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Abstract

Generative models can be flexibly employed in a vari-
ety of tasks such as classification, detection and segmen-
tation thanks to their explicit modelling of likelihood func-
tions. However, likelihood functions are hard to model ac-
curately in many real cases. In this paper, we present an
enhanced hidden Markov model capable of dealing with
the noisy, high-dimensional and sparse measurements typi-
cal of action feature sets. The modified model, named hid-
den Markov model with multiple, independent observations
(HMM-MIO), joins: a) robustness to observation outliers,
b) dimensionality reduction, and c) processing of sparse ob-
servations. In the paper, a set of experimental results over
the Weizmann and KTH datasets shows that this model can
be tuned to achieve classification accuracy comparable to
that of discriminative classifiers. While discriminative ap-
proaches remain the natural choice for classification tasks,
our results prove that likelihoods, too, can be modelled to a
high level of accuracy. In the near future, we plan extension
of HMM-MIO along the lines of infinite Markov models and
its integration into a switching model for continuous human
action recognition.

1. Introduction

In the last decade, discriminative methods have increas-
ingly been preferred over generative approaches for the so-
lution of classification problems. The main advantages of
discriminative methods is that they are trained more closely
to the objective and they do not require the training of like-
lihood functions which often proves difficult, especially in
the case of limited samples. This trend started with object
recognition and has recently become dominant also in the
action recognition literature with approaches such as bag-
of-features [25] [8] [15] and conditional random fields [14]
[22] [29]. The features used in these methods are typically
collected at each video frame as shape/motion descriptors
[29] or at the so-called spatio-temporal interest points [8]
[15] which are locations of discontinuity in both space and

time.
Despite the dominance of discriminative approaches in

the current action recognition literature, one can note per-
sisting advantages with generative methods:

Learning class-incrementally Generative models can be
learnt in an incremental fashion: wherever a new
class,cn+1, is to be added to a set of existing classes
{1...cn}, its learning does not require the re-learning
of all then, existing likelihoods. Instead, in the case
of discriminative methods, all decision boundaries are
possibly affected and required to be re-learnt.

Detection of negative-to-all classesBy calling O a se-
quential measurement andc its corresponding class
label, generative models provide explicit class-
conditional likelihoods,p(O|c) , which can also be nat-
urally used for tasks such as action detection by sim-
ple thresholding. This means that certain negative-to-
all class observations can be detected as they receive
a low likelihood in all the available classes. Con-
versely, when using discriminative models the class
posteriorp(c|O) is computed only relative to the other
classes. This can only explain the measurement within
the known class set and cannot reject the assignment
on the ground of low evidence,p(O), or suggest oc-
currence of a previously unseen action.

Building block towards more complex graphical models
More importantly, the explicit modeling of likelihood
functions allows seamless integration of the gen-
erative models into larger graphical models, and
hence solution of more complex problems. A useful
example is that of theswitching models[11] where
multiple models are assumed to exist and only one is
“selected” or “switched to” at any given time. The
class-conditional likelihood at timet, p(O|ct), only
depends on the class label and not on the time: it
can then be easily combined with a priorp(ct|ct−1)
encoding the system’s dynamics of model selection.
Current interest in generative models is well testified
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by the recent work on hierarchical, non-parametric
switching models for arbitrary number of classes from
Fox, Jordanet al. [9].

On the other hand, despite the above theoretical advan-
tages, it is obvious that generative models need to prove
adequate accuracy over classification tasks for their like-
lihoods to be claimed accurate. Therefore, in this paper
we present several, progressive results on the use of an en-
hanced HMM showing that generative models can be im-
proved to attain classification accuracy close to that of dis-
criminative classifiers. The enhanced HMM, named hid-
den Markov model with multiple, independent observations
(HMM-MIO) hereafter, joins: a) robustness to observation
outliers, b) dimensionality reduction, and c) processing of
sparse observations. Robustness to outliers is obtained by
modelling the observation densities as Student’st distribu-
tions [18]. Dimensionality reduction is added by using the
probabilistic principal component framework [27] [24] [7]
[13] [2]]. In addition, in order to deal with a variable num-
ber of observations per frame (single, multiple or none),
we present simple modifications to the standard forward-
backward and Baum-Welch algorithms. The modified algo-
rithms are still in closed form and obviously efficient. Ex-
periments are performed over two popular datasets, Weiz-
mann [5] and KTH [25]. Although these datasets are not
nearly as realistic as other more recent datasets such as Hol-
lywood [17] or UCF50 [1], they provide the widest basis for
comparison with existing work and the next sections will
give evidence that they are the most suitable for the com-
parative aim of this paper.

