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Abstract

A biologically inspired approach for automated visual
tracking is proposed. In this approach it is hypothesized
that target initialization and tracking are a consequence
of saliency mechanisms that guide the deployment of vi-
sual attention. The recently proposed discriminant center-
surround saliency model, is used to derive the tracking
framework. In this framework, automatic tracker initializa-
tion is achieved using bottom-up saliency with motion fea-
tures, while the tracking problem is formulated as one of
continuous target-background classification, implemented
using saliency in two stages. The first, or learning stage,
combines a focus of attention mechanism and bottom-up
saliency to identify a maximally discriminant set of features
for target detection. The second, or detection stage, uses a
feature based attention mechanism and a target-tuned top-
down discriminant saliency detector, to detect the target.
Overall, the tracker iterates between learning discriminant
features from the target location in a video frame and de-
tecting the location of the target in the next frame. To im-
plement this tracker, well known properties of the statistics
of natural images are exploited leading to computational
efficiency. Experimental results comparing the proposed
method to the state of the art in tracking are presented,
showing improved performance.

1. Introduction

Object tracking is a classical problem in computer vi-
sion, and a pre-requisite for many of its important appli-
cations, such as surveillance, activity or behavior recogni-
tion and video retrieval. Decades of research on this topic
have produced a diverse set of approaches and a rich col-
lection of tracking algorithms [37]. Many of the these are
based on appearance modeling. They learn (and maintain)
a model of target appearance, which is used to locate the
target as time evolves [17, 8,4, 19]. The main limitation
of these methods is that they rely uniquely on models of
object appearance, and do not take the background into ac-

count. This limits tracking accuracy when backgrounds are
cluttered, or targets have substantial amounts of geometric
deformation, such as out-of-plane rotation. To address this
limitation, various authors have noted that it is frequently
easier to model the differences between target and back-
ground than to model the target itself. This has led to the
idea of discriminant tracking, where the tracking problem
is framed as one of continuous object detection, through
incremental target vs. background classification [7, 2, 13].
Discriminant tracking has two main steps. Given an initial
target bounding box, say at time ¢, the first step consists of
classifier design: a classifier is trained by selecting visual
features that discriminate between target and background,
and a decision rule is learned based on these features. In the
second step, denoted target detection, the classifier is ap-
plied to every location of the visual field, so as to determine
the most likely location of the target at time ¢ + 1. The tar-
get bounding box is moved to this location, and the process
iterated.  This generic formulation has been used to de-
sign various trackers [7,2, 13, 14,3]. Although these efforts
have demonstrated that discriminant tracking can achieve
state-of-the-art performance in computer vision [13], this
performance is still far from that of the tracking mecha-
nisms implemented by biological vision. In the biological
world, object tracking is closely related to the task of fixat-
ing objects of interest. The goal is to keep an object on the
fovea of the observer, even when either or both are moving.
This is achieved with a combination of overt and covert eye
movements, and underlies the mechanisms for identification
of moving objects [25]. Due to the evolutionary advantage
of solving these tasks accurately, it is not surprising that
biological vision has evolved extremely efficient tracking
mechanisms, in terms of accuracy, robustness, and speed. It
has been hypothesized that the effectiveness of these mech-
anisms, even under the most adverse conditions, involving
clutter, low-light etc., is a consequence of the availability of
robust saliency mechanisms, that cause pre-attentive pop-
out of certain locations of the visual field [25]. These salient
locations become the focus of attention (FoA) for the post-
attentive stages of visual processing, where top-down feed-



back from higher level cortical layers is used to solve prob-
lems such as object recognition or visual search [35].

In this work, we expand on a recently proposed discrim-
inant tracking algorithm based on saliency [22] by postu-
lating that tracking is simply a manifestation of the contin-
uous computation of saliency over time. More precisely,
we frame discriminant tracking of [22] as a byproduct of
the center-surround saliency mechanisms that are prevalent
in biological vision [12, 6]. This is done with recourse to
a recent computational formulation of visual saliency, de-
noted discriminant saliency [12], which has enabled a num-
ber of contributions to both biological and computer vision.
We start by showing that discriminant tracking can be im-
plemented with a combination of operations that are well
documented in the biological attention literature: center-
surround saliency [18], a spatial spotlight of attention [206],
and feature-based attention [32]. It is then shown that, un-
der the discriminant saliency formulation, these operations
are mapped into statistical operations such as feature se-
lection or target detection. This enables the derivation of
optimal trackers that can be implemented with simple and
highly efficient computations, two important requirements
for the practical feasibility of any tracker. The saliency for-
mulation is next shown to also establish a unified frame-
work for automatic tracker initialization, classifier design
and target detection. While the steps of classifier design
and target detection are addressed by all discriminant track-
ers in the literature, previous solutions cannot cope with the
initialization. Finally, it is shown that the proposed discrim-
inant tracker outperforms a number of state-of-the-art track-
ing approaches in the literature.

