

fication of a potentially uncooperative subjects from a dis-

tance, with a variety of possible applications. Moreover,

these algorithms must be robust to pose variations, perspec-

tive changes, low resolution and noisy input images.

Biometric identification techniques based on vision-

based gait recognition have to deal with two important is-

sues: the appearance variations during the walking cycle

due to the relative position between the camera and the sub-

ject, and the generation of informative features including

spatio-temporal information towards maximizing the dis-

tinguishability among subjects. The first problem is usu-

ally found in monocular systems and is tackled by requir-

ing the user to walk following a determinate path to en-

sure that a correctly aligned lateral view of the subject is

obtained [1, 6]. In some works, multi-camera systems are

employed towards being robust to appearance changes us-

ing calibration information to infer 3D information in the

form of aligned synthetic views [12, 17], homographically

normalized body part trajectories [9], the canonical sagital

plane of the subject [13, 19]. In the field of feature gener-

ation for gait recognition we can find the gait energy im-

age proposed by [6] that encodes space and time informa-

tion in a template image and has being widely employed

[1, 19]. Another useful representation is the Radon trans-

form of the gait energy image producing a sparse set of fea-

tures [1]. Other techniques employ normalized sequences

of limbs positions [9] or 3D reconstructions [16].

Due to the high dimension of feature spaces, classifica-

tion techniques employed in this field aim at a dimension

reduction and/or feature selection. Linear techniques such

as PCA, MDA and LDA have been thoroughly used [6, 1].

In some cases, fusion of classifiers allowed integrating in-

formation from multiple views at feature level [8] or com-

bining information from multiple modalities such as face

and gait [17].

The current article presents a robust solution to person

recognition using information provided by multiple views.

In order to overcome appearance variations due to perspec-

tive, a 3D voxel reconstruction of the scene is obtained. In-

formation provided by a tracking system allows estimating

the centroid and orientation of the subject under study and

translating and rotating its associated volume to a common

spatial reference frame. The obtained set is scale, transla-

tion and rotation invariant. Time alignment is achieved by

estimating the walking cycle out of the obtained invariant

volume data. The Hyperspherical Radon Transform is in-

troduced as a robust technique to analyze spatio-temporal

data by integrating the aligned set through a set of hyper-

planes that integrate information from both space and time.

A first dimension reduction is performed through a variance

analysis for feature selection and the LDA algorithm is ap-

plied afterwards. Finally, effectiveness of the proposed al-

gorithm is assessed by mean on quantitative metrics over an

annotated multi-camera dataset. Real-time performance of

the proposed algorithm is also achieved proving its validity

for real systems.
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(a) (b) (c)

Figure 1. Multi-camera input data sample. In (a), a sample of the original images. In (b), the foreground segmentation of the input images

employed by the Shape-from-Silhouette algorithm and, in (c), projection of the binary 3D voxel reconstruction.

2. Data generation

For a given frame in the video sequence, a set of NC

images are obtained from the NC cameras (see a sample in

Fig.1(a)). Each camera is modeled using a pinhole camera

model based on perspective projection with camera calibra-

tion information available [7]. Then, foreground regions

from input images are obtained using a segmentation algo-

rithm based on Stauffer-Grimson’s background learning and

subtraction technique [18] as shown in Fig.1(b).

Redundancy among cameras is exploited by means of a

Shape-from-Silhouette technique [3]. This process gener-

ates a discrete binary occupancy representation of the 3D

space (voxels) denoted as Vt, 1 ≤ t ≤ NT, and shown in

Fig.1(c). A voxel is labeled as foreground or background by

checking the spatial consistency of its projection on the NC

segmented silhouettes. Usually, this data is noisy and may

present holes and spurious blobs due to shadows and reflec-

tions. However, the presented technique can cope with such

inaccuracies and still provide satisfactory results.

