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Abstract

Remote human identification using iris biometrics re-
quires the development of automated algorithm of the ro-
bust segmentation of iris region pixels from visible face im-
ages. This paper presents a new automated iris segmenta-
tion framework for iris images acquired at-a-distance using
visible imaging. The proposed approach achieves the seg-
mentation of iris region pixels in two stages, i.e. (i) iris
and sclera classification, and (ii) post-classification pro-
cessing. Unlike the traditional edge-based segmentation
approaches, the proposed approach simultaneously exploits
the discriminative color features and localized Zernike mo-
ments to perform pixel-based classification. Rigorous ex-
perimental results presented in this paper confirm the use-
fulness of the proposed approach and achieve improvement
0f 42.4% in the average segmentation errors, on UBIRIS.v2
dataset, as compared to the previous approach.

1. Introduction

Iris recognition has been emerge as one of the most pre-
ferred biometric modalities for automated personal identifi-
cation. Conventional iris recognition systems have been de-
signed to work in strictly constrained environments in order
to mitigate the influence of the noises from various sources
such as illumination changes, occlusions from eyeglasses,
eyelashes, hair and reflections, just to name a few. The sys-
tems are usually operate in near-infrared (NIR) illumina-
tion with wavelengths in between 700-900nm, and require
the subjects to provide images from short distance of 1-3 ft
[1, 2]. The use of NIR illumination devices requires extra
precautions and safety measurements as human eyes are not
instinctively responsive to the NIR illumination. Excessive
level of NIR illumination can cause permanent damage to
the human eyes [3, 4, 5].

There have been recent efforts to acquire iris images us-
ing visible illumination (visible wavelength, VW), to over-
come limitations of current iris recognition systems and de-
velop less cooperative iris recognition for higher security
and surveillance. Acquisition using VW is less hazardous
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Figure 1. Sclera feature (a) source image, (b) hue, (c) chroma blue,
(d) chroma red.

to human eyes as compared to NIR illumination and is suit-
able to work in unconstrained environments. Subjects are
no longer required to conform to the stop-and-stare mode
in the unconstrained environments. Reference [3, 0] are
the typical examples of such visible illumination acquired
databases which are publicly available. In addition, the ad-
vanced imaging technologies, for example, high resolution
CMOS/CCD cameras, are now available to conveniently ac-
quire high resolution images at distances beyond 3 ft us-
ing visible illumination and locate iris images suitable for
recognition.

Integro-differential operator or its derivatives have
shown effectiveness on those iris images acquired in con-
trolled environments using NIR illumination [2, 7, &, 9, 10],
where there is a significant contrast between pupilary and
limbic boundaries. However, these conventional edge-
based segmentation approaches are not effective to segment
the non-ideal iris images acquired in visible imaging as
noise induced in unconstrained iris imaging is significantly
high as compared to the imaging in the controlled environ-
ments.Reference [ 1] proposes an integro-differential con-
stellation model for segmenting the iris and pupil regions.
Similarly to the integro-differential operator, the algorithm
is likely to fail if there is no significant contrast between
pupillary and limbic boundaries. Reference [4] presents an-
other promising approach for iris segmentation using neural
network. The proposed approach exploits the color features
for classification of sclera and iris pixels. However, we ar-
gue that the reported sclera and iris color features are not
effectively discriminating sclera and iris pixels from other
regions. As can be observed in Figure 1, most of the infor-
mation contained in the hue component is missing, which
will definitely affect the performance of the classifier.
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Figure 2. Block diagrams of proposed iris segmentation method.

