
Deciphering the Face

Aleix M. Martinez
The Ohio State University

Aleix M. Martinez: aleix@ece.osu.edu

Abstract

We argue that to make robust computer vision algorithms for face analysis and recognition, these

should be based on configural and shape features. In this model, the most important task to be

solved by computer vision researchers is that of accurate detection of facial features, rather than

recognition. We base our arguments on recent results in cognitive science and neuroscience. In

particular, we show that different facial expressions of emotion have diverse uses in human

behavior/cognition and that a facial expression may be associated to multiple emotional

categories. These two results are in contradiction with the continuous models in cognitive science,

the limbic assumption in neuroscience and the multidimensional approaches typically employed in

computer vision. Thus, we propose an alternative hybrid continuous-categorical approach to the

perception of facial expressions and show that configural and shape features are most important

for the recognition of emotional constructs by humans. We illustrate how these image cues can be

successfully exploited by computer vision algorithms. Throughout the paper, we discuss the

implications of these results in applications in face recognition and human-computer interaction.

1. Introduction

Faces are one of the most important objects we see and interact with everyday. Faces tell us

the identity of the person we are looking at and provide information on gender,

attractiveness and age, among many others. Of primary interest is the production and

recognition of facial expressions of emotion. Emotions play a fundamental role in human

cognition [5] and are thus essential in studies of cognitive science. Facial expressions of

emotion could also play a pivotal role in human communication [26]. And, sign languages

use facial expressions to encode part of the grammar [30]. It has also been speculated that

expressions of emotion were relevant in human evolution [6]. Models of the perception of

facial expressions of emotion are thus important in many scientific disciplines.

A first reason computer vision research is interested in creating computational models of the

perception of facial expressions of emotion is to aid studies in the above sciences [17].

Furthermore, computational models of facial expressions of emotion are important for the

development of artificial intelligence [19] and are essential in human-computer interaction

(HCI) systems [22].

Yet, as much as we understand how facial expressions of emotion are produced, very little is

known on how they are interpreted by the human visual system. Without proper models, the

scientific studies summarized above as well as the design of intelligent agents and efficient

HCI platforms will continue to allude us. A HCI system that can easily recognize
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expressions of no interest to the human user is of limited interest. A system that fails to

recognize emotions readily identified by us is worse.

This paper defines what a computer vision system for the recognition of facial expressions

of emotion in the above applications should look like and presents a biologically-inspired

computational model. In particular, we provide the following results.

• We show that there are (at least) three types of expressions, those used a) for

communication between a sender and multiple receivers, b) in proximal, personal

interactions, and c) (primarily) for other than communication purposes.

• We define a shape-based model consistent with the available data on human

subjects. Configural features are powerful but specific to the two groups used in

communication (a and b above). Configural features are defined as a non-rotation

invariant modeling of the distance between facial components; e.g., the vertical

distance between eyebrows and mouth.

• We argue that to overcome the current problems in face recognition software

(including identity and expressions), the area should make a shift toward a more

shape-based modeling. Under this model, the major difficulty for the design of

computer vision and machine learning systems is that of precise detection of the

features, rather than classification.

The rest of the paper is organized as follows. Section 2 reviews relevant research on the

perception of facial expressions of emotion by humans. Section 3 illustrates the importance

of configural and shape features for the recognition of emotions in face images. Section 4

defines a computational model consistent with the results reported in the previous two

sections. Section 5 argues that the real problem in computer vision is a detection one and

emphasizes the importance of research in this domain before we can move forward with

improved algorithms of face recognition. Conclusions are in Section 6

2. Facial Expressions: From production to perception

The human face is an engineering marvel. A large number of muscles allow us to produce

enormous configurations. The face muscles can be summarized as Action Unit (AU) [9]

defining positions characteristic of facial expressions of emotion. With proper training, one

can learn to move most of the face muscles independently. Otherwise, the face seems to take

predetermined configurations.

There is debate on whether these predetermined configurations are innate or learned (nature

vs. nurture) and whether the expressions of some emotions is universal [12]. By universal,

we mean that people from different cultures produce similar muscle movements when

expressing some emotions. Facial expressions typically classified as universal are joy,

surprise, anger, sadness, disgust and fear [6, 9]. Universality of emotions is controversial,

since it assumes facial expressions of emotion are innate (rather than culturally bound). It

also assumes emotions are categorical. That is, there is a finite set of predefined classes such

as the six listed above. This is known as the categorical model.

