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Abstract

We present a full real-time implementation of a multi-
lateral filtering system for depth sensor data fusion with
2-D data. For such a system to perform in real-time, it
is necessary to have a real-time implementation of the fil-
ter, but also a real-time alignment of the data to be fused.
To achieve an automatic data mapping, we express dispar-
ity as a function of the distance between the scene and the
cameras, and simplify the matching procedure to a simple
indexation procedure. Our experiments show that this im-
plementation ensures the fusion of 3-D data and 2-D data
in real-time and with high accuracy.

1. Introduction

Time-of-Flight (ToF) cameras are becoming very com-
petitive compared to other 3-D sensing modalities. Indeed,
nowadays ToF systems are as affordable and compact as
stereo vision systems. Their major advantage is their ability
to provide an entire depth map at a high frame rate and in-
dependently of scene illumination. There are however two
main drawbacks that are today restraining the potential of
ToF technology; namely, low resolution of ToF data, and
their high noise level. In applications where the limited res-
olution of a ToF camera is critical, research efforts are di-
rected towards sensor fusion [0, 7, 8, 9, 10, 14, 15, 20, 21],
where ToF data is combined with data provided by a con-
ventional 2-D video camera. A successful hybrid ToF multi-
camera rig, deployed in real-world applications, needs not
only to provide good quality depth maps, but also to capture
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this data in real-time. For this reason the first proposed fu-
sion efforts were not suitable, as they were based on Markov
Random Fields, which are known to be computationally de-
manding [7, 10]. Another approach based on the bilateral
filter was proposed by Kopf et al. [15]. It is referred to as the
joint bilateral upsampling (JBU) filter. Until recently, the
bilateral filter and its extensions were computationally ex-
pensive; their conventional brute-force implementation has
a computational complexity of the order of O(n?) per out-
put pixel, where n is the filter radius. Recent proposals for
the bilateral filter implementation have made it now suitable
for real-time applications [1 1, 16, 17, 19].

This improvement applies to all extensions of the JBU,
that are used in fusing ToF data with 2-D data [6, 9]. How-
ever, while it is true that these fusion algorithms can now
perform in real-time, they all assume a perfect alignment
of the data to be fused, which is far from a trivial task
for most real-world data and scenarios. In fact, mapping
the distance measurements from the ToF camera onto the
colour camera is a straightforward procedure which would
result to the assignment of a colour value to each of the
(low-resolution) ToF pixels. However, we herein propose
to tackle just the opposite case. We want to assign to each
of the high-resolution 2-D pixels an accurate distance value.
This requires mapping the 2-D image onto the ToF image,
which is not straightforward if one has to take into account
the distance dependency of the disparity. Furthermore, such
dependency on the distance requires to recompute the whole
mapping procedure for each recorded frame and thus, it
makes the real-time implementation quite challenging.

In this paper, we go beyond the alighment assumption,
and propose a real-time implementation of a full system for
hybrid ToF multi-camera rig data fusion. In other words,
we propose an original technique for real-time alignment of



the captured data by the ToF camera and the 2-D camera,
followed by a real-time fusion of these data. For the data
fusion step, we consider the pixel weighted average strat-
egy (PWAS) filter [9] as an improved version of the JBU
algorithm. To that end, we have adapted the method pro-
posed by Yang et al. [19] to make the PWAS filter perform
in real-time.

The organization of the paper is as follows: In Section 2,
we introduce the PWAS filter and its new formulation for an
implementation in real-time. In Section 3, we explain the
problem of the dependence of disparity on the distance be-
tween the scene and the camera. Solving this problem starts
by mapping the image coordinates relative to each camera
to a unified reference frame as presented in Section 4. We
give our proposed algorithm for the data matching proce-
dure in Section 5. In Section 6, we present our experimental
results. Finally, in Section 7, we give our conclusions and
perspectives.

