Single-view obstacle detection for smart back-up camera systems

Jeffrey Lalonde, Robert Laganiere

University of Ottawa
Ottawa, ON, Canada

laganier@eecs.uottawa.ca

Abstract

This paper presents an implementation of a 3D recon-
struction algorithm for the detection of static obstacles from
a single rear view parking camera. To guarantee efficiency
and accuracy of the solution, we adopted a feature-based
approach in which interest points are tracked to estimate the
vehicle’s motion and multiview triangulation is performed
to reconstruct the scene. A full implementation of the algo-
rithm has been achieved on a parallel SIMD array proces-
sor unit embedded in a smart automotive camera system.
Current in-vehicle beta trials suggest that system’s perfor-
mance meets industrial requirements for real-world use in
back-up camera systems.

1. Introduction

Traditional parking assistance systems use radar or ultra-
sonic range-finders to detect obstacles. These have proven
reliability for detecting large metal objects, even in poor vi-
sual conditions. However, these sensors tend to miss small
objects because they lack sufficient spatial resolution [23].
Backup cameras are an attractive safety feature because, in
addition to being cheaper than range-finders, they display
the rear visual field to the driver. The advantage to a vision-
based obstacle detector, then, is a combined camera and
range sensor in a single, low-cost, piece of hardware.

This paper presents a driver-assistance backup system
that uses rear-view camera in order to perform obstacle de-
tection during reverse drive manoeuvres. Our objective was
to design a camera-based approach that can get comparable
results to approaches that use more costly active sensors.
The scene directly behind the vehicle is captured by a rear-
mounted video camera, as shown in Figure 1. The cam-
era is generally mounted behind just above the rear license
plate, tilted toward the ground to provide a good view of the
ground directly behind the vehicle. The system has to detect
static obstacles using only the visual input the rear-mounted
camera and to alert the driver of any obstacles in the colli-
sion path of the vehicle. Because our solution would be

Luc Martel
Cognivue Corp.
Gatineau, QC, Canada

Ilmartel@cognivue.com

ported to a dedicated image processing chip, it had to be as
simple as possible, run in real-time and perform sufficiently
to be released as a consumer product.

X ' A
Figure 1. A rear-mounted parking camera setup. (A) is the region
in which ground features are used for motion estimation. Any

feature located in the collision volume (B) is determined to be an
obstacle. The blue arrow indicates the camera’s optical axis.

The paper is organized as follows. The next section re-
views some of the relevant works. The next section presents
the designed algorithm for obstacle detection. Section 4 de-
scribes the on-chip implementation. Section 5 presents the
experimental results. Section 6 is a conclusion.

2. Related works

Our single-view parking system is composed of two
main steps: i) robust estimation of vehicle motion from vi-
sual data; ii) 3D reconstruction of the detected obstacle.

2.1. Visual Odometry

Measuring vehicle motion is critical to any monocular
3D structure-based obstacle detection method. Triangulat-
ing image features accurately requires not only good fea-
ture tracking, but also good motion estimation. Motion es-
timation of the ground is particularly challenging because
of the scarcity of strong features on its surface. As a result,
many works have been published on the specific problem of
estimating motion from vehicle-mounted cameras; a topic
commonly referred to as visual odometry.

Ground-based methods combine a motion model of the
ground plane with a projective model to obtain a parametric
model of the ground’s optical flow. The optical flow param-
eters are fit by observing motion on the image, and these
are related to the parameters of the motion model. Some

methods track ground features and use outlier-robust meth-
ods to estimate the ground flow parameters [16]. Others
use the optical flow over the ground surface [19]. Others
use whole-image matching in the so-called direct methods
[18, 5, 2, 13]. These ground-observation-only approaches
have the advantage of being relatively simple to compute.
However, they are only suited for scenes in which the road-
way is large and unobstructed.

Some approaches use all objects in the scene to estimate
motion by 3D scene reconstruction [7, 15]. The advan-
tage to such methods is that they are able to cope with low
ground texture and scenes cluttered with static objects. The
disadvantage is that these methods require costly bundle ad-
justment processes for sufficient robustness.

2.2. Obstacle Detection

Stereo methods make use of the disparity field to infer
the depth of image features. This allows for detection of the
ground plane (if it is unknown) and the detection of obsta-
cles as any feature off the ground plane. Stereo-vision sys-
tems have the advantage that no motion is required between
the vehicle and the scene in order to recover 3D structure.
Also, they do not require strict constraints on the ground
surface and so are preferred for autonomous navigation on
undulated terrain [1] [20] [3]. Well calibrated stereo sys-
tems can achieve impressive results, but at a severe cost,
both financially and economically, which restricts the adop-
tion of these systems to market products [19].

Monocular systems operate at a reduced cost and require
little maintenance, but lack the depth perception of stereo
systems. Monocular systems form three broad classes;
appearance-based, motion-based and reconstruction-based
methods. Appearance-based methods [21, 11, 6] use colour
and shape cues to differentiate image regions belonging to
the ground from regions belonging to obstacles. The advan-
tage of appearance-based methods is speed, simplicity and
the ability to detect very small obstacles. However, they suf-
fer from underlying assumptions. First, obstacle detection
can only occur if obstacles differ in appearance from the
ground. Second, obstacles cannot occupy the area near the
vehicle assumed to be ground, otherwise their appearance
gets incorporated into the ground model. Third, obstacle
distance can only be estimated if the obstacle is detected at
its base. Of course, all of these assumptions are often vio-
lated in a parking scenario.

