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Abstract

Mesh-based deformable image alignment (MDIA) is an
algorithm that warps a template image onto a target by de-
forming a 2D control mesh in the image plane, using an
image-based nonlinear optimization strategy. MDIA has
been successfully applied to various nonrigid registration
problems, deformable surface tracking and stabilization of
scene-to-camera motion in video. In this paper we investi-
gate the use of image-based MDIA for computing dense cor-
respondences for 3D reconstruction of human heads from
high resolution portrait images. Human heads are topolog-
ically simple in 3D while providing textures which are chal-
lenging to match, such as hair and skin. We find that even
with a simple piecewise affine deformation model MDIA de-
livers excellent correspondence results. We propose a ro-
bust, piecewise optimization scheme to compute MDIA on
very high resolution images. We address issues of regular-
ization and luminance correction and discuss the role of
epipolar constraints. The correspondences retrieved with
our approach facilitate the estimation of camera extrinsics
and yield highly detailed meshes of the head.

1. Introduction

Algorithms for deformable image alignment aim at
aligning two images by “warping” the template image onto
the target image according to a deformation model, mini-
mizing a measure of error between the deformed template
and the target. A popular and computationally efficient class
of deformation models is based on meshes. Here, each
pixel of the template is unambiguously coupled to surround-
ing vertices of a control mesh in the image plane, causing
the image to deform along with the mesh. The alignment
problem reduces to finding a control mesh deformation, i.e.
an offset vector for every vertex. This can be stated as
an image-based energy minimization task and solved effi-
ciently in a robust Gauss-Newton framework. The approach

Figure 1. Reconstruction result computed from correspondences
obtained with mesh-based deformable image alignment. The
lower row shows details of zipper, mouth and eyebrow.

has been successfully applied not only to image registration
[1, 22] but also to monocular tracking of nonrigid surfaces
[12, 8, 23] and, recently, to stabilization of strong camera
motion in endoscopic video [17].

Similar to image registration and tracking, image-based
3D reconstruction is at its core a problem of establish-
ing correspondences. In this paper, we investigate the
use of the successful mesh-based deformable image align-
ment (MDIA) approach with a piecewise affine deforma-
tion model for establishing dense correspondences for the
reconstruction task. Portrait images showing the full head
and a part of the upper body are used as the subject for re-
construction. The reconstruction task is eased by the simple
topology of the expected 3D shape and the small amount of
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occlusions and depth discontinuities. It is challenging, how-
ever, with respect to the image textures to be matched: Hair,
for example, is difficult due to its intricate geometry and its
complex interaction with light. Skin can be problematic as
it may contain very little gradient information and is prone
to specularities which violate the brightness constancy as-
sumption.

In order to recover a high degree of detail, we use a
coarse-to-fine strategy with very high resolution images (18
megapixels) and very fine meshes (five pixels vertex spac-
ing). This requires a new computational strategy for com-
puting MDIA in a piecewise fashion: We start with a global
optimization on the full image and switch to patch-wise op-
timization when image and mesh resolution become pro-
hibitively large. To improve convergence we use nested it-
erations over image scale and regularization parameters. A
simple but efficient luminance correction is used to cope
with violations of the brightness constancy assumption. For
reconstruction, we use three images taken with an upright
triangular camera setup and a baseline of roughly 20 cm.
The images of the left and right lower cameras are registered
with the image of the upper central camera and correspon-
dences over three views are used for depth computation.

In contrast to generic image registration and nonrigid
tracking, the stereo matching problem has an additional
constraint, namely epipolar geometry. If the camera setup
is calibrated, the vertex displacements can be restricted to
the epipolar lines. A straightforward way of implementing
this is to rectify the image pair and only optimize for the X
or Y components of the displacement vectors, depending on
the direction of rectification.

In the uncalibrated case, the most rigorous strategy
would be to include the camera parameters in the opti-
mization and keep the vertex displacement consistent with
the last estimate of the cameras in the iterative optimiza-
tion process. This approach ultimately boils down to an
intensity-based bundle adjustment (e.g. [19], section 3.4.
and references therein). However, bundle adjustment is
known to require a good starting point for both cameras
and geometry in order to converge. Therefore it is typi-
cally used as the last stage in 3D reconstruction [11]. In this
paper, however, we are interested in using nonrigid image
alignment to establish correspondences from the beginning.
The most simple approach to do this is to ignore the epipo-
lar constraint and use the freeform deformation model as it
is used in generic registration and tracking. If the image
alignment is of sufficient quality, the correspondences can
be used to compute the extrinsic parameters of the setup.
This strategy is similar to a feature-based approach to 3D
(e.g. using SIFT, SURF, etc.), where feature extraction is
agnostic of epipolar geometry and the correspondences are
used later to retrieve the cameras. In contrast to a feature-
based strategy, the correspondences generated with the im-