2. Pixel Weighted Average Strategy (PWAS)

The JBU is a multilateral filter that enhances depth maps
using a spatial weighing term f,(-) applied on the pixel
position, and a range weighing term f,.(-) applied on the
pixel value. Both weighing terms are generally chosen to
be Gaussian functions. Thus, this filter adjusts the edges in
the depth map R to the edges in the 2-D image I. The fil-
tering can only be applied once the two images are aligned
and mapped to the same reference frame, that we refer to
as C. Applying the JBU on the resulting images I and R¢
may be achieved as follows:
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where N (p) is the neighbourhood at the pixel indexed by
the vector p = (i,)T, where i corresponds to rows and
j corresponds to columns. The resulting filtered image J is
an enhanced version of R, that presents less discontinuities,
and a significantly reduced noise level. Nevertheless, the
direct application of the JBU filter for depth enhancement
may introduce unwanted artefacts such as texture copying
and edge blurring. In order to deal with these artefacts,
improved versions of JBU have recently been proposed by
Chan et al. in 2008 [6] and Garcia et al. in 2010 [9]. While
both approaches are good solutions, the filter in [6] requires
some parameter tuning. Moreover, the PWAS filter in [9]
copes well with inaccurate edges as it includes a new fac-
tor (), named credibility map, to the kernels in (1). This
factor explicitly accounts for the unreliability of distance
measurements along the edges. We opted for this most re-
cent JBU extension as it outperforms the alternative depth
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fusion filters [9]. The PWAS filter is thus expressed as:
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where ()¢ is the mapped credibility map that results from
weighing the gradient of the original depth map, i.e.,
Q(q) = f:(IVR(q)]). Similarly to [9], we choose fs(-),
fr(+), and f;(-) to be Gaussian functions with variances o,
oy, and oy, respectively. The value of o, is chosen equal
or larger than the scale factor between the low-resolution
depth map and the 2-D image. o, is the mean of the gradi-
ent of the 2-D image, and o; is the mean noise in the ToF
camera measurements.

For a real-time implementation of the PWAS filter, we
propose to adapt the method in [19], as it has been shown
to outperform state-of-the-art methods for accuracy, speed
and memory consumption. We thus proceed by defining
two mappings G'¢(P)(.) and H'¢(P)(.) for a fixed value of
the 2-D image I at the pixel p, such that:

a— fr(Ic(q),Ic(p))- Qc(q) Re(q),
a— fr(Ic(q), Ic(p)) Qc(q). (3)

We then may rewrite (2) as follows:
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We note that fs(p, q) is a function of the difference (p—q).
We hence write (4) as:
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where * denotes the convolution between functions. We
note that the downsampling of the data to be filtered does
not introduce significant errors [16]. It actually ensures
good memory and speed performances. Moreover, it was
shown in [16] that using a sampling rate proportional to the
Gaussian bandwidth provides a consistent approximation.
The reformulation of the filter in (5) using two convolutions
and their application on downsampled data enables its im-
plementation to perform in real-time. However, we recall
that this filtering operation requires perfectly aligned input
images. We explain the necessity of this alignment in Sec-
tion 3, and dedicate the rest of the paper to present our pro-
posed automatic matching procedure.

®)

3. Distance-dependent disparity

In general, the two reference frames of each individual
camera constituting a hybrid ToF multi-camera rig are not



co-centric, i.e., the centres of projection of each camera are
displaced by a distance b, known as the baseline of the ToF
multi-camera rig. Thus, the projections of a point P in
space onto each camera image plane and with respect to
each camera’s principal point, differs by a distance called
binocular disparity:

p=1r 7 (6)
In stereo systems, the disparity leads to the estimation of
the distance Z at which the point P is located in the scene.
However, this requires to solve the correspondence prob-
lem, i.e., to find the feature-correspondence pairs. In con-
trast, in our case the problem is reversed due to the ToF cam-
era, and Z is used to estimate the disparity p for each of the
ToF camera pixels, which simplifies the mapping by avoid-
ing demanding operations such as feature matching and im-
age correlation.