1.1. Our work

Remote identification of human at-a-distance using iris
feature requires development of completely automated and
robust algorithm that can segment iris image pixels from
distantly acquired facial images. Despite some initial ef-
forts in the segmentation of such visible iris images from
localized eye regions, the segmentation accuracy of such
methods is quite limited. This paper focuses on such prob-
lem of iris image segmentation and develops a completely
automated approach for iris segmentation from face image
at-a-distance. The proposed approach simultaneously ex-
ploits two set of the features for sclera and iris classifi-
cation. Iris features are extracted by exploiting localized
Zernike moments [12] while sclera features are extracted
by using discriminant color features. The experimental re-
sults from the proposed approach using neural network have
achieved 42.4% improvement in segmentation accuracy on
UBIRIS.v2 as compared to previous approach [4]. In addi-
tion, this paper also presents computationally simpler and
fast alternative using SVM (support vector machine) clas-
sifier which has shown to offer 36.8% improvement in the
average segmentation accuracy on UBIRIS.v2 over the ap-
proach in [4]. This paper has also detailed a robust approach
for post-processing of classified iris image pixel (Section
2.3), which has been missing previously in [4]. The pro-
posed scheme for such post-classification has been shown
to be highly effective in reducing the iris segmentation er-
rors due to the limitation in the classification stage.

The remainder of this paper is organized as follows. In
Section 2, the proposed segmentation approach is detailed.
The experiments and performance evaluation are presented
in Section 3. Finally, the paper is concluded in Section 4.

2. Iris segmentation for visible images

The iris segmentation approach in this work is motivated
by [4] which adopts a pixel-based strategy for the classifica-
tion. Figure 2 shows the block diagram for iris segmentation
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when the acquired close-up eye image is presented, for ex-
ample, images in UBIRIS.v1 [6] and UBIRIS.v2 databases.
The proposed segmentation method can be divided into two
processes: 1) classification and 2) post-classification. The
classification process is mainly focus on coarse localizing
of iris region while the post-classification process is to fur-
ther refine the coarse segmentation results produced in the
previous stage. In the classification stage, two classifiers
are trained to detect the sclera and the iris regions. Both the
sclera and iris features are extracted by exploiting discrim-
inant color features and localized Zernike moments. The
extracted features are used to train the neural network and
SVM classifiers which will be used to classify image pix-
els into sclera and iris regions. The localized iris region is
further refined in the post-classification stage (Section 2.3),
which can greatly reduce the classification error due to the
limitation of the classifiers.

2.1. Feature extraction
2.1.1 Sclera features

The sclera features are a 22-dimensional vector defined as
follows

{1, 72, 502,00 b0 2,4 Do —cbio 2.4 Argb (T1,02), pirgh(T1, 72) }

1
where S, nb, der—cb, drgy and pi. denote the saturation,
normalized blue, difference of chroma red (¢r) and chroma
blue (cb), and mean of RGB, respectively. The coordinates
(z1, x2) indicate the spatial variables of the image. The sub-
scripts in bold indicate the radii of the local window being
processed centered at (1, 22). The superscripts indicate the
mean and the standard deviation of a local window with re-
spect to the radii are computed. Meanwhile, the S and nb
components are subject to be preprocessed by subtracting
the respective mean values. The der—cp, drgp and p. are
defined as follows

2

der—cb(x1, 2) = cr(z1, 22) — cb(xq, x2)
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Figure 3. Proposed sclera features (a) original image, (b) saturation, (c) normalized blue, (d) difference of crcb, (e) difference of RG B, (f)

mean of RGB.
drgy(z1, 2) = 21 (21, 22) — Ig(x1, 22) — Ip(21,22) (3)

Wrgb(T1,22) = 1/N Z I (x1,22) 4
ce{r,g,b}

where N is the total number of color channels in image I.
Figure 4 provides visual illustration of the proposed color
features that are identified for sclera representation. The
proposed 22-dimensional features are extracted from differ-
ent color components which are observed empirically. The
features derived from each of the color components serve
to complement each other in order to enhance the discrim-
ination between sclera and other regions. Sclera classifi-
cation provides an important cue to coarsely estimate the
location of the iris. Therefore, the iris features employed in
our scheme also incorporate the classified sclera features, as
detailed in the next subsection.