The rest of the paper is organized as follows: in Sec-
tion 2, we present the enhanced HMM with emphasis on its
capability of processing multiple, independent observations
per frame. In Section 3, we present results from two sets
of experiments over the Weizmann dataset while in Section
4 we present the experimental results over KTH. Section 5
discusses future extensions and the conclusions summarise
the main contributions of this work.

2. HMM with Multiple, Independent Observa-
tions

The conventional HMM is the most common generative
model for time series of observations. The model expresses
the joint probability,p(O1:T , Q1:T |λ), of a sequence of ob-
servations,O1:T ≡ {O1, ...Ot, ...OT }, and a sequence of
corresponding hidden states,Q1:T ≡ {Q1, ...Qt, ...QT }
under the well-known Markov and observation indepen-
dence assumptions:

p(Qt|Q1:t−1, O1:t−1) = p(Qt|Qt−1) (1)

p(Ot|Q1:T , O1:t−1, Ot+1:T ) = p(Ot|Qt) (2)

Each observation is typically a feature vector of fixed
size. Observations belonging to a single state are commonly
modelled by mixture distributions, often using the Gaussian
as the basis distribution [23]. To increase robustness to out-
liers, also thet distribution has been used as basis distribu-
tion [6] [21]. In the case of feature vectors of high dimen-
sionality, dimensionality reduction can also be easily incor-
porated into HMM by using the probabilistic principal com-
ponent framework [27] [24] which also allows extensions to
the t distribution. Given that typical action feature sets are
affected by severe measurement noise and high dimension-
ality (for instance, the HOG/HOF descriptor of [17] has a
combined dimensionality of 145), in this work we adopt the
approach presented by [21] to simultaneously mollify out-
liers and dimensionality. However, the conventional HMM
is not designed to deal with the variable number of obser-
vations per frame common in action feature sets. As an ex-
ample, Figure 1 shows application of a STIP detector [16]
to the KTH dataset and the corresponding variable number
of STIP points. In order to comprehend this case, in the
following we introduce a new variant of HMM, which we
refer to as “HMM with multiple, independent observations”
(HMM-MIO).

Figure 1. An example of KTH sequence, sampled at every 8 frames
with STIP points plotted. Note the variable number of STIPs ap-
pearing in subsequent frames.

For the multiple observations at each video frame, we
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propose the simplifying assumptions of independence and
identical distribution under a mixture. By callingNt the
number of observations at timet, we define:

p(O1:Nt

t ) ≡ p(O1
t , ..., O

Nt

t ) =

Nt
∏

n=1

P (On
t |Qt), if Nt > 1

= 1, if Nt = 0

(3)

Posingp(O1:Nt

t ) = 1 in the case of no observations is
equivalent to a missing observation and has neutral effect in
the chain evaluation of the HMM. We then obtain the new
generative model:

p (O1:T , Q1:T |λ) ≡ p
(

{O1:Nt

t , Qt}
T
t=1|λ

)

=p(O1:N1

1 , Q1, ..., O
1:Nt

t , Qt, ..., O
1:NT

T , QT |λ)
(4)

2.1. Scale of the observation probabilities in HMM-
MIO

A side effect of introducing multiple observations into
equation (4) is that the scale of the probability for all the ob-
servations in a frame,p(O1:Nt

t ), may vary considerably with
their number,Nt. This is an undesirable effect since the
number of features such as STIPs varies significantly along
the frame sequence and cannot be regarded as an indicator
of the reliability of the measurement process. We therefore
find it desirable that the scale of probabilityp(O1:Nt

t ) be
the same at each frame, irrespectively of the number of the
observations in the frame. For this reason, we decided to
normalize the probability using the following equation (5).
We refer to this “scaled-consistent” probability aspg:

pg(O1:Nt

t |Qt) =
Nt

√

√

√

√

Nt
∏

n=1

P (On
t |Qt) (5)

In the case ofNt = 0 (no observations in the frame),
we posepg(O1:Nt

t |Qt) = 1 so as to equate the effect of
a missing observation and the absence of the correspond-
ing edge in the HMM’s graphical model. Referring to
Rabiner’s popular shorthand notation for the observation
probability, bj(Ot) = p(Ot|Qt = j), we extend it to
b
g
j (O