The relationship between the Z measurements and the
feature-correspondence pairs causes a dependency on the
scene. Therefore, it has to be recalculated whenever the
scene changes, which is typically the case for every frame
of data acquisition. By differentiating disparity p in (6) with
respect to depth Z, we define the absolute disparity varia-
tion Ap as a function of the absolute depth variation AZ,

and obtain:
AZ

We note that only in situations where the depth variation
of the object in the scene AZ is small enough compared
to the squared distance Z2 from the object to the system,
the disparity p can be assumed as constant and thus, in-
cluded in a simple projective transformation for all recorded
frames. Actually, this scenario is commonly used in re-
search efforts that integrate a SwissRangerTM ToF camera in
their ToF multi-camera rig [0, 12, 13]. The rather small
field of view (FOV) provided by the SwissRamgerTM camera,
i.e., 47.5° x 39.6°, forces such systems to be installed at
a relatively large distance from the object. As a conse-
quence, these systems can still function while neglecting
the distance-dependent disparity, which is not the case for
the majority of ToF cameras, which require the variation
of disparity to be taken into account. In what follows we
propose to solve this problem by defining a new matching
procedure that exploits the distance-dependent disparity.

4. Unified reference frame

A hybrid ToF multi-camera rig delivers the two raw im-
ages I and R related to each camera’s reference frame, that
we refer to as A for the 2-D camera and B for the ToF cam-
era. To achieve the low-level data matching required for
data fusion, we proceed by transforming the image coordi-
nates related to each camera reference frame to the unified

reference frame C. This transformation allows us to estab-
lish a mapping of the data from both sensors on a common
coordinate grid on C. As a consequence of this mapping
process, the indexed data at the end of the mapping matches
pixel to pixel, i.e., the mapped images are pixel aligned, and
ready to be fused. Our mapping procedure results from the
following steps:

1. Distortion correction. This is a classical first step
in system calibration. It consists in correcting the raw dis-
torted images I and R according to the extrinsic and in-
trinsic camera parameters that are to be determined. To
that end, we can resort to classical calibration tools such
as Bouguet’s toolbox for Matlab [5] or image processing
tools such as those included in Intel’s computer vision li-
brary OpenCV [1]. Once those parameters are known,
we correct the distortion for the 2-D image coordinates
(ug,vq) and ToF image coordinates (24, y4), and proceed
with the resulting undistorted image coordinates (u,, vy,)
and (z, y, ), respectively.

2. Binocular disparity suppression. Our main contri-
bution deals with the variation of disparity in the case where
it cannot be modelled as a constant value as previously pre-
sented in Section 3. Our approach consists of suppressing
the disparity by means of ToF camera measurements.

We transform the value of the depth map R at the pixel
location (z,,, ¥y, ), noted as R(z,,y,), into the Z coordi-
nate of the corresponding pixel using the undistorted image
coordinates (z,, ¥ ), as follows:

o
ATy, yu)’

where f is the ToF camera focal length, and

d(xlmyu) =V f2 + xu2 + yu2 9

is the radial distance of the pixel coordinates to the projec-
tion centre in 3-D.

The Z coordinate of the pixel at location (z,,, y,,) allows
to compute the disparity shift of this pixel using (6), i.e.,

() - (o) ()-2 ) o
Yu, Yu = Py Yu Z \by

Thereby we have considered the paired sensors to be in-
stalled on the same plane and separated along the = and y
axes, i.e., b= by - €, + by - €, + 0 €, where é,, €, and €,
are respectively the unit vectors along the z, y and, z axes
of the ToF reference frame 5. Consequently, the binocu-
lar disparity in (6) is decomposed into two components as
p = py-€x+py-€y. Itis important to note that p is a function
of the distance Z, and thus not constant for all pixel loca-

tions. As a result of this image coordinates displacement,
the system behaves as a monocular system where the two

Z = R(Tu, Yu) - ®)



camera reference frames of the individual cameras are co-
centric. Consequently, the binocular disparity p gets sup-
pressed. The values of the depth map R are, however, not
invariant under this disparity shift, but may be recomputed
according to (see equations (8) and (9)):

(2 Yu)
f

3. Projective transformation. The last step concerns

the transformation of the resulting image coordinates from
the previous steps to the unified reference frame C. This
operation describes a mapping from plane to plane which
can be solved by a projective transformation [2, 18] when
both reference systems have the same centres. This latter
condition has been fulfilled by the disparity correction in
the previous transformation step.
Although we are considering a test rig with a baseline shift
of b along the = and y directions, our approach may be eas-
ily generalised to the case of a shift in any direction between
the sensors.