2.1.2 Iris features

Iris features are extracted by exploiting the localized
Zernike moments and the classified sclera from the previous
stage. Such features are defined as a 9-dimensional vector
as follows

{I17 X2, I(xlv 932)7 26265([)ap11J,e,n,s(x17 172)} (5)

where [ is a grayscale image which representing only the
red channel of the input color image [ 1]. The Z is a func-
tion of I centered at (x1, o) with respect to the radii indi-
cated as superscript. The subscript of Z denotes the order
and the repetition of the Zernike moments, which is given
as follows

m

u Z Zf(xlvx2)[vmn($1,$2)]*dx1dx2

s

(6)
where (z7 4+ 23 < 1). The subscript m € Nand n € Z
indicate the order and angular dependence of the Zernike
moments. The m — |n| must always be even and |n| < m.
Function f(z1, z2) is the sub-image/local region being pro-
cessed and V,,,, is the Zernike polynomial [12]. The **’
denotes the complex conjugate of the function. The image
f to be processed must be first mapped to the unit circle ex-
pressed in polar coordinates. Besides using the Zernike mo-
ments, the classified sclera features which are the interme-
diate output from the previous stage have been incorporated

Zmn =
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as part of the unified iris features. The classified sclera is
used to produce four proportion of sclera maps with respect
to north (n), south (s), east (¢) and west (w) directions. The
proportions of sclera maps are responsible to delimit the iris
region by considering the chosen four directions [4].

2.2. Classification

The classification of sclera and iris features using two
types of classifiers is evaluated in our experiments. The
first type of classifier is trained with feed forward network
(FFN) classifier and the other type is SVM based classi-
fier [13]. Both kinds of the classifiers are trained with the
same training dataset except the fact that SVM is trained
with least training samples '. The training configurations
for both FFN-based and SVM-based classifiers are sum-
marized in Table 1 and Table 2, respectively. The train-
ing samples (pixels) are randomly extracted from the train-
ing dataset (see Tables for the exact figures) and are evenly
distributed among the positive and negative samples. To
train the FFN classifiers, back propagation algorithm with
Fletcher-Reeves learning method has been adopted. The
FFN consists of three layers: input (i), hidden (h) and out-
put (o) layers and is denoted as N; — N, — N,, where
Nj indicates the number of neurons at layer 8 € {i, h, 0}.
For FNN classifier, the same training approach is adopted.
However, different kernel functions namely RBF (radial ba-
sis function) and linear are used to train the sclera and iris
SVM classifiers, respectively. The kernel function are cho-
sen based on the preliminary results obtained using the val-
idation dataset.

2.3. Post-classification stage
2.3.1 Iris center localization

We have developed a simple and yet effective approach to
automatically locate the center of iris from the circumcenter
of a triangle formed by three control points. The three con-
trol points are extracted from a combined edge map, which
is a summation result of two edge maps generated from
the the classified iris mask and the corresponding grayscale
ROL. In this work, the three control points are chosen by
considering the edge points in horizontal and vertical direc-
tions from the center  (see Figure 4). The proposed method

I'The training dataset for SVM classifiers is the subset of training sam-
ples employed for NN classifiers.
Theoretically, any three points on the edge map can be used.



Figure 4. Iterative automatically iris center localization using three
control points.

attempts to approximate the exact iris center which will be
used in the subsequent processing, for example, boundary
fitting, eyelid localization and eyelashes and shadow re-
moval. Therefore, the proposed method provides a simple
way to approximate the iris center since our focus is find a
generally good reference point to be used in the subsequent
post-classification steps®. One should note that the com-
bined edge maps may contain short edge lines, which may
affect the iris center localization performance. Thus, it is
essential to remove the relative short edges before finding
the iris center. The initial iris center (Cy,, Cy,) is obtained
by taking the mean (X1, X2) of the segmented binary mask.

After obtaining the iris center (Cy,, Cy, ), three control
points are extracted from the combined edge map which vir-
tually form a triangle. Circumcenter of this triangle is then
calculated and the (Cy,,C,,) is updated with this value.
The process is iterated until the (Cy, , Cy,) is converged or
the predefined stopping criteria is met. The converged cir-
cumcenter provides the clues of the iris center (C7, ,C",))
and the radius r from the center to the boundary. In fig-
ure 4, the **” indicates the initial iris center (C,,, Cy,), the
green '0’ indicates the three control points and the red ’o’
denotes the calculated circumcenter.

2.3.2 Boundary refinement

The boundary of the classified iris is refined by using the
polynomial curve fitting of degree 3. The combined edge
map obtained in previous section is used again by trans-
forming it to the polar coordinate system with respect to
the (C,,C;,) and r. In order to mitigate the influence of
the noisy points to the system, we adopt the strategy by se-
lecting only one edge point per column [14] as the chosen

control points for the boundary fitting.