Martinez Page 2

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2014 September 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



An alternative to the categorical model is the continuous model [25, 23]. Here, each emotion

is represented as a feature vector in a multidimensional space given by some basis

characteristics common to all emotions. One such model is Russell’s 2-dimensional

circumplex model [24], where the first basis measures pleasure-displeasure and the second

valance. This model can easily justify the perception of many expressions, whereas the

categorical model would need to have a class (or classifier) for every possible expressions.

Yet, morphs between expressions of emotions are generally classified to the closest class

rather than to intermediate labels [1]. These results make the categorical versus continuous

debate even more intense than that of the universality of some emotion labels. Note that, in

fact, the two controversies are related to one another.

In neuroscience, the multidimensional view of emotions constitutes the limbic hypothesis

[3]. Under this model, there should be a neural mechanism responsible for the recognition of

all facial expressions of emotion, which was assumed to take place in the limbic system.

Recent results have however uncovered dissociated networks for the recognition of most

emotions. This is not necessarily proof of a categorical model, but it strongly suggests that

there are at least distinct groups of emotions, each following distinct interpretations.

Computer vision researchers may believe humans are extraordinarily good at recognizing

facial expressions of emotion and that we are yet to master a way to imitate this capacity.

However, humans are only very good at recognizing a number of expressions. The most

readily recognized emotions are happiness (joy) and surprise [8]. It has been shown that joy

and surprise can be robustly identified extremely accurately at almost any resolution [8].

Fig. 1 shows a happy expression at four different resolutions. The reader should not have

any problem recognizing the emotion in display even at the lowest of resolutions. However,

humans are not as good at recognizing anger and sadness. Recognition drops from above

90% in joy and surprise to below 70% in anger and sadness even at the largest resolution.

Fig. 2 summarizes the classification rates for images at the specified resolutions.

Interestingly, we also note that while joy and surprise are quite invariant to the image size,

recognition of sadness and anger degrades with the resolution. More surprisingly, we see

that recognition of fear and disgust is below 50%. These emotions are nonetheless robustly

recognized under image manipulations [17].

A major question of interest is the following. Why are some facial configurations more

easily recognizable than others? One possibility is that expressions in the first group (e.g.,

joy and sadness) involve larger face transformations than the others [17]. This has recently

proven to not be the case [8]. While surprise does have the largest deformation, this is

followed by disgust and fear (which are poorly recognized). Learning why some expressions

are so readily classified by our visual system should facilitate the definition of algorithms

that can more easily recognize other expressions (such as fear and disgust) to outperform

human perception where needed.

The search is on to determine which are the features extracted by the visual system which

make the recognition of expressions such as happy and surprise easy but others more

challenging. We turn to this topic in the next section.
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3. Deciphering the Algorithm

In the early years of computer vision, researchers derived several feature- and shape-based

algorithms for the recognition of objects and faces [13, 16, 15]. In these methods, geometric,

shape features and edges were extracted from an image and used to build a model of the

face. This model was then fitted to the image. Good fits determined the class and position of

the face. Then, the so-called appearance-based approach, where faces are represented by

their pixel-intensity maps, was studied [27]. A metric is defined to detect and recognize

faces in test images [28]. Advances in pattern recognition and machine learning have made

this the preferred approach in the last two decades [2].

Inspired by this success, most algorithms developed in computer vision for the recognition

of expressions of emotion have also used the appearance-based model. The appearance-

based approach has also gained momentum in the analysis of AUs from images of faces.

The main advantage of the appearance-based model is that one does not need to predefine a

feature or shape model as in the earlier approaches. Rather, the face model is inherently

given by the training images.

The appearance-based approach does provide good results from near-frontal images of a

reasonable quality, but it suffers from several major inherent problems. The main drawback

is its sensitivity to image manipulation. Image size (scale), illumination changes and pose

are all examples of this. Most of these problems are intrinsic to the definition of the

approach since this cannot generalize well to conditions not included in the training set. One

solution would be to enlarge the number of training images [18]. However, learning from

very large datasets (in the order of millions of samples) is, for the most part, unsolved [14].

Progress has been made in learning complex, non-linear decision boundaries, but most

algorithms are unable to accommodate large amounts of data – either in space (memory) or

time (computation).

This bears the question as to how the human visual system solves the problem. One could

argue that, throughout evolution, the homo genus (and potentially before it) has been

exposed to trillions of faces. This has facilitated the development of simple, yet robust

algorithms. In computer vision and machine learning, we wish to define algorithms that take

a shorter time to learn a similarly useful image representation. One option is to decipher the

algorithm used by our visual system. Research in face recognition of identity suggests that

the algorithm used by the human brain is not appearance-based [29]. Rather, over time, the

algorithm has identified a set of robust features that facilitate rapid categorization.