We start by reviewing the main concepts of discriminant
saliency. A more extensive discussion can be found in [ 12,

,9,23].

2. Visual Saliency

The perception of complex scenes by biological vision
systems is heavily dependent on attentional mechanisms.
These mechanisms allocate the limited perceptual resources
available to the scene regions that matter the most, increas-
ing efficiency and robustness to clutter. Attention is itself
driven by saliency mechanisms, which assign to each region
of the visual field a degree of saliency, or importance. The
different regions of the scene are then explored sequentially,
according to their saliency. There are two types of saliency
mechanisms, commonly denoted bottom-up and top-down.
Bottom-up saliency is completely stimulus driven, i.e. in-
dependent of the higher level goals of the perceptual sys-
tem. It is, for example, responsible for the high saliency
of a “danger” sign posted on a wall, which pops-out [24]
even when we are not looking for danger signs. Top-down
saliency mechanisms can be tuned by feedback from high-
level cortical areas, according to the tasks to be performed.

For example, the eye fixations of a subject trying to identify
a person in a photograph will be overwhelmingly located
on the faces present in that picture [30]. Two main types
of tuning are possible: a spatial focus of attention mech-
anism, also known as the spotlight of attention [26], and
feature-based attention [32] which manipulates attention by
inhibiting or enhancing groups of features. In the following
sections, we show that both spatial and feature-based atten-
tion play a prominent role in saliency-based tracking. We
first review the discriminant formulation of both bottom-up
and top-down saliency in greater detail.

2.1. Mathematical formulation of bottom up
saliency

Let V be the visual stimulus and [ a location of inter-
est. Two windows are defined around this location: a center
window VVZ1 containing [, and a surrounding annular win-
dow W) containing background. The union of the two win-
dows is denoted the total window, W, = Wlo U Wll. Stimuli
in the center window are drawn from a center class, of label
C(l) = 1. Stimuli in the surround window are drawn from
a background class, of label C(l) = 0. A set of features Y,
from a predefined feature space ), are computed for each
of the windows W}, i € {0,1}. Features Y extracted from
the center have probability py|c(;)(y|1) and those from the
background have probability py () (y]0). The saliency of
location [, S(1), is quantified by the mutual information be-
tween feature responses, Y, and class label, C,
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where KL (pllq) = [y px(z)log 2 iyda is the
Kullback-Leibler (KL) divergence between the probability
distributions px () and gx ().

2.2. Mathematical formulation of top down saliency

For top-down saliency problems, such as object recog-
nition [11, 9], the target class, of label C' = 1, is the ob-
ject class to recognize, and the background class, with label
C = 0, the class of natural images. Features Y have prob-
ability py|c(y|1) under the target hypothesis and proba-
bility py- | (y|0) under the background hypothesis. Unlike
bottom-up saliency, where the absence of any objects can be
salient (e.g. a void region is salient within a textured back-
ground), recognition requires the detection of the object of
interest. This implies that top-down saliency measures must
have a bias towards target presence.



This bias is accomplished with a two-step
saliency measure. A likelihood ratio test is first
used to identify the set of likely target locations
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the locations where the likelihood of the feature responses
is larger under the hypothesis of target presence than target
absence. As before, the saliency of location [ is defined
by the amount of information in the visual stimulus for
optimal classification into one of the two classes, using the
information measure

I(C;Y =y(l)
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However, to guarantee that only locations likely to contain
the target are declared salient, the saliency computation is

restricted to S. This leads to the saliency measure [9, 1 5]
[ I(C;Y =y()) ifleS
S = { 0, otherwise. )

Locations where this measure is large have both 1) larger
likelihood under the target than background hypothesis, and
2) feature responses that are highly informative for classifi-
cation.