R'(z,,y,) = Z- (11)

5. Data matching

The proposed data matching results from mapping the
image coordinates from each individual camera to the uni-
fied reference frame C. The relationship between the raw
images and the mapped ones can be represented by an ar-
ray that associates each pixel coordinates from the recorded
image to the corresponding new location after the mapping.
This associative array or look-up table (LUT) can be com-
puted offline in order to reduce the complexity of the map-
ping procedure to a single indexing operation and leading to
real-time implementation. In what follows we propose an
efficient mapping technique that tackles the binocular dis-
parity for any setup and scenario.

5.1. 2-D camera LUT

In order to determine the LUT L 4¢ that associates the
recorded 2-D images I, relative to A, to the unified ref-
erence frame C, we perform the mapping procedure pre-
sented in Section 4 on the 2-D image coordinates (g4, vq).
We start by defining a mesh grid ¥ = {(pi;,qi;), i =
1,...,M;j =1,...,N}, where the pair (p;j,q;;) repre-
sents the location of the image pixel corresponding to the
row index ¢ and the column index j. We set the grid ¥
to be of the same resolution (M x N) as the 2-D cam-
era. There is, however, no restriction regarding the reso-
lution of the resulting mapped images. Our choice of M
and N in this paper is motivated by the low-level fusion,
which is intended for enhancing the ToF depth map up to
the same 2-D camera resolution. We proceed by placing
the mesh grid onto the mapped image coordinates and per-
form a nearest neighbour search on which the 2-D image

I will be mapped, resulting in the rectified 2-D image I
used in (2) and (4). In other words, for each pixel (i, j)
in I, the corresponding pixel (m,n) in I is determined
by the closest coordinates (U, Umy) to the pixel coor-
dinates (p;j,q;j) defined by the mesh grid ¥. We thus
may define the mapping (i,5) — (m,n) = Lac(4,75), as
Lc (i, j) = argming, ) |(Pij; @) — (wmnn, Vmn) " 2.
The stored LUT L 4¢ allows to generate the new mapped
image as follows I¢ (i, 7) = I(L ac(4, 5)), for all 4, j.

We recall that the mesh grid ¥ corresponds to the coordi-
nates on the unified reference frame C. We will thus use
the same mesh grid for the second part of the mapping as
presented in Section 5.2.

5.2. ToF camera LUT

The same procedure as the one presented for determin-
ing the 2-D camera LUT applies for the ToF camera LUT
that we refer to as Lzc. We use W to define a new depth
map R from R/, the recorded image relative to B corrected
in disparity. We note that the mapping described by this
mesh grid also upsamples the mapped image coordinates to
the 2-D camera resolution (M x N). We did not consider
other interpolation techniques such as linear or bilinear in-
terpolation because they may generate unwanted artefacts
when applied on ToF data due to their characteristics such
as incorrect measurements at large distances. These pixel
values must not be considered in an interpolation, but re-
quire a special treatment. Also, real distances within the
edges in the scene should not be interpolated. At the end of
the mapping process, both resulting images I and R¢ gen-
erated from their respective L 4¢ and Lge LUTSs are pixel
aligned. Nevertheless, Lc that generates R is distance
dependent. Due to the disparity suppression realised in the
second step of our mapping procedure (see Section 4), the
resulting LUT depends on the depth map information and
thus on the scene configuration. The easiest way to deal
with this dependence would be computing the Lgc LUT at
each ToF frame acquisition; however, that implies a high
computational time, and consequently, it will not be viable
if a real-time performance is required. Indeed, the offline
computation of a single Lp¢ is close to 15 minutes using
Matlab for Windows on the system we have used to run
our experimental results. Therefore, in order to achieve a
real-time performance on dynamic scenes, we propose to
consider an array {Lp¢c}, k = 0,..., K — 1, of LUTs
where each LUT L j; tackles a different disparity py, cor-
responding to a plane at a fixed distance Z; = f - %
to the system. We choose the discrete disparities as mul-
tiples of the pixel size ¢ in the mapped image Re, i.e.,
pr = 0spk,k = 0,..., K — 1 where s, = b/|b| is the
unit vector of the baseline shift. Dividing the Z range of the
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Figure 1. Z range of the ToF camera divided into K intervals
[Zk+1, Zi] defined by equidistant disparity values pr, = k X p.
Within each interval, the disparity p varies less than 1 pixel size §.