2.3.3 Eyelid localization

The eyelid localization steps use estimated iris centers
(C,,,C,,) as reference and partition the localized iris into
two regions, i.e., lower and upper eyelids, which are delim-
ited by radius r. The edge points are extracted for each of

these regions by firstly applying Canny edge detector on the

3The true iris center can be obtained after the boundary refinement step.
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Table 1. Training configurations for FEN-based classifiers.

Sclera Iris
Total # of train images 30 35
# of features per pixel 22 9
# of +/- samples 35000 35000
# of layers & neurons 22-28-1 9-14-1
Radii of windows 0,24 2,5
Order of ZMs - 6
Learning algorithm  |Fletcher-Reeves|Fletcher-Reeves

Table 2. Training configurations for SVM-based classifiers.

Sclera Iris
Total # of train images 30 35
# of features per pixel 22 9
# of +/- samples 10000 | 5000
Kernel RBF | Linear
Radii of windows 0,2,4 2,5

extracted ROI of the grayscale input image* defined by the
refined iris mask. Similarly, we apply the same strategy to
extract one edge point per column for each upper and lower
region to mitigate the effect of the possible outliers. We use
the polynomial curve fitting with degree 2 to fit a parabolic
curve for each upper and lower eyelid, as depicted in Figure
5. The area which has fallen outside the localized upper and
lower eyelids is removed from the iris mask.

2.3.4 Reflection removal

Unlike the images acquired using NIR illumination, the re-
flection induced in VW iris images is often severe. Sim-
ple thresholding technique as usually applied on the NIR
iris images by assuming high intensity values for reflection
is tend to fail in VW iris images as the assumption may
not hold due to a number of factors induced in the uncon-
strained imaging environments, for instance, ambient light.
Figure 6(a) and (b) show a typical example of an iris image
contaminated with the reflection noise and its correspond-
ing iris mask, respectively. By considering that the inten-
sity distribution of a valid iris region is relatively close and
the reflection is consuming only a small portion, we have
transformed the intensity histogram H using the following
function

G(i)=e 2172 @)

where ¢ denotes the intensity level, H, and H, denote the
mean and the standard deviation of the histogram /7. As can
be seen in Figure 6(c), the transformed histogram G has rel-
atively flat tails at both ends of the plot. In order to obtain
an adaptive threshold to mask out the reflection region, the

4The red channel of a color input image is used in all experiments.



Figure 5. Upper and lower eyelid localization using parabolic

curve fitting.
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Figure 6. Reflection removal (a) input image, (b) iris mask with
reflection removed, (c) transformed histogram of iris region (a).

differences of the adjacent bins of G are compared starting
from the right-tail. The adaptive threshold is obtained if the
absolute difference of G is greater than a predefined thresh-
old 7,1i.e. |G(i) — G(i — 1)| > 7. The predefined threshold
T is empirically set to 0.06 in all experiments. Therefore for
the absolute differences of G below 7, the corresponding
bin is treated as belonging to the flat region.

2.3.5 Pupil masking

The pupil in VW iris images is often more challenging to
localize as the contrast level between iris and pupil regions
are not as high compared to those acquired using NIR il-
lumination. Therefore, we again make use of the inten-
sity histogram H of the extracted iris region to calculate
adaptive threshold to mask the pupil region, i.e. T =
a x (p(max(H)) + ¢g), where function max returns the
index of the maximum frequency of H. The function ¢ re-
turns the independent variable of H given an index and ¢q
indicates the first independent variable of H. The « can be
considered as a weight factor which determines the adaptive
threshold 7" (« is set to 0.4 in all experiments).

13

2.3.6 Eyelashes and shadow removal

Our eyelash and shadow removal approach is largely based
on [14] which also exploits the difference in intensity dis-
tribution of pixels from the eyelashes and shadow (ES)
regions. The localized iris is separated into two regions
namely ES region and IR (iris) region. The ES region is
defined as the area from the upper eyelid and delimited by
a distance, dist, given as (dist = r x 0.3) where r is the
radius of the iris obtained previously. The histograms of
these regions are constructed and subject to the transforma-
tion using (7). The middle point between the peaks of the
two transformed histograms is used as the threshold to mask
the eyelashes and shadow in ES region.