2.3. Efficient computation of saliency measures

When the features Y are bandpass in nature (e.g. DCT,
Gabor, wavelet), the computation of the saliency measures
of (3) and (5) can be simplified by using the statistics of
bandpass responses to natural images. This follows from
the well known observation that the probability distribu-
tion of feature responses of a bandpass feature, to nat-
ural images, follows a generalized Gaussian distribution

(GGD) [16]
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where I'(z) = [ e "t*7'dt, t > 0, is the Gamma func-
tion, « a scale parameter, and (3 a shape parameter. The 3
parameter controls the rate of decay of the GGD, from the
peak value (e.g. Laplacian when § = 1 or Gaussian when
B = 2). It has been shown that 5 € (0.5,0.8) provides a
good fit to large corpora of natural images [29]. We found
B = 0.7 to work best and we adopt this parameter value
throughout this work. Given (3, the only parameter that re-
mains to be learned is the scale «. This can be done by the
method of moments [28].

Further, by exploiting a well known property of band-
pass features extracted from natural images: that such fea-
tures exhibit consistent patterns of dependence across an ex-
tremely wide range of natural image classes [5, | 6] we can

py(y;a,0) =

approximate (1) by:

N
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where, the term I(Y}; C) is the marginal mutual informa-
tion (MMI) between the k" feature and the class label [34].
It measures how discriminant the k*" feature is individually.

It can then be shown that the top-down saliency measure
of (5) can be written as [22]:

[ o hal&lye @I = Ti] it [y ()] >
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where, y, is the feature response of the k" feature, h;(x) =
s{(=1)1"%x} log {%s{(—l)lﬂ'x}}, and
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where m; = P (i) is the prior for class 4, and oy, o, ; the

scale parameters of py, (yx), Py, |c () (Ykli).

3. Discriminant tracking using saliency

The central hypothesis of this work is that discriminant
tracking can be implemented with a combination of bottom-
up and top-down saliency detection. In this section, we
build on this hypothesis to propose a saliency-based dis-
criminant tracker. We first discuss how saliency can be used
to perform automatic initialization of targets, and then show
how the same framework can be used for classifier design
and target detection.

3.1. Automatic tracker initialization

Most tracking algorithms assume a known initial target
location [* and bounding box Wll* [7,2]. However, these
are not available in most tracking applications. While many
initialization strategies, such as background subtraction and
blob or motion detection, have been proposed [7], they
are mostly heuristic. A more principled approach, based
on bootstrapping a weak and generic target model for au-
tomatic initialization, was proposed in [31]. However, it
requires a pre-specified target model, and some degree of
supervision to adapt it to different scenes. Saliency-based
tracking provides a more natural solution to the initializa-
tion problem: to declare as targets the locations of largest
bottom-up saliency [22]. This is implemented by evaluat-
ing (3) at all locations of the visual field, and finding the
most salient (or the set of most salient locations if multiple
objects are to be tracked).

() = argrlnaxzk:ll(Yk,C) (10)
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where the parameters o ;, oj, are learned from the win-
dows associated with a center-surround operator centered
at location [. Overall, the initialization procedure finds the
regions whose motion and appearance is most distinct from
those of the surrounding background.

The use of (10) has a number of appealing properties.
First, it can be seen as an optimal (in the discriminant sense)
form of background subtraction. In fact, it is a simplifi-
cation of a state-of-the-art formulation of background sub-
traction that performs well even on highly dynamic back-
grounds [21]. In this work, we use simple biologically
plausible motion energy features in place of the cumber-
some dynamic textures of [21]. The proposed simplification
sacrifices some ability to model complex dynamics for the
sake of biological plausibility and computational tractabil-
ity. However the use of spatiotemporal features still enables
it to account for both target appearance and motion, and is
robust to camera motion. This follows from the fact that
only motion different from that of the background can be
declared salient. For example, an object followed by a pan-
ning camera is considered salient.