This is also the case in the recognition of facial expressions of emotion [21]. Fig. 3 shows

three examples. These images all bear a neutral expression, that is, an expression associated

to no emotion. Yet, human subjects perceive them as expressing sadness, anger and surprise

[20]. The most striking part of this illusion is that these faces do not and cannot express any

emotion, since all relevant AUs are inactive. This effect is called over-generalization [32],

since human perception is generalizing the learned features defining these classes over to

images with a different label.
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The images in Fig. 3 do have something in common –they all include a configural

transformation. What the human visual system has learned is that faces do not usually look

like those in the image. Rather the relationship (distances) between brows, nose, mouth and

the contour of the face is quite standard. They follow a Gaussian distribution with small

variance [21]. The images shown in this figure however bear uncanny distributions of the

face components. In the sad-looking example, the distance between the brows and mouth is

larger than normal [20] and the face is thinner than usual [21]. This places this sample face,

most likely, outside the 99% confidence interval of all Caucasian faces on these two

measures. The angry-looking face has a much-shorter-than-average brow to mouth distance

and a wide face. While the surprise-looking face has a large distance between eyes and

brows and a thinner face. These effects are also clear in the schematic faces shown in the

figure.

Yet, configural cues alone are not sufficient to create an impressive, lasting effect. Some

shape changes are also needed. For example, the curvature of the mouth in joy or the

opening of the eyes – showing additional sclera –in surprise. Note how the surprise-looking

face in Fig. 3 appears to also express disinterest or sleepiness. Wide-open eyes would

remove these perceptions. But this can only be achieved with a shape change. Hence, our

computational model should include both – configural and shape features. It is important to

note that configural features can be obtained from an appropriate representation of shape.

Expressions such as fear and disgust seem to be mostly (if not solely) based on shape

features, making recognition less accurate and more susceptible to image manipulation.

4. Computational Model

Many computer vision algorithms define a single face space to represent all possible

emotions. This would be consistent with the continuous view in cognitive science defined

earlier. This approach has a major drawback – it can only detect one emotion from a single

image. Yet, everyday experience demonstrates that we can perceive more than one

emotional label in a single image. For instance, one can express a joyful surprise or a sad

surprise. If we were to use a continuous model, we would need to have a very large number

of labels (or multiple combinations of them) represented all over the space. This would

require a very large training set, since each possible combination of labels would have to be

learned. On the other had, if we define a computational (face) space for each emotion label

we wish to consider, we will only need sample faces of those few emotions. This is thus the

approach we will follow in this section.

Note that although the approach just described may be thought to fall in the categorical class

of models, each categorical space will be defined as a continuous feature space. This allows

for the perception of each emotion at different intensities (e.g., less happy to exhilarant).

Furthermore, linear combinations of two or more spaces are possible. By doing so, we avoid

a major problems of the categorical model – that many categories (i.e., face spaces) need to

be learned and to add non-innate expressions or those used in specific cultures. Thus, the

proposed hybrid model bridges the gap between the categorical and continuous ones and

resolves most of the debate facing each of the models individually. A main issue we will
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leave for future work is to determine which are the basic, essential categories that, once

combined, can produce the large variety of expressions of emotion we observe. For now, we

will assume these correspond to those seen in most cultures – happy, surprise, sadness,

anger, disgust and fear.

Each of the six emotions listed above is represented in a shape space as follows. First the

face and the shape of the major facial components are detected. This includes delineating the

brows, eyes, nose, mouth and jaw line. The shape is then sample with d fiducial points;

equally spaced. The mean (center of mass) of all the points is computed. The 2d-

dimensional shape feature vector is given by the x and y coordinates of the d shape

landmarks subtracted by the mean and divided by its norm. This provides invariance to

translation and scale. 3D rotation invariance can be achieved with the kernel of [11]. The

dimensions of each emotion category can now be obtained with the use of an appropriate

discriminant analysis method. We use the algorithm defined in [10] because it minimizes the

Bayes classification error regardless of the number of classes.

As an example, the approach detailed in this section yields the following 2-dimensional

space of anger and sadness: distance between the brows and mouth and width of the face. It

is important to note that, if we reduce the computational spaces of anger and sadness to 2-

dimensions, they are almost indistinguishable. Thus, it is possible that these two categories

are in fact connected by a more general one underlying the two. The results of Section 2 also

suggest this, since anger and sadness formed the second group of emotions.

The space of anger and sadness is illustrated in Fig. 4 where we have also plotted the feature

vectors of the face set of [9].