age alignment approach are dense.
While the epipolar-agnostic approach is an over-

parametrization, it is a challenging benchmark for the non-
rigid alignment algorithm with respect to correspondence
quality. As the focus of this paper is on the capabilities of
MDIA, all results shown were generated with the extrinsi-
cally uncalibrated, epipolar-agnostic approach and all cam-
era extrinsics were computed from the correspondences es-
tablished by the image alignment. We find that, despite of
the simple piecewise affine deformation model we use, cor-
respondence quality is excellent when MDIA is used with
the proposed computational scheme.

The paper is organized as follows. After reviewing re-
lated work in the following section, we briefly recapitulate
the MDIA formalism in section 3 and discuss the proposed
computational scheme in detail in section 4. Finally, results
and a conclusion are given in section 5.

2. Related work
Our work is closely related to several lines of research

which we can only sketch briefly in the following.
Mesh-based deformable image alignment, as used in

this work, has been applied to various registration prob-
lems, e.g. [1, 23, 22]. It has been extended by several au-
thors to nonrigid surface tracking in monocular video se-
quences, where the warp is estimated for each frame pair
[12, 8, 23]. In [17], MDIA is used to stabilize scene-to-
camera motion in endoscopic video. Different ways of cou-
pling the location of a pixel to the locations of its surround-
ing vertices are used, for example radial basis functions in
[8] and barycentric coordinates in [12]. Barycentric coor-
dinate warps amount to a piecewise affine transformation
of the image and are employed in this work as well. Some
authors deal with violations of the brightness constancy as-
sumption; for example, [12] estimates a multiplicative pho-
tometric term along with the deformation. Our luminance
correction model is similar but decoupled from warp esti-
mation (section 4).

An extensive discussion of 3D reconstruction, even if
restricted to the literature specialized on the human head
or face, is beyond scope. Of all aspects of 3D reconstruc-
tion, that of finding correspondences is most relevant to
this work. Correspondence search can be classified into ac-
tive and passive, as well as into calibrated and uncalibrated
methods. Active methods modify the scene to ease corre-
spondence detection, e.g. by structured light projections.
Passive methods on the other hand rely entirely on scene
features and require a sufficiently textured surface. With
high resolution cameras, the fine details of human skin can
be exploited for impressive reconstructions [2]. The other
line of classification, calibrated vs. uncalibrated, relates to
whether knowledge of scene geometry is used. The vast
majority of stereo approaches, generic ones such as PMVS
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[7] as well as specialized methods for the face [2, 4], use an
extrinsically calibrated setup in order to restrict the search
for correspondences to epipolar lines. Volumetric and hull
based methods, too, rely on extrinsic camera parameters for
ray computation. Uncalibrated correspondence search is of-
ten associated with matching feature descriptors like SIFT,
SURF, Harris corners, etc. The downside of feature match-
ing for reconstructing the human head is the sparsity of the
recovered 3D points. Another class of algorithms that deal
with uncalibrated images use statistical semantic models to
restrict the space of possible 3D shapes [3, 6]. These mor-
phable models are extremely successful on the face, but fail
to represent small-scale individual details due to their sta-
tistical nature. Also, to the best knowledge of the authors
no morphable model covering the complete head including
hair exists.

Finally, optical flow methods, which share assumptions
and strategies with MDIA, recover dense image correspon-
dences as well. Optical flow is often investigated in a vari-
ational setting, e.g. [16, 20]. Some approaches, however,
also employ triangle meshes, for example the discrete algo-
rithm by [9] or the finite element approach of [5]. Optical
flow and MDIA algorithms often share the brightness con-
stancy assumption, the violation of which severely hampers
results. Both techniques may involve similar smoothness
terms in their models, such as a Laplacian in the classic
variational approach of [13]. Also, several computational
techniques for improving robustness and convergence are
used with both methods. Examples are coarse-to-fine warp-
ing schemes which have been theoretically justified in [16],
or the use of robust error functions such as Huber’s [14] in
the data term [21, 8].

3. Mesh-based deformable image alignment

In the following we briefly summarize our approach to
MDIA, which largely follows the methodology used in de-
formable surface tracking, e.g. [12, 1].