3.2. Tracking using saliency

Given an initial target location, [*, obtained using

the procedure outlined in the previous section at time ¢,
the first step of discriminant tracking is to design a tar-
get/background classifier. The target and background hy-
potheses are defined by the feature responses in a window
centered at [*, the target window, and a surrounding annu-
lar background window. Hence, like bottom-up saliency,
discriminant tracking requires the computation of the dis-
criminant power of each feature in Y with respect to a
center-surround discrimination problem. The main differ-
ence is that, while bottom-up saliency performs the com-
putation at each location of the visual field, discriminant
tracking only requires it at location [*. This is equivalent to
computing bottom-up saliency after application of a spatial
focus of attention mechanism tuned to the target location.
Given a measure of how discriminant each feature is for tar-
get/background discrimination at time ¢, the next step is to
find the target in the next frame, i.e. at time ¢+ 1. This is for-
mulated as a target detection problem. It requires the selec-
tion of the most discriminant features in Y, and a decision
rule for target detection. Since the discriminant power of
each feature is already known, feature selection reduces to
suppression of non-discriminant features and enhancement
of discriminant ones. This type of manipulation is exactly
the function of a feature-based attention mechanism. Fi-

nally, target detection can be implemented with a top-down
saliency measure trained from the feature responses in the
target and background windows at time ¢. The position of
the target at time ¢ + 1 is determined by a search for the
location of largest saliency within a neighborhood of the
target position at time ¢. This restriction of the search space
reduces the computation needed to identify the new target
location, by ignoring regions peripheral to the current focus
of attention. It is consistent with the “center bias” observed
in the human visual system, where a saccade to a new fix-
ation location is biased to be close to the current center of
view [30,33].

3.3. The core tracking procedure

The discussion of the previous section suggests that dis-
criminant tracking can be implemented with discriminant
saliency measures. Starting with the target location [* at
time ¢, and the associated target (W..) and background
(Wlo*) windows, the tracker is implemented as follows.

e Learning: at time ¢, estimate the probability distri-
butions py|c«)(y]i),7 € {0,1} using the feature re-
sponses in W/., as training sample, and the distribution
py (y) from the responses in Wy = WY U WL

o Feature selection: Among the N available features,
select the subset of K < N that maximizes the
saliency measure of (3).

e (lassification: using these K features compute, at
time ¢ + 1, the top-down saliency of each location [
of the visual field, using the saliency measure of (5).
Move the target/background windows to the location
of largest saliency within a neighborhood of [*, and
iterate the process.

The automatic initialization discussed in Section 3.1 is
a special case of discriminant tracking. In the absence of
prior information about which features are discriminant for
target detection, the tracker simply uses all of them.

4. Experiments and Results
4.1. Automatic Initialization

We performed a set of experiments designed to evalu-
ate automatic tracker initialization using the proposed dis-
criminant saliency tracker (DST). Since none of the other
methods in the literature have this capability, no compari-
son was performed for these sequences. Examples of DST
results are shown in Figure 1. The tracker uses the bottom-
up discriminant saliency procedure of Section 3.1 to iden-
tify the object to track. The background bounding box was
assumed to have an edge 4 times larger than the correspond-
ing edge of the target box. The region of maximal saliency
and its background were then input to the DST algorithm,
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Figure 1. Automatic initialization and tracking. The bottom-up saliency
map obtained using biologically plausible motion features is shown on the
left column. Target bounding boxes are shown in red. a) “surfer” b) “dog”.
Target locations in subsequent frames are shown in red.

which tracks the target through the remaining frames. The
DST used a two-level Gaussian pyramid, leading to a total
of N = 3+ 64 x 2 = 131 features (8 x 8 DCT features
per level plus three spatiotemporal Gabor features). The
number of selected salient features, K, is a tunable param-
eter. Good performance was obtained for any K > 3, albeit
tracking accuracy improved with the number of features, at
the expense of increased computation. To guarantee a re-
alistic balance between tracking performance and compu-
tation, K was set to 5 in all subsequent experiments. The
search neighborhood, W}, was set to a rectangular region
centered at the current target position [* with size twice that
of the object bounding box.

The leftmost column of Figure 1 shows the bottom-up
saliency map, and the columns on the right show a few
of the subsequent frames (target bounding box shown in
red). The tracker initializes the target correctly, and tracks
it through substantial variations of scale and pose (note the
3D rotation in “dog”).