ToF camera into K intervals [Cxt1, (x] around Zj, with

G =

one finds that for each pixel of the ToF camera with a Z
value in the interval [(;41, (x|, the disparity equals py, with
an error less than 0/2, i.e., half the size of a pixel in the
high-resolution 3-D image R (Figure 1). The maximum
binocular disparity is given by the minimum Z— measure-
ment range of the ToF camera, Z,,;,, (the minimum Z value
in the setup). The number K of different disparities to be

b L
ij_ln 5+ % The mapping is

considered is given by K > f -
performed as follows:
for i = 1toNdo
for j = 1toMdo
k=K
while (k > 0) and
(Z(Lpe,k(i,4)) > (k) do {Z}, interval}
k+—k—-1
end while
if (k< K) and
(Z(Lgek(i,7)) < Ck+1) then {Occlusion han-

dling}
k+—k+1
end if
Re(i,j) = R'(Lgc (i, 7)) {Mapping}
end for
end for

where Z denotes the image of Z values calculated from the
depth map R. This mapping procedure allows the low-
resolution depth map R’ to be mapped in real-time to a
depth map R, where each pixel matches a pixel in the
already mapped I image. Moreover, for a faster overall
performance, we avoid downsampling each ToF image R¢
before filtering with (2) as suggested at the end of Section 2.
Instead, we automate its downsampling by mapping R’ us-

ing a downsampled LUT Lgc. We note that the downsam-
pling of the ToF camera LUT does not apply to the 2-D LUT
L 4¢ as the high-resolution 2-D images are required for the
final interpolation step.

6. Experimental results

We herein evaluate the three main aspects related to our
full real-time implementation of a hybrid ToF multi-camera
rig for depth enhancement; namely, data matching, data fu-
sion and computation time. We have performed our experi-
ments based on various scenes including our own recorded
sequences as well as scenes from the Middlebury stereo
dataset'. The Middelbury dataset provides ground truth dis-
parity maps in addition to the corresponding 2-D RGB im-
ages. For our own recordings, we have used a hybrid ToF
multi-camera rig composed of a 3D MLI Sensor  from IEE
S.A. [3], and a Flea®2 video camera from Point Grey Re-
search, Inc. [4]. The resolution of the 3D MLI Sensoris
(56x61) pixels, with a measurement range of 7.5 m and a
frame rate of 11 frames per second (fps). The Flea®2 cam-
era provides a resolution of (648 x488) pixels, and a frame
rate of 80 fps. The two cameras were coupled for a narrow
baseline of 30 mm, and they were frame-synchronized with
each other at the ToF camera frame rate. Regarding the im-
plementation, we programmed the whole fusion setup in C,
and we ran the experiments on a Pentium IV, 2.66 GHz with
1 GB of RAM.

6.1. Data matching

In order to analyse the data matching step, we have con-
sidered three different test cases in which we recorded the
calibration pattern displaced around the FOV of the sensing
system, and at different depths. In the first test case, the
pattern is roughly centred in the system FOV and parallel
to the system at a distance of 683 mm, as shown in Fig-
ure 2. In the second test case, the pattern is shifted to the
corner of the FOV and moved away from the system to a
distance of 1530 mm. In the third test case, the pattern is
tilted in order to cover a depth range from 900 mm to 1530
mm. We quantify the accuracy of the mapping procedure by
computing the root mean square error (RMSE) between the
computed centroid coordinates related to each dot of each

'Middlebury Stereo Dataset, http://vision.middlebury.edu/stereo

(b) © (@

Figure 2. First test case for data matching. (a) 2-D acquisition.
(b) ToF acquisition. (c) 2-D mapped. (d) ToF mapped.