We denote by K the number of vertices in the mesh
and assume that the vertices are indexed in the range V =
{1 . . .K} so they can be identified by their indices. The
topology of our control mesh is illustrated in figure 2. Sim-
ilarly, we assume the image pixels to be indexed in range
P = {1 . . . N}. We denote vertex coordinates of the unde-
formed mesh by [uV vV ]

T
, V ∈ V and pixel coordinates as

[xP yP ]
T
, P ∈ P .

Let TP ∈ V3 be the surrounding triangle of pixel P ∈ P
and be c(1)

P , c
(2)
P , c

(3)
P the barycentric coordinates of P with

respect to TP in the undeformed control mesh. For each
pixel that lies under the mesh we define a sparse row vector

bT
P =

[
b
(1)
P . . . b

(K)
P

]
of length K as follows:

b
(V )
P =

{
c
(i)
P if V is the ith vertex of triangle TP

0 otherwise
(1)

Thus bP contains the three barycentric coordinates of P
with respect to its surrounding triangle, distributed accord-
ing to the ordering of the vertices. Finally, we define the
matrix of barycentric coordinates of all pixels as

B = [b1 . . .bN ]
T
. (2)

We can now formulate the transformation induced by a
mesh deformation compactly. Denote by X the matrix of
all pixel coordinates and by D a matrix of vertex displace-
ments, i.e. a control mesh deformation:

X =

[ x1 y1

...
...

xN yN

]
D =

[
∆u1 ∆v1

...
...

∆uK ∆vK

]

Then the pixel coordinates X∗ after the deformation are

X∗ = X + BD (3)

The inverse problem, i.e. retrieving D from an image
pair, can be stated as an instance of the more general para-
metric warp estimation problem. Denote by I, K a pair
of single-channel images which we regard as mappings of
coordinates to intensities. Let W :

(
R2,RK

)
→ R2 be a

parametric warp, i.e. a mapping of image coordinates de-
pending on some parameter vector θ, which is the quantity
to be estimated. Define the pixel-wise residual as the inten-
sity difference under the warp:

r (θ) = I ([x y])−K (W ([x y] ,θ)) (4)

Estimating θ amounts to minimizing the energy

arg min
θ

N∑
i=1

ρ (ri(θ)) +R (θ) (5)

where ρ is a norm-like function such as the Huber function
[14], which was used for all results in this paper. R (θ) is a
placeholder for smoothness terms which will be addressed
below. Note that equations (4) and (5) are only valid under
the brightness constancy assumption.

For arbitrary norm-like functions, this energy can be
minimized with a robust Gauss-Newton scheme that differs
only slightly from the standard least squares case; details
can be found, for example, in [15]. This requires the Jaco-
bian of the energy function, whose rows are given by

∇ri = −∇KT
∣∣
W([xi yi],θ)

· JW . (6)
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used for regularization

ignored for regularization

Figure 2. Mesh topology and subgraph used for regularization.

∇KT is the image gradient which is evaluated at the warped
coordinates. JW is the Jacobian of the warp to be opti-
mized. For piecewise affine MDIA, the warp W with ver-
tex displacements D as parameters is given in equation (3).
The Jacobian is simply JW = B.

Depending on the warp to be estimated, regularization
terms need to be incorporated in the optimization. Our reg-
ularization consists of two components. Firstly, the discrete
Laplacian of a subgraph of the control mesh is used. For
any graph withK vertices, degrees n1 . . . nK and adjacency
matrix A, the uniform-weight Laplace matrix [10] is de-
fined as

L = diag (n1 . . . nK)−A. (7)

The Laplace matrix is built for a subgraph of the control
mesh which is obtained by eliminating vertical edges. The
regularization term used is

R1 (D) = ‖LD‖2F (8)

where ‖·‖F denotes the Frobenius norm. This is a classic
regularization approach for MDIA.

The second regularization term is used only at the higher
resolution levels in the image scale pyramid, which is de-
scribed in more detail in the following section. It penalizes
deviations of the current, high-frequency solution from the
previously computed low-frequency solution Dlf :

R2 (D) = λ2 ‖D−Dlf‖2F (9)

Details on computing Dlf are given below.