2.1. Spatio­temporal alignment

Prior to compute any transformation, it is required to pre-

process the original input data V1:NT
in order to obtain a

representation invariant to spatial scale changes, rotations

and translations. Some vision approaches to gait recog-

nition achieve this spatial invariance by constraining the

user to follow a determinate trajectory [1, 6] to get fronto-

parallel images. Other techniques using information pro-

vided by multiple cameras generate invariant representa-

tions as synthetic views [17, 19] or body part trajectories

[9].

Time alignment is usually a required feature of the input

data towards a coherent temporal analysis. This process is

usually achieved by detecting the start and end of the walk-

ing cycles in a sequence and analyzing their statistics either

in the temporal domain [5, 9] or using motion templates

such as the gait energy image [1, 6].

Trajectory analysis for spatial invariance

The elements of the computed 3D reconstructions, the vox-

els, are directly related with the physical scale of the objects

in the scene, hence rendering the set V1:NT
invariant to per-

spective and scaling issues. Without loss of generality, we

presume that theXY of our coordinate system is the ground

plane and the Z axis is normal to it. Translation and rotation

invariance is achieved by first estimating the centroid of the

subject, ct, and its orientation on the XY plane, αt, and

then applying the following linear transformation to every

element x ∈ Vt:

x′ =

(
R (αt) 0

0 1

)
(x − ct)

⊤
, (1)

where R(αt) stands for the rotation matrix on the XY
plane. Due to this transformation, the voxels of the resulting

set are localized in a specific region of the space thus allow-

ing to crop out the empty zones and finally obtain the new

aligned voxel set denoted as St of dimension sx×sy×sz . It

is required for the centroid estimation ct to be accurate and

robust to noisy 3D measurements and the sparse sampling

approach presented in [2] provided satisfactory results. An-

gle αt is obtained from the velocity vector associated to se-

quence ct using a Kalman filter. An example of this process

is depicted in Fig.2.

Walking cycle detection for time alignment

Let us define the walking cycle of each subject as the cate-

gory set G = {CL
NL

· · · CN · · · CR
NR

}, where CN represents

the neutral pose and the subsequences {CL
1 · · · CL

NL
} and

{CR
1 · · · CR

NR
} are the left and right forward leg movement

respectively (see Fig.4). Note that left and right subcycles

may not have the same duration, thereforeNL = NR cannot

be granted.

Once the aligned sets S1:NT
have been computed, we

will label some of its element to one of the categories con-

tained in G. Hence, every C ∈ G will have associated a list
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(a) (b)

Figure 2. Volume invariance to scale, translation and rotation. In (a), an example of the tracking of the centroid ct for a walking random

path from two perspectives. In (b), the resulting aligned volume after applying transformation of Eq.1 and the original images.

of the time instants that represent an instance of that specific

category within the walking cycle. First, the start and end of

every walking cycle within the input sequence are estimated

by analyzing the step width of S1:NT
, that is the maximum

volume span in the X axis, shown in Fig.3(a). Extrema of

this function are employed to estimate the period of every

walk subcycle, NL and NR, and allow recognizing the start

and end of walking cycles. The analysis of the volume asso-

ciated to the legs allows defining a likelihood function to as-

sess whether the left or right leg is stepping forward. Essen-

tially, the lower section of set St up to z = 1 m is selected

and four regions are defined: front-left (SFL
t ), front-right

(SFR
t ), rear-left (SRL

t ) and rear-right (SRR
t ). The likelihood

of having the left or right leg forward is expressed as:

p(left) ∝
∣∣SFL

t

∣∣+
∣∣SRR

t

∣∣ , p(right) ∝
∣∣SFR

t

∣∣+
∣∣SRL

t

∣∣ , (2)

where operator | · | stands for the number of foreground vox-

els of the enclosed volume. See Fig.3(b) for an example.
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Figure 3. Gait cycle analysis. In (a), the step width computed over

the aligned input data St and the detected extrema, depicted as red

and green dots. In (b), the likelihood of having either the left or

right leg forward.