1:Nt

t ) = pg(O1:Nt

t |Qt = j) [23]. After this normal-
ization, the HMM-MIO’s generative model becomes:

p (O1:T , Q1:T |λ) =

=p(Q1)

T
∏

t=2

p(Qt|Qt−1)

T
∏

t=1

pg(O1:Nt

t |Qt))
(6)

In logarithmic form, as used by the expectation-
maximization algorithm for the learning of parameters, the
generative model with normalized scale is:

ln p (O1:T , Q1:T |λ) =

= ln p(Q1) +

T
∑

t=2

ln p(Qt|Qt−1) +

T
∑

t=1

ln pg(O1:Nt

t |Qt))

(7)

with

ln pg(O1:Nt

t |Qt)) =
1

Nt

Nt
∑

n=1

lnP (On
t |Qt) (8)

Equation (8) justifies the form taken by the update equa-
tions presented in the following Section 2.3.

2.2. Forward and backward formulas for HMM-
MIO

The forward and backward formulas for the traditional
HMM have been changed to accommodate the multiple ob-
servations of HMM-MIO. Following notations in [4], the
forward formula, i.e.,αi(t), is now changed toαg

i (t):

α
g
i (t) = pg(O1:t, Qt = i|λ) (9)

The recursion in the forward algorithm is then specified
as:

1. α
g
i (1) = πib

g
i (O

1:Nt

1 ) (10a)

2. α
g
i (t) =





R
∑

j=1

α
g
j (t− 1)aji



 b
g
i (O

1:Nt

t ) (10b)

3. p(O1:T |λ) =
R
∑

i=1

α
g
i (T ) (10c)

whereaij andπi indicate the transition probabilities be-
tween any two states, and the initial probabilities, respec-
tively. In the above equations, and in the rest of this paper,
R refers to the number of possible hidden states. Like the
forward formula, the backward algorithm is changed from
the usualβi(t) to β

g
i (t):

β
g
i (t) = pg(Ot+1:T |Qt = i, λ) (11)

The corresponding recursion in the backward algorithm
is then formulated as:
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1. β
g
i (T ) = 1 (12a)

2. β
g
i (t) =

R
∑

j=1

aijb
g
j (O

1:Nt+1

t+1 )βg
j (t+ 1) (12b)

3. p(O1:T |λ) =
R
∑

i=1

πib
g
i (O

1:N1

1 )βg
i (1) (12c)

Similarly, we replace the expression for the state poste-
rior at timet, γi(t), given in [4] withγg

i (t), obtaining:

γ
g
i (t) = pg(Qt = i|O1:T , λ) =

α
g
i (t)β

g
i (t)

∑R

j=1 α
g
j (t)β

g
j (t)

(13)

However, the posterior probability for the mixture com-
ponent generating an observation must still be computed in-
dividually for each observation. Therefore, the following
holds:

γil(O
n
t ) = p(Qt = i,Xn

it = l|O1:T , λ) = γ
g
i (t)

cilbil(O
n
t )

bi(On
t )
(14)

whereXn
it is a random variable indicating the mixture

component for observationOn
t for statei, cil notes the com-

ponent’s weight in the mixture, andbil(On
t ) is the proba-

bility of observationOn
t in the l-th mixture component for

statei, l = 1...M .

2.3. Update equations for the observation probabil-
ities in HMM-MIO

All observation probabilities applied in this paper are
mixture models. Similarly to the work in [21], the mixture
models we experimented on include the Gaussian mixture
model (GMM), the mixture of principal component analyz-
ers (MPPCA) and the mixture oft distribution subspaces.
For HMM-MIO with GMM observation probabilities, the
update equations are changed from the traditional HMM as
follows:

HMM: cil =

∑T

t=1 γil(t)
∑T

t=1 γi(t)
(15a)

HMM-MIO: cil =

∑T

t=1
1
Nt

∑Nt

n=1 γil(O
n
t )

∑T
t=1

1
Nt

∑Nt

n=1 γ
g
i (t) =

∑T
t=1 γ

g
i (t)

(15b)

HMM: µil =

∑T
t=1 γil(t)Ot
∑T

t=1 γil(t)
(16a)

HMM-MIO: µil =

∑T
t=1

1
Nt

∑Nt

n=1 γil(O
n
t )O

n
t

∑T

t=1
1
Nt

∑Nt

n=1 γil(O
n
t )