3. Experiments and results

Repeatability and reproducibility of experiment results
are one of the important issues in biometrics as researchers
often find it is difficult to reproduce the published exper-
imental results. One of the key reasons, especially in the
context of visible imaging iris recognition, is the absence
of details on the selection of training/test samples. In order
to ascertain the performance of the proposed segmentation
approach, UBIRIS.v2 as being one of the publicly available
databases acquired using visible imaging in unconstrained
imaging environments was utilized. In this work, the sub-
set of the UBIRIS.v2 which consists of 1000 iris images
released for NICE:II [15] competition was used in the ex-
periments. The noise free iris masks have been made avail-
able along with the release of this subset of the UBIRIS.v2.
Therefore, we have manually generated the ground truth
from 1000 images for the performance evaluation. The first
96 iris images from the UBIRIS.v2 subset is chosen as train-
ing and validation datasets, as 41 images for training and 55
images for validation. The remaining 904 images are used
as independent test data to ascertain the performance.

The evaluation protocol used in NICE.I competition [16]
has been adopted to evaluate the performance of the pro-
posed segmentation approach. The segmentation error E is
a measurement of total disagreeing pixels between the seg-
mented mask and the corresponding group truth sclera/iris
mask. The experimental results obtained by our proposed
method are summarized in Table 3 as well as the com-
parison with one state-of-the-art method [4]. Our pro-
posed method has gained the improvement of 42.4% for
UBIRIS.v2, as compared to the method in [4]. Figure 7(a)
shows some samples segmentation results of our proposed
method applied on UBIRIS.v2 database.

4. Conclusions

This paper has developed a new approach for completely
automated iris segmentation from the images acquired at-a-
distance using visible illumination. Unlike the traditional



Table 3. Performance evaluation on UBIRIS.v2 dataset.

Error, E(%)

Sclera | Iris
Proposed method (NN) 4.51 2.16
Proposed method (SVM) | 3.26 | 2.37
Previous method [4] 499 | 3.75

edge-based segmentation approaches, the proposed tech-
nique exploits the discriminative color features and local-
ized Zernike moments to perform pixel-based classification.
The pixel-based strategy relaxes the requirements to have a
priori knowledge about the capturing ranges between sub-
jects and acquisition devices. This paper has also detailed
the selection of training/test data for all experiments to en-
sure repeatability of the proposed method. Such needed de-
tails have been missing to ensure repeatability in previous
methods. The rigorous experimental results presented in
this paper have shown improvement of 42.4% in the aver-
age segmentation errors for UBIRIS.v2 as compared to pre-
vious approach. The experimental results presented in this
paper have illustrated the robustness of the proposed seg-
mentation approach. The best of the segmentation results
are obtained using FFN classifier. The FFN classifiers are
known to suffer from the problems of local minima and re-
quire rigorous training to ensure better performance. Any
alternative classifiers that can provide better or similar per-
formance as using FFN classifier is desirable. Therefore,
SVM can be a good alternative to the FFN. The perfor-
mance of the SVM can be justified from the experimental
results for sclera classification. The performance achieved
using FFN is marginally superior than SVM and this could
be possibly due to the lack of adequate training samples (see
Table 2).

The experimental results presented in this paper are very
promising and also bring several issues to be addressed in
further work. It is likely that the demand and applications
of the VW iris recognition will significantly increase in near
future, mainly due to the availability of low cost and high
resolution imaging sensors in mobile and surveillance cam-
eras. The VW iris segmentation approach developed in this
work has been rigorously evaluated on publicly available
VW database. We are currently experimenting the segmen-
tation approach on the FRGC database [17] as well as ex-
tending our work on iris images acquired using NIR illumi-
nation. Figure 7(b) shows some preliminary segmentation
results obtained using the proposed algorithm applied on the
FRGC dataset.
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Figure 7. Sample segmentation results of proposed approach ap-
plied on the databases (a) UBIRIS.v2, (b) FRGC.
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