Table 1 presents the error measures obtained for the se-
quences evaluated. The error of DST with automatic ini-
tialization is compared to that obtained when the tracker is
manually initialized with the groundtruth target bounding
box. There is no substantive difference. Overall, these re-
sults demonstrate the ability of the DST to perform robust
target initialization and tracking, in scenes with complex
motion. Videos of all sequences are available in [1]

Table 1. Comparison of automatic and manual tracker initialization.
[ Name [ Auto Init [ Manual Init

dirtbike 0.037 0.038
surfer 0.087 0.086
dog 0.115 0.093
skiing 0.079 0.083

4.2. Comparison to previous trackers

The DST was compared to four trackers in the litera-
ture: three discriminant trackers, the MILTracker of [3], the
method of Collins et al. [7], and the ensemble tracker of [2],
and the incremental visual tracker (IVT) of [27]. The latter

Table 2. Average tracking error of the five trackers compared. 0 indicates
perfect tracking, 1 complete lack of overlap between groundtruth and target
bounding box produced by the tracker.

[ Sequence [ VT [ Collins [ Ensemble [ MIL [ DST ]
motinas 0.55 0.39 0.67 0.52 | 0.12
athlete 0.98 0.70 0.93 0.89 | 0.19
ram 0.68 0.80 0.80 0.51 | 0.15

represents the state of the art in appearance-based tracking.
Software for the MILTracker and IVT was obtained from
the authors’ webpages. Since no implementations are pub-
licly available for the Collins and ensemble trackers, these
algorithms were implemented according to the descriptions
in[7,2].

The performance of all five methods was evaluated
against manual groundtruth. The tracking error for a frame
at time ¢ was defined as the normalized pixel difference be-
tween the groundtruth target bounding box, G*, and that
produced by the tracker, Bt. Performance is evaluated by
the average tracking error over a sequence of 1" frames,

> Gi;(1-Bi))
_ls
€= Zt: ) (12)

t
E G
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where the error ¢ = 0 for perfectly correct tracking, while
for complete loss of tracking, e = 1.

The test video sequences were selected from diverse
sources (e.g previous works, standard databases, and the
web). All sequences include challenging tracking scenar-
ios, such as varying illumination, complete object rota-
tion, or change in perspective. For instance, the “moti-
nas_toni_change_ill” sequence of [20] shows a person turn-
ing by 360°, in extremely low light (Figure 2(a)), while the
“athlete” sequence includes extreme variations of appear-
ance due to occlusion and strong video compression arti-
facts (Figure 2 (b)). To increase the difficulty of the tracking
task, all sequences were converted to grayscale. To account
for this, the Collins tracker was implemented with DCT fea-
tures, instead of the R,G,B color features proposed in [7].
To compare all five algorithms, they were manually initial-
ized with target bounding box in the first frame. Figure 2
illustrates the tracking results on three of the sequences con-
sidered. The qualitative performance of IVT and the ensem-
ble tracker is quite poor, as these methods lose the target in
all scenes. Somewhat better performance is achieved by
the Collins and MIL trackers. However, these methods lose
the target when it undergoes extreme appearance variations,
due to illumination changes or rotation. On the other hand,
DST tracks the targets successfully in all sequences.

Table 2 presents the errors measured on the sequences
of Figure 2. The table shows that DST has the best perfor-
mance. Videos of all tracking results are available from [1].



Figure 2. Tracking results on a) “motinas_toni_change_ill” [
son turns around and the illumination changes drastically, b) ‘athlete”- a
person running inside a stadium. The video is very noisy and the target

] - the per-

appearance changes widely, Target locations: DST - thick red box, Collins
- thick green box, ensemble - cyan dashed box, IVT - blue dashed box,
MIL - magenta dashed box.

5. Conclusion

In this work, we have shown that discriminant track-
ing follows naturally from the discriminant formulation of
visual saliency. This was exploited to construct a sim-
ple and computationally efficient framework for tracking,
which is consistent with what is known about the attentional
mechanisms of biological vision. Experimental comparison
with previous trackers shows that the proposed biologically
plausible discriminant saliency tracker is significantly more
robust. An implementation of this tracker in C, without
any optimization, currently runs at ~ 1.5 frames per sec-
ond (fps), on a standard PC without special hardware. On
the same machine, the running times of other discriminant
trackers are comparable (~ 4fps for MIL and ~ 3fps for the
Collins tracker).
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