Table 1. Data matching error for the three test cases. The table
compares the RMSE (in pixels) over 20 control points, separately
computed for x and y pixel coordinates, between our mapping pro-
cedure and the mapping using a projective transformation.
Test cases 1 2 3
RMSE with a unique 7.52 | 1.33 | 2.59
proj. transf. at 1.5m 145 | 1.88 | 1.42
RMSE with a different proj. 1.29 | 1.33 | 3.52
transf. for each test case 148 | 1.88 | 1.42
RMSE with the proposed 2.14 | 1.56 | 1.47
mapping procedure 1.40 | 1.84 | 1.43

<SR R &

pair of 2-D and ToF mapped amplitude images >. Further-
more, we compare our proposed mapping method with a
classical mapping using a simple projective transformation.
To that end, we first calculate the projective transformation
at the distance in which the system was calibrated, i.e., 1.5
m. We then calculate a different projective transformation
for each test case. Table | reports the RMSE results for
all the tests. We find that the error when mapping using
a projective transformation is small if it is computed at the
same distance of the target and if the pattern is parallel to the
sensing system. As soon as the distances between the target
and the projective transformation are not coincident, the er-
ror increases. The error increases again when the target is
tilted. The evaluation results for our mapping method show
a consistent error of about 2 mapped image pixels, or less.
This observation confirms that the proposed method accu-
rately adapts to the distance-dependent disparity explained
in Section 3. However, the error slightly increases to 2.14
pixels in the specific case where the target is planar. This
is caused by the approximation, given in (12), of Zj by
the interval [(x+1, (x]. We note that all RMSE values also
include small inaccuracies introduced by the centroid es-
timation and the calibration step. We further evaluate our
mapping procedure on the scenes Art, Books, and Moebius,
provided by the Middlebury dataset (Figure 5). The Mid-
dlebury dataset also provides the required information to
generate ground truth depth maps from the provided dispar-
ity maps, such as the baseline of the system they used or the
minimum disparity value, 200 pixels. We therefore compare
the mapped depth maps from view 5 with the ground truths
at view [ relative to the maximum distance in the scene de-
termined by the minimum disparity value. We find a global
RMSE of less than 0.15%. Notice that this measurement
has been computed without considering the occlusion areas
(see the third column of Figure 5). This result consolidates
the above mapping experiments using a calibration pattern.
Figure 5 presents the filter output that includes the proposed
mapping procedure for data matching.

2 Amplitude images result from the intensity reflected by the active il-
lumination emitted by the ToF camera.

6.2. Data fusion

1500

1000

1500

1000

(c) Credibility map
Figure 3. PWAS filtering of frame 31.

(d) Enhanced depth map

To illustrate the effectiveness of the real-time data fusion,
we record a video sequence® of 138 frames using our test
rig described above. The video sequence contains a person
moving his arms around the FOV of the system. Figure 3
presents the PWAS filtering applied on frame 31. The en-
hanced depth map, Figure 3(d), has the same resolution as
the 2-D image, Figure 3(a), with the depth edges accurately
aligned according to the 2-D edges in regions of low cred-
ibility (see the contour of the hand in Figure 3(d)). When
there is no contrast between foreground and background in
the 2-D image, the filter adjusts the depth measurements
within the credibility map boundaries, yielding, in some
cases, to wrong distance measurements. This phenomenon
occurs on the hair measurements of the person. Due to the
low contrast between the background colour and the hair
colour, the depth measurements get adjusted to the back-
ground value.