(16b)

HMM: Σil =

∑T
t=1 γil(t)(Ot − µil)(Ot − µil)

T

∑T
t=1 γil(Ot)

(17a)

HMM-MIO: (17b)

Σil =
∑

T

t=1
1

Nt

∑Nt

n=1
γil(O

n

t
)(On

t
−µil)(O

n

t
−µil)

T

∑
T

t=1
1

Nt

∑Nt

n=1
γil(On

t
)

2.3.1 Update equations for MPPCA and the mixture of
t distributions

Probabilistic principal component analysis (PPCA) is based
on the assumption that an observed sample,O, is explained
by a noisy linear process over a latent variable,x, of lower
dimensionality:

O = Wx+ µ+ ǫ (18)

PPCA assumes thatx ∼ N (0, I) and ǫ ∼ N (0, σ2
I),

independently [27]. Therefore,O ∼ N (µ,WWT + σ2
I).

This implies thatO is constrained to lie in an embedded sub-
space if not for the effect of some, somehow small isotropic
noise. In terms of parameters,Σ is replaced byW and
σ2. Maximum-likelihood solutions were derived by Tip-
ping and Bishop in closed form [27] and Sam Roweis via
expectation-maximization [24]. When considering HMM
and mixtures, these parameters must be computed per state
and component. The update equations become:

µil =

∑T

t=1
1
Nt

∑Nt

n=1 γil(O
n
t )(O

n
t −WE[xn

ilt])
∑T

t=1
1
Nt

∑Nt

n=1 γil(O
n
t )

(19)

where byE[xn
ilt] we have noted the expected value of

the latent variable for statei and componentl conditioned
on the sample,On

t , and:

Wil =
[

∑T

t=1
1
Nt

∑Nt

n=1 γil(O
n
t )(O

n
t − µil)E[xn

ilt]
T
]

[

∑T

t=1
1
Nt

∑Nt

n=1 γil(O
n
t )E[xn

iltx
nT
ilt ]

]

−1

where byE[xn
iltx

nT
ilt ] we have noted the second-order

moment of the posterior distribution of the latent variable
for statei and componentl conditioned on the sample,On

t .
For brevity, we omit the update formula forσ2 which can be
easily derived from [26]. The update formulas for the mix-
ture of t distribution subspaces follow a similar derivation,
with the addition of a further latent variable for thescaleof
the generating covariance [18] [2].
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3. Applying the enhanced HMM to the Weiz-
mann dataset

This section describes two experiments where the en-
hanced HMM is applied to the Weizmann dataset with the
use of different feature sets.

3.1. Robust HMM using dimensionality reduction

The Weizmann Institute of Science dataset consists of
videos from 9 different actors performing 10 primitive ac-
tions each [5]. The action classes include walk, run, jump,
gallop sideways, bend, one-hand wave, two-hands wave,
jump in place, jumping jack and skip. In this dataset, action
recognition is significantly facilitated by the availability of
the actors’ masks in all frames. As a first feature set, we
have considered an unspecialised feature set composed of
all the mask’s pixels. However, given that the masks vary
in size over the various frames and videos, we first resized
them all by re-sampling to a size of 16x16 pixels, equivalent
to a feature vector withf = 256 dimensions. Figure 2 shows
20 frames of an action’s masks from the dataset. Note that
while the original masks are binary, the resized images are
mildly in grey-level from the interpolation of the original
binary pixels. We also note that this feature set does not
entail a variable number of observations per frame.

Figure 2. Example of the Weizmann action masks for one of the
actors (‘daria’), depicting 8 of the actions. All the masks were
resized to 16x16.

We experimented with the enhanced HMM by compar-
ing GMM (full, diagonal, spherical covariances), MPPCA
and the mixture oft distribution subspaces as observation
probabilities. We fixed the number of states,R, to five and
the number of components per mixture,M , to two, and used
leave-one-actor-out cross-validation for assessing the clas-
sification accuracy. One HMM was trained per class and
classification simply provided as the class scoring the max-
imum likelihood for the video (class priors are all uniform
for benchmark datasets). MPPCA obtained the highest av-
erage accuracy over five successive random starts with 96.9

± 1.45%, well above the best configuration of GMM (full,
with 94.0 ± 0.61%). The mixture oft distribution sub-
spaces, with an accuracy 95.8± 0.93%, did not improve
over MPPCA, probably due to a lack of substantial outliers
in the feature set.