Finally, once every element of S1:NT
has been assigned

to a class C ∈ G or has been disregarded, the mean of all

volumes associated to every class is computed, and will be

denoted as WC . This collection of volumes will define the

spatio-temporal set GW = {WCL
NL

· · · WCN · · · WCR
NR

},

also regarded as a gait template for a determinate sub-

ject. This set is invariant to scaling, rotation, trans-

lation and has been properly aligned and timely aver-

aged within the walking cycle thus being suitable as

a person’s gait template for the forthcoming classifica-

tion algorithm. An example of this set is shown in

Fig.4. For the sake of notation simplicity in the next sec-

tions, ordinal time instants are assigned to volumes within

GW , centered at the neutral pose CN, thus becoming

GW = {W−NL
· · · W0 · · · WNR

} ≡ {W(x, y, z, t)}.

3. Hyperspherical Radon Transform

The Radon transform [4] and its variants [10] have been

found useful for dimension reduction and to obtain infor-

mative features in image classification problems. Within

the scope of this paper, this technique has been used for

monocular gait recognition using template images [1] and

to process 3D data for search and retrieval tasks [20]. The

usual approach to define the transformation variables of the

Radon transform is through circular or spherical coordinate

systems. In this paper, an extension of the Radon transform

in hyperspherical coordinates is presented to deal with the

aligned spatio-temporal gait template set GW .

Let R
4 be the space-time framework where x ∈ R

4

stands for coordinates (x, y, z, t). Let Sρ be the hypersphere

with radius ρ ∈ R centered at p0 = (sx/2, sy/2, sz/2, 0)
and η ∈ R

4 a unit vector posed in the coordinate system of
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Figure 4. Example of the spatio-temporally aligned set GW for a given individual whose left walk subcycle is shorter than the right one.

this hypersphere, described by angles φ, θ and ψ as

ηx = sinφ sin θ cosψ, ηy = sinφ sin θ sinψ,

ηz = sinφ cos θ, ηt = cosφ, (3)

with {φ, θ} ∈ [0, π], ψ ∈ [0, 2π]. Let us define the hyper-

plane π(η, ρ) = {x|x⊤
η = ρ} normal to Sρ at point

p = p0 + ηρ. The hyperspherical Radon Transform,

R(η, ρ) : R
4 → R

4 of the spatio-temporal volume W(x)
over this hyperplane is defined as [4]:

R(η, ρ) =

∫

x∈π(η,ρ)

W(x)dx. (4)

A more descriptive representation of this transform is ob-

tained when using hyperspherical coordinates together with

Dirac’s delta function in a discrete domain as

R(φ, θ, ψ, ρ) =

K∑

k=1

W(xk)δ(xkη − ρ). (5)

It must be noted that hyperplane π(η, ρ) spans over time

and space hence the transformed coefficients will encode

information from both domains and is robust to variations

due to spurious noisy voxels. This integrating hyperplane

can be understood as a 3D plane that shifts along time (see

Fig.5) and intersects with W(x) to produce R(η, ρ).
The Radon transform is very suitable for gait represen-

tation and recognition. During the walking cycle, there are

two noticeable variations: the appearance changes among

different time instants produced by the limbs movement and

the variations among subjects when performing a walking

cycle. This means that the Radon transform over a properly

space and time aligned set guarantees some specific coeffi-

cient will vary considerably through time and among sub-

jects. Therefore, the study of these coefficients will allow

distinguishing among different gait templates.

A discrete set of values for the parameters (φ, θ, ψ, ρ)
is defined with a step ∆(φ, θ, ψ) = 10o and ∆ρ = 5 cm

with ρ ∈ [0,max(sx, sy, sz, NR, NL)]. With this transfor-

mation, the dimension of the analyzed data is reduced up

to a 25% of the original size of GW . It has been tested

empirically that employing smaller steps did not yield to a

performance gain. Since the employed hyperplanes are de-

fined in a discrete domain, their elements (shown in Fig.5)

are precomputed using a rasterization technique [11] and

stored towards a faster computation of R(η, ρ).

The hyperspherical Radon transform is not invariant to

scaling, translation and rotation thus the preprocessing of

input data V1:NT
ensures that transformed coefficients from

different subjects will be comparable.