4. Optimization scheme
We find that convergence and robustness of MDIA pri-

marily depends on four factors: (1) the amount of image
detail, (2) the relative mesh granularity, i.e. the number of
pixels that contribute to each vertex in the data term, (3)
the relative weight of the smoothness terms with respect to
the data term, and (4) deviation from the brightness con-
stancy assumption. Computational cost and memory usage,
on the other hand, depend largely on the numberK of mesh
vertices, as the sparse linear system to be solved in each
Gauss-Newton iteration is of size K ×K. For fine meshes
and high-resolution images, memory cost is significant, de-
spite the sparsity of the matrix.

We therefore use a two stage nested iteration approach
to optimization, implementing a coarse-to-fine scheme not
only with respect to image size but also to mesh granularity
and smoothness. The outermost iteration loop is over image
resolution which is expressed in terms of an image scaling
factor s ∈ (0, 1] in the following. The second loop is over
the weight of the Laplacian smoothness term and the inner-
most loop is the usual Gauss-Newton iteration. The stages
are defined with respect to the scaling factors: On the lower
scales, the mesh spans the entire image; this is the global
stage. At a certain scale, we switch to the local stage, where
the optimization is computed piecewise on image patches.
In the following, the key ingredients of the scheme are de-
scribed in detail.

Global stage In the global stage the mesh spans the entire
image. We keep the spacing between mesh vertices constant
over scale changes. Thus the mesh is rebuilt at every scale
with an increasing vertex count. As image detail increases
along with the scale factor, the mesh implicitly becomes
more adaptive as well. It has been reported in the optical
flow literature that a fine-grained stepping of scale factors
leads to better convergence than the classic half-resolution
Gaussian pyramid (e.g. [16]). We find this to be the case for
MDIA as well and use a scale difference of 15 %. At the
smallest image scale (s = 0.05 in our setup) the warp has to
bridge the entire baseline between the camera pair. There-
fore, the middle iteration loop (over the weight of the Lapla-
cian smoothness term) has five steps at this scale while at all
other scales only two iterations over regularization weights
are used.

Local stage Due to the increasing vertex count, global
computation becomes inefficient at a certain scale that de-
pends on the available memory and computing power (s =
0.35 in our setup). At this point we switch to a piecewise op-
timization scheme. For piecewise computation, we define a
patch size which can be efficiently optimized and compute
an appropriate mesh. The image is then tiled with these
mesh patches with some overlap and the optimization is
computed for each patch separately. Note that this is a nat-
ural starting point for parallelization. The results are joined
before the next step in scale iteration. The patch size and
the mesh are now kept constant at all scales. Therefore, the
number of patches has to increase to cover the full image.

Result propagation The proposed optimization scheme
requires us to combine solutions of different patches as
well as to propagate solutions between scales and meshes
that are not trivial to relate due to the different mesh res-
olutions. To facilitate these transformations, we use an
intermediate representation of the vertex displacements as
a dense vector field Ψ : R2 → R2 which is decoupled
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Figure 3. Luminance correction map from scale 0.07 (left), resid-
ual before (center) and after (right) correction. Note that the scale
of the luminance correction map is exaggerated. As an example,
the mouth region has been magnified for better visibility of the
subtle but important residual differences.

from the meshes and can be evaluated at arbitrary locations.
The field is implemented as a natural neighbor interpolator
[18]. For a solved patch with top left corner p, each ver-
tex displacement vector u at location x is stored by setting
Ψ
(
s−1 (x + p)

)
← s−1u; i. e. the coordinate system of

Ψ is that of the full image. At the next scale the interpo-
lator is queried at the appropriate locations to initialize the
displacements for the next optimization step.

Low frequency regularization The smoothness termR2

in equation (9) regularizes displacements using a solution
from a lower scale. This term is used only in the local op-
timization stage. The low frequency solution Dlf used for
regularization is based on the solution of the last iteration
of the global scale. Note that Dlf is not simply the solu-
tion matrix of this scale, but has to be adapted to match the
location and the scale of the patch being optimized.

Luminance correction Violations of the brightness con-
stancy assumption severely hamper correspondence results
but are hard to avoid even with careful lighting. We there-
fore apply an explicit luminance correction to the target im-
age in the global optimization stage. An additive luminance
correction map is computed from the residual, i. e. the dif-
ference between the target and the template warped accord-
ing to the current deformation estimate. We assume that lu-
minance effects in the residual are of relatively large scale
(or low frequency, but see below for a caveat) while the ef-
fects of misalignent are of relatively small scale (or high
frequency). Luminance correction must avoid to eliminate
misalignment effects as these are what drives the optimiza-
tion in the first place. Also, we want to allow sharp borders
for luminace effects which precludes the use of the low-
pass filtered residual as an estimate for luminance effects.
Instead, we use the median-filtered residual.