To demonstrate that the enhanced HMM can benefit from
simultaneous dimensionality reduction and robustness to
outliers, we then artificially created a noisy dataset from the
original Weizmann. An 8x8noisy squarecorresponding to
25% of the image area was added to every 3rd frame at a
random position. The pixels within this noisy square switch
their values from 0 to 255, or from any value different from
0, to 0. This process simulates the typical segmentation er-
rors of foreground extraction and makes the dataset more
realistic. Figure 3 shows the results of adding noise to the
original data set.

Figure 3.Noisy Weizmann action masks for one of the actors
(‘daria’; the original are depicted in Figure 2). An 8x8noisy
squareis added every 3 frames at a random position.

The experimental results on the noisy version showed
that the introduced artifacts do behave as outliers of the
mixture distributions. In this case, the mixture oft dis-
tribution subspaces achieved the highest accuracy, 96.2±
0.99%, against the 95.6± 0.79% of MPPCA. While the dif-
ference is not remarked, the inversion in trend with respect
to the non-noisy case gives evidence to the benefit of robust
models in mitigating the effects of outliers. It is also inter-
esting to note that the accuracy of the mixture oft distribu-
tion subspaces is slightly higher on the noisy dataset (96.2
± 0.99%) than it was on the original one (95.8± 0.93%).
However, we are inclined to believe that this is a side effect
of the addition of noise and may not bear statistical signifi-
cance.

3.2. Robust HMM with a specialised feature set

The experiments in the previous subsection were con-
ducted with a nondescriptive feature set, agnostic about the
nature of the human subjects. In this subsection, we con-
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sider experiments with a specialised feature set, thesec-
torial extreme pointsof [19], which extracts five notable
points from the actor’s silhouette in loose association with
the head, hands and feet of the actor. The actor’s centroid
is added to the representation for a total off = 12 dimen-
sions in the feature vector. Given the low dimensionality
of this feature set, we have decided to only experiment by
comparing GMM and the mixture oft distributions without
dimensionality reduction. In addition, instead of choosing
arbitrary numbers of states and components, we have made
them vary in rangeR,M ∈ {1...6}. Accuracy was again
assessed over multiple randoms starts by leave-one-actor-
out cross-validation. The best result achieved by GMM
was 96.8%, while the best result achieved by the mixture
of t distributions was 100%. Such an accuracy is obviously
the highest possible and equals that reported by a few other
papers to date, all based on discriminative models, includ-
ing [28] which used a factorial conditional random field and
[20] which made use of an ensemble of support vector ma-
chines. Moreover, the accuracy with the robust model was
higher than that of GMM for 33 out of 36 combinations of
R andM . These results further confirm the usefulness of
thet distribution in outlier mitigation.

4. Applying the enhanced HMM to the KTH
dataset

The KTH dataset is a more probing dataset than Weiz-
mann in terms of both sheer number of videos (2,391 in to-
tal, from 25 actors) and acquisition conditions, inclusiveof
four different scenarios and mild camera movements. The
action classes include walking, jogging, running, boxing,
hand waving and hand clapping. Although KTH is becom-
ing saturated in recent years with results reporting high ac-
curacies, it still offers the widest platform for comparison
with previous work [10]. In this paper, in order to establish
a fair comparison and limit its scope to inferential meth-
ods rather than feature design, we have chosen to adopt
the same features, STIPs, of a deservedly much-cited pa-
per from Laptevet al. [16]. STIPs have gained increasing
popularity for action recognition since they describe salient
points in space and time and do not require a preliminary
step of foreground extraction which is generally regarded
as inaccurate. For this paper, we have used a combination
of HOG and HOF descriptors [16] [17] for an overall di-
mensionality of 145 dimensions. The main difference with
[16] is that we do not convert sets of such descriptors into
sparse histograms; rather, we use each descriptor individu-
ally as an observation for HMM-MIO.

The experiments conducted were, again, performed by
comparing GMM, MPPCA and the mixture oft distribu-
tion subspaces as observation probabilities. For both MP-
PCA and the mixture oft distribution subspaces, we evalu-
ated over a range of increasingly reduced dimensions in-

cluding 36, 18, and 9. For the mixture oft distribution
subspaces we manually selected different values of thede-
grees of freedomparameter. Most of the experiments were
performed withR=10 andM=5, yet not all possible com-
binations were tested due to the length of each experiment
(approximately four hours for a Matlab implementation and
an Intel Core 2 2.4 GHz PC). For evaluation, we carefully
followed the procedure adopted by Schuldtet al. in [25]:
the KTH sequences were grouped into three sets, namely,
training, validation, and test, comprising of specific actors
from the dataset in the number of 8, 8, and 9, respectively.
The HMM-MIO were trained on the training set, one per
class, and the validation set was used to select the best pa-
rameters based on maximum validation accuracy. Finally,
the parameters selected from the validation set were used
over the test set to provide the final accuracy results [25].