4. Feature Extraction and Classification

A direct comparison of the obtained Radon coefficients

of several subjects, R
i, 1 ≤ i ≤ NS, can be performed

but the obtained recognition rate will low (∼ 60%). More-

over, the dimension of a transformed gait template R
i is

still high, turning out the generation of this set a compu-

tationally hard task. The study of the coefficients in R
i

showed that this set is sparse, hence a first step to reduce

Figure 5. Example of a hyperplane π(η, ρ), for φ = π/8,

θ = π/6, ψ = 0 and ρ = 0. Snapshots of π(η, ρ) at consecutive

time instants are displayed in order to shown this 4D hyperplane.
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the dimensionality of the problem is to discard evaluating

those hyperplanes yielding to a null transform. A variance

analysis [14] is conducted over R
i showing that, for the

data employed in this paper, only a 2% of the coefficients of

R
i have a significant variance and might be usable as fea-

tures to distinguish among different subjects. Let us denote

R̃
i

as the set of the selected Radon coefficients exhibiting

the maximum variance.

Linear dimension reduction techniques have been ap-

plied over R̃
i
, ∀i, in order to further reduce its dimension

and class separability. A linear discriminant analysis has

been conducted to obtain a final 30 feature feature set as-

signed to each subject, F i. Classification of an unknown

subject, FU , has been performed using a minimum distance

criterion:

min
i

‖FU − F i‖. (6)

5. Experiments and Results

There is a number of datasets intended for vision-based

gait but, although some of them datasets contain video data

from multiple cameras, few provide both synchronization

among cameras or calibration information. In order to test

the validity of our algorithm we have recorded a dataset

containing 28 people, 22 men and 6 women, walking in a

4x5 meters room surveyed by 5 calibrated and sync cam-

eras at 25 fps with 768x576 pixels. The training part of

this dataset presents the different subjects walking straight

in the scenario while the testing part includes several covari-

ates of the walking cycle (carrying a bag, wearing slippers

or no shoes, wearing a coat). Invariance of the proposed al-

gorithm to scaling, rotation and translation has been tested

by three particular covariates that involved walking in diag-

onals, zig-zag or randomly.

Obtained recognition results for this scenario are shown

in Fig.6. It can be seen that for standard cases such as

straight walking the recognition rate is the highest and this

performance decreases gradually as the complexity of the

path grows. The abrupt changes in the trajectory of the sub-

ject yields to noisy angle estimations therefore producing

a misalignment of the input data fed to the hyperspherical

Radon transform.

Once the right Radon coefficients are located, their com-

putation and the LDA analysis has been processed in real

time on a 3GHz desktop computer.

6. Conclusions and Future Work

This paper introduces a novel approach to gait recog-

nition and two main contributions are presented. First, a

unified space-time representation of input data in the form

of a time evolving volume set associated to a walking cy-

cle. This representation is invariant to scale, rotation and
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Figure 6. Cumulative match scores for the proposed algorithm

when analyzing input data with several covariates.

translation changes. In order to analyze this input, the hy-

perspherical Radon transform is introduced as an effective

algorithm to produce a sparse set of features through the

integration of the spatio-temporal volume over a set of hy-

perplanes. Further dimension reduction using LDA yield a

high class separability. Results over an annotated dataset

containing 28 subjects with a number of covariates proved

that the proposed method is effective for gait recognition

tasks.

The proposed method is not straighforward applicable to

the sequences of the widely known Gait Challenge prob-

lem [15] due to issues with the calibration of the cameras

and the adequateness of the data. The combination of the

3D representation and the ability to analyze spatio-temporal

data through the proposed Radon transform might produce

high recognition rates on large datasets. Future steps aim at

proving this afirmation.

Future research lines involve applying the presented

scheme on sequences with moderate occlusions yielding

to noisy 3D reconstructions. The extension of other inte-

gral transforms to the spatio-temporal domain is also under

study. As a contribution for further comparison, the authors

will release the employed multi-camera dataset.
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