In summary, readily identified expressions are classified using a small number of configural

features. Other image cues are not as good for recognition. Thus, computer vision systems

that attempt to achieve high recognition rates in all emotions should be mostly based on

configural features.

5. Precise Detection of Faces and Facial Features

As seen thus far, human perception is extremely tuned to small configural and shape

changes. If we are to develop computer vision systems that can emulate this capacity, the

real problem to be addressed in that of precise detection of faces and facial features [7].

Classification is less important, since this is embedded in the detection process; i.e., we want

to precisely detect changes that are important to recognize emotions.

Most computer vision algorithms defined to date provide, however, inaccurate detections.

One classical approach to detection is template matching. In this approach, we first define a

template (e.g., the face or the right eye). This template is learned from a set of sample

images; for example, estimating the distribution or manifold defining the appearance (pixel

map) of the object [31]. Detection of the object is based on a window search – the learned

template is compared to all possible windows in the image; if the template and the window

are similar according to some selected metric, bounding box defining the window marks the
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location and size of the face. The major drawback of this approach is that it yields imprecise

detections of the learned object, because a window of an non-centered face is more similar

to the learned template than a window with background (say, a tree).

A solution to the above problem is to learn to discriminate between non-centered windows

of the objects and well centered ones [7]. In this alternative, a non-linear classifier (or some

density estimator) is employed to determine the region of the feature space defining well-

centered windows of the objects from the non-centered ones. The non-centered windows are

referred to as the context of the object, in the sense that these windows provide the

information typically found around the object and necessary to achieve a good detection.

The same approach can be applied to other detection and modeling algorithms, such as

Active Appearance Models (AAM) [4].

Fig. 5 shows some sample results of accurate detection of faces and facial features with this

approach.

By now we know that humans are very sensitive to small changes. But we do not know how

sensitive (accurate). Of course, it is impossible to be pixel accurate when marking the

boundaries of each facial feature, because edges blur over several pixels. This can be readily

observed by zooming in the corner of an eye. To estimate the accuracy of human subjects,

we performed the following experiment. First, we designed a system that allows users to

zoom in at any specified location to facilitate delineation of each of the facial features

manually. Second, we asked three people (herein referred to as judges) to manually delineate

each of the facial components of close to 4,000 images of faces. Third, we compared the

markings of each of the three judges. The within-judge variability was (on average) 3.8

pixels, corresponding to a percentage of error of 1.2% in terms of the size of the face. This

gives us an estimate of the accuracy of the manual detections. The average error of the

algorithm of [7] is 7.3 pixels (or 2.3%), very accurate but still far short of what humans can

achieve. Thus, further research is needed to develop computer vision algorithms that can

extract even more accurate detection of faces and its components. This problem becomes

exacerbated when the resolution diminishes, Fig. 1.

6. Conclusions

We propose a new hybrid continuous-categorical model of the perception of facial

expressions of emotion – a linear combination of computational spaces defining a set of

basic emotions. The model is consistent with our current understanding of human perception

and can be successfully exploited to achieve great recognition results for computer vision

and HCI applications. The dimensions of the computational spaces encode configural and

shape features.

We conclude that to move the state of the art forward, face recognition research has to focus

on a topic that has received little attention in recent years – precise detection of faces and

facial features. We base our argument on recent advances in the understanding of human

perception of faces. Although we have focused our study on the recognition of facial

expressions of emotion, we believe that the results apply to most face recognition tasks.
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Figure 1.
Four images of the same face expression joy as seen at different resolutions. Each image

was reduced to one half the size of the image on its left; with the first one at about 180 × 150

pixels. The images are displayed at the same size to facilitate comparison and analysis.
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Figure 2.
Correct classification of images displaying six typical emotions (happy, surprise, sad, angry,

disgust, fear). Results averaged over thirty-four human subjects. Adapted from [8].
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Figure 3.
The three face images and schematics shown above all correspond to neutral expressions

(i.e., the sender does not intend to convey any emotion to the receiver). Yet, most human

subjects interpret these faces as conveying anger, sadness and surprise [20, 21].
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Figure 4.
Shown here are the two most discriminant dimensions of the face shape vectors. We also

plot the images of anger and sadness of [9]. In dashed are simple linear boundaries

separating angry and sad faces according to the model. The first dimension (distance

between brows and mouth) successfully classifies 100% of the sample images. The second

dimension correctly labels 70% of the images. Adapted from [21].
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Figure 5.
Sample precise detections of faces and facial features using the algorithm of [7].
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