Valid. accuracy (%) Test accuracy (%)

GMM
Σ=full 87.3 79.7
Σ=diag. 81.8 74.3
Σ=spher. 79.7 72.9

MPPCA
D=36 87.6 82.0
D=18 84.0 81.2
D=9 84.3 76.6

Mt-ss (ν=3)
D=36 86.5 80.4
D=18 87.3 80.4
D=9 91.2 85.7

Mt-ss (ν=2)
D=36 87.7 80.4
D=18 89.1 80.4
D=9 90.2 84.9

Table 1. Accuracy (%) of HMM-MIO over the KTH dataset with
different observation probabilities: GMM (full, diagonal, spheri-
cal), MPPCA and mixture oft distribution subspaces (Mt-ss).

Table 1 shows the results for the various combinations
of observation probabilities and main parameters. The first
comment is that accuracies are rather high in general, show-
ing that the enhanced HMM can utilise individual STIP de-
scriptors as its observations despite their sparsity in time.
The conventional GMM performed worse than both MP-
PCA and the mixture oft distribution subspaces, and even
more pronouncedly with constrained covariance matrices.
MPPCA achieved a highest accuracy of 82.0% on the test
set, while the mixture oft distribution subspaces achieved
85.7% (and an also remarkable 91.2% accuracy over the
validation set with the same parameter values). These re-
sults are still lower than the best result reported by Laptev,
91.8% on the test set, in [17]. However, they are higher than
results from other papers based on STIPs such as Schuldtet
al. [25] (71.7%) and Dolĺaret al. [8] (81.2%). Other recent
papers have reported accuracies of 97% or above over KTH,
but results are not directly comparable as feature sets differ
significantly [12].
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5. Near-future work

Results obtained to date seem to show that by using a
generative, HMM framework it is possible to achieve clas-
sification accuracies which are comparable to or only mod-
erately lower than those of discriminative approaches based
on spatio-temporal features. Such results give evidence to
the accuracy and flexibility of the proposed likelihood mod-
els. However, in our near-future work we intend to explore
further enhancements to the HMM. Two of the goals are:

Modeling a variable number of hidden states: one lim-
itation of our current work is that of assuming the same
number of HMM states for every action class. We consider
such an assumption to be weak, as different actions may
enjoy different number of hidden states when modelled us-
ing HMM, with each state in rough correspondence with a
particular human pose. Anecdotally, we can see that more
complex actions should be modeled with a larger number
of hidden HMM states than for simple actions. In order to
improve the model on this aspect, we will infer the optimal
number of hidden states from the data. The starting point of
this unit of work will be the infinite Hidden Markov Model
(iHMM) framework [3].

Integrating the enhanced HMM into a switching model:
we are inclined to believe that the HMM is more suitable for
human action recognition than linear dynamical systems or
auto-regressive models thanks to its “coarse”, intrinsically
non-linear notion of state. We therefore plan to extend the
switching model presented in [9] to the HMM, while inte-
grating aspects of dimensionality reduction and robustness
into the observation likelihoods.

6. Conclusions

In this paper, we have presented an enhanced HMM ca-
pable of effectively dealing with the feature sets typical of
action recognition. As evidenced in the paper, such fea-
ture sets can be high dimensional, affected by outliers and
based on time-irregular observations. The proposed model,
HMM-MIO (hidden Markov model with multiple, indepen-
dent observations), significantly amends these issues and
provides remarkable accuracy when used for action clas-
sification. The accuracy achieved over two popular action
datasets, Weizmann and KTH, proved comparable to that
of discriminative approaches, with a best accuracy of 100%
on Weizmann and 85.7% on the KTH test set. However, we
claim that the main reason for a persisting interest in genera-
tive models is their flexibility over a variety of action-related
tasks such as detection, time segmentation and model selec-
tion. The proposed enhanced HMM offers a contribution to
the accurate modelling of likelihoods towards such tasks.
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