Formally, the luminance correction term L ([x y]) at
pixel [x y] is:

L ([x y]) = median
i=−K...K
j=−K...K

{
K
(
W
([

x+i
y+j

]
,D
))
− I

([
x+i
y+j

])}
(10)

Figure 4. Example of an image triple used for reconstruction.

Figure 7. Points (red) and corresponding epipolar lines (green)
from fundamental matrices computed from the MDIA correspon-
dences.

L is upscaled and added to the target image before the next
iteration of warp estimation. An example for L and its ef-
fect on the residual is shown in figure 3. As we use a con-
stant filter size (K = 10) over all scales, the luminance
map implicitly becomes more detailed on finer scales. In
the piecewise stage, where the image patches are smaller
and correspondence is better, a high-pass filter is used on
the patches.

Depth computation To obtain a 3D reconstruction from
the correspondences found with MDIA, the fundamen-
tal matrices between each view pair are computed using
RANSAC with a tight threshold and the normalized eight
point algorithm [11]. Figure 7 shows examples of epipolar
lines from these fundamental matrices. For a metric recon-
struction, the fundamental matrix is upgraded to a camera
matrix using the intrinsic camera parameters obtained from
a calibration pattern. Depths are computed by linear tri-
angulation using correspondences between three views and
the computed cameras, again following [11].

5. Results and conclusion
To demonstrate the quality of MDIA correspondence re-

sults, figures 5 and 6 show reconstructions of several heads,
computed as described above, together with one of the re-
spective input views for visual comparison.

The results were generated from correspondences of two
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Figure 5. Reconstruction results based on MDIA correspondences from three images. Extrinsic camera parameters and depth were es-
timated from the computed correspondences. Note that the 3D meshes are inherently depth maps from three more or less frontal views
(triangular camera setup, ≈ 20 cm baselines). Mesh vertex spacing is five pixels, the initial value for all displacements was 0.
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Figure 6. Additional reconstruction results; same parameters as in figure 5. In the first row, artifacts on fine strands of hair are visible. In
the second row, convergence failed on the white shirt.
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image pairs taken with an upright triangular camera setup
(Canon EOS 550D, 35 mm fixed focal, 18 megapixels) and
a baseline of roughly 20 cm. The images of the lower left
and lower right camera were warped to that of the upper
central camera. Although the scene was well lit from mul-
tiple sides, luminance correction proved to be crucial for
the quality of the results. The images were taken with a
relatively neutral background. To avoid distractions from
remaining shadows and background structure, they were
roughly segmented using a semi-automatic tool. An ex-
ample of an input image triple is shown in figure 4. Mesh
smoothness was controlled only by the smoothness term of
the registration algorithm; no extra filtering was applied to
the geometry. Mesh vertex spacing was five pixels. Extrin-
sic camera parameters and depths were computed from the
MDIA correspondences. To generate the figures, all ver-
tices on the background were removed from the meshes.
For initialization, all vertex displacements were set to zero.

While MDIA converged to very good results on the face
for all tested subjects, convergence on people’s clothing
sometimes failed due to lack of texture. Figure 6 (second
row) shows a failure of convergence on a white shirt. If
sufficient texture is available, clothing can be reconstructed
in similarly high detail as the face. Results on hair are of-
ten surprisingly good, but not as consistently as on the face.
Problematic are thin or scattered strands (e.g. figure 6, first
row) and strong depth discontinuities.

Note that all meshes shown are inherently depth maps
from roughly frontal views as shown in figure 4. For a
more elaborate reconstruction, depth maps from other views
should be computed and fusion techniques should be be em-
ployed to obtain the final mesh. This has not been imple-
mented at the time of writing. We believe, however, that the
degree of detail in our results sufficiently illustrates the very
high quality of correspondences that can be achieved with
MDIA and the proposed computational scheme.

While freeform MDIA as an epipolar-agnostic approach
has significantly more degrees of freedom than approaches
exploiting estimates of epipolar relations, we have shown
that it is capable of retrieving excellent dense correspon-
dences, providing highly detailed 3D reconstructions of
the human head. These results can be achieved without
requiring an initialization close the solution and without
any hint on epipolar geometry. We proposed a compu-
tational scheme for solving freeform MDIA robustly on
very high resolution images, addressing regularization, lu-
minance correction for handling brightness constancy vio-
lations and piecewise optimization to cope with limitations
of memory and processing power.
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