We chose the same Art, Books, and Moebius, scenes
from the Middelbury data in order to compare the JBU per-
formance against its extended version, the PWAS filter. To
that end, we donwsampled the depth maps at view 5 by a
factor of 2, 4, and 8. We then mapped the downsampled
depth maps to view I and finally fused them with the pro-
vided corresponding high-resolution 2-D images at view 1.
Table 2 reports the RMSE measure, between the JBU and
the PWAS outputs, and the given ground truth. The RMSE
measure has been computed without considering occlusion
areas and unknown disparity pixels (3"¢ column of Fig-
ure 5). Figure 5 shows the visual results for the case of a
downsampling rate of 4. We notice that PWAS outperforms
JBU in almost all cases. It is slightly worse when filtering
such small objects that are completely assigned low cred-
ibility weights. In such cases, these pixels are adjusted to

3Video sequence provided as supplementary material.



the distance value of the closest object with a similar colour
value, as occurs in Figure 4. This assumption handles per-
fectly outliers or regions with unknown disparity.

Table 2. Comparison between the JBU and the PWAS filter outputs
applied on the Middlebury scenes in Figure 5. s, corresponds to
the sampling rate. o5, o, and, o; are the used variances for each
weighing term in the JBU and PWAS expressions. The last two
columns report the RMSE of the JBU and PWAS filters output
against the depth map ground truth.

Scene | s, | oy oy ot RMSE | RMSE
JBU | PWAS

2x [ 3.00 | 0.03 | 117.25 | 0.016 | 0.017

Art 4x | 5.00 | 0.03 | 136.78 | 0.019 | 0.022
8x [ 9.00 | 0.03 | 170.15 | 0.023 | 0.025

2x | 3.00 | 0.03 | 69.27 | 0.011 | 0.010
Books | 4x | 5.00 | 0.03 | 86.23 | 0.016 | 0.010
8x [ 9.00 | 0.03 | 85.77 | 0.019 | 0.014
2x | 3.00 | 0.03 | 76.74 | 0.010 | 0.009
Moebius | 4x | 5.00 | 0.03 | 78.85 | 0.010 | 0.006
8x [ 9.00 | 0.03 | 93.94 | 0.014 | 0.009

(a) 2-D intensity image to be
fused

(b) Credibility map

(c) Zoom of green area in (a) (d) Zoom of green area in (b)
Figure 4. Case in which PWAS fails.

6.3. Computation time

Data matching for data captured by the 2-D camera is
achieved by a single indexation step. For the ToF camera,
the matching requires using the EUh-LUT, ie., Lgc i, that
corresponds to the input pixel distance. In the worst case,
i.e., a depth map with all distance measurements equal to
the maximum allowed distance, it would be necessary to
go through all k steps and then, perform the indexation.
However, in a real-world scenario, this is not always the
case. The fast PWAS filter implementation requires 3 mil-
liseconds per image on the system introduced above. If we
process the current video sequence from a file stored be-
forehand on memory, the whole fusion system performs at

20 Hz. However, if we process the data online, the fusion is
limited by the ToF camera frame rate, which is in this case
11 fps.

7. Conclusion and perspectives

We have presented a full real-time hybrid ToF multi-
camera rig fusion system to enhance the low-resolution
depth maps provided by ToF cameras. The whole com-
putation time of our system is smaller than the data ac-
quisition time of the ToF camera. We hence showed that
we can provide enhanced 3-D videos up to the ToF camera
frame rate, 11 fps in our case. This was achieved thanks to
the good performance of our automatic mapping procedure
combined with the real-time implementation of PWAS, the
considered multi-lateral fusion filter. This low-level fusion
performed by our test rig provided enhanced depth mea-
surements, well adjusted to the 2-D guidance image, and
with a considerably reduced noise level.

As a future research direction, we plan to improve the
accuracy of the PWAS filter. Our experiments pointed out
instances where the PWAS filter fails in avoiding some arte-
facts. For example, in the case where there is no contrast
between foreground and background in the 2-D guidance
image, as happened with the dark hair of the person in the
video sequence used in Section 6, we realized that it would
be more suitable to consider the real depth edges given by
the ToF camera instead of those given by the guidance im-
age. Another undesirable artefact was often due to using
grayscale images rather than colour images, which caused
to map distinct colours to the same values, and hence re-
sulted in lost edges. It will therefore be more accurate to
consider the three red, green, and blue colour components,
while always keeping in mind the necessity of a real-time
implementation.
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