Motion-based methods are complimentary to
appearance-based methods in that they largely ignore
colour and shape but rely heavily on the motion of image
features and optical flow. Of the motion-based methods,
some rely on external sensors to measure vehicle motion
[4, 22] while others estimate vehicle motion directly from
the images [24, 12, 8, 10, 23]. The ground, assumed to be
planar, is expected to move a certain way on the image. A

Obstacle Detector
Detection Block

Features (t-1) ‘l
‘Image{f-l) }—~>{ Feature Tracking ‘

Motion Estimation
Image (t)
Featres)

| Feature Labelling ‘

Feature Clustering

‘ Snapshot Management ‘

Is Image(t)
asnapshot?

Feature Location

Figure 2. Overview of the obstacle detection algorithm.

parametric model is constructed to capture the essence of
this motion. Then, the ground motion is observed, with or
without the help of external sensors, and the parameters
of the motion model are estimated. Regions of the image
that agree with this model are considered ground, and the
rest are considered obstacles. The strength of motion-based
methods is the ability to detect obstacles based on scene
structure without an explicit 3D recovery of the scene.
However, these methods do not provide a direct estimate of
the obstacle distance.

Structure-based methods [23] detect obstacles by an ex-
plicit 3D reconstruction of the scene. For this to be possible
with a single camera, the camera must be in motion, so that
images of the scene may be taken from different poses. Ob-
stacles are detected from image features that lie above the
ground plane in the 3D model. Reconstruction-based meth-
ods are more complex and computationally expensive, but
offer a direct estimate of the obstacle’s location in space.

Our challenge was to develop and test a monocular ob-
stacle detection algorithm and implement it on a dedicated
hardware architecture. In order to meet this challenge, we
have opted for the simpler approach of tracking features.
Tracking features provides a single mechanism with which
we can do both motion estimation and obstacle detection.
This algorithm is described in the next section.

3. The OD Algorithm

Our algorithm achieves obstacle detection through 3D
reconstruction of the scene using a single camera. To do this
we detect and track image features across multiple frames.
From the tracked features we estimate the motion of the
camera and triangulate the features to create a 3D model
of the scene. Features located within a collision corridor
behind the vehicle are labelled as obstacles and the system
reports the nearest obstacle distance to the driver.

An overview of the algorithm is shown in Figure 2. The
current and previous images, and the previous list of fea-
tures are fed to the Feature Tracking module to obtain the
current list of features. The Snapshot Management mod-
ule analyzes the motion of the features to determine what
images (or snapshots) to use for 3D reconstruction. The
Motion Estimation module estimates the planar motion of

Distance-to-Obstacle (t)

the camera between the current snapshot and all snapshots
in the past. The Feature Triangulation module finds the
3D location of features, provided they obey the epipolar
constraint. The Feature Labelling module assigns interpre-
tive labels (such as “ground” or “obstacle”) to each feature
based on their location. The Feature Clustering module spa-
tially clusters detected features to reduce false detections.
The Feature Location module updates the location of tri-
angulated points assuming a constant height. Finally, the
distance to the nearest obstacle is reported to the driver.

3.1. Feature Tracking

The Feature Tracking module has three main responsi-
bilities; (1) track existing features, (2) delete invalid fea-
tures and (3) detect new features. It takes as input the cur-
rent image, the previous image, the previous list of features,
and it outputs the current list of features.

The Feature Filter module deletes features based on two
criteria; (1) features with erratic motion and (2) features in
close proximity to other features. Erratically moving fea-
tures are deleted because, since frame rate of the camera is
high and the vehicle moves smoothly, we expect the image
of the scene to move smoothly. So, any erratic motion in the
image is due to either tracking error or some object moving
about in the scene. In either case, the feature is unwanted
for both ground motion estimation and 3D reconstruction.
We measure the non-smoothness of a feature’s trajectory as
a deviation from a linear trajectory over a recent window of
time. Specifically, we least-square-fit the last ws pixel posi-
tions of a feature to a line y(¢) = at + b. Then we compute
the mean reprojection error of the trajectory

_ 1)
5= E;Hy(z)fxiu- (1)

We define a smoothness of trajectory threshold e5 and re-
move any feature with 5 > e5. We use the last wsg = 5
frames and set €5 = 10 pixels. The smoothness window of
5 frames corresponds to a very short-term trajectory (0.16s
at 30fps). We expect the vehicle motion to be smooth w.r.t.
this time interval, so vehicle rotations do not have a signifi-
cant impact on trajectory smoothness.

The remaining features are then filtered based on their
proximity to other features in order to limit the computa-
tional load of the algorithm. For each pair of features, if
their distance is less than the threshold r,,,;,,, we eliminate
the feature with the greater § value. We set 7, to half-
width of the tracking template size (7 pixels). We then gen-
erate a vacancy mask; a binary image indicating the regions
of the image that are currently unoccupied by any features.
It is only in vacant regions that we search for features to
track, since we do not want to create trackers where some
already exist. Next, we use the Good Features to Track al-
gorithm [17] to detect and prioritize strong corner features

in the vacant regions.

Of course, our ability to detect and track features reli-
ably depend on video quality and external conditions. Poor
lighting, motion blur, small image resolution and small
video framerate all adversely effect feature tracking. Exter-
nal conditions such as poor lighting, dirty or out-of-focus
lenses, shiny obstacles and road surfaces and precipitation
also decrease tracking ability.

3.1.1 Selecting Good Ground Features

For a feature to possibly belong to the ground, it must be
within the image region onto which the ground is projected.
To assert this, we define a region of interest (ground ROI)
in vehicle coordinates (cf. Figure 1). Only features that
project to the ground ROI are used for motion estimation.
To be a good feature for ground motion estimation between
frames t; and ¢, it must meet the following criteria:

1. The feature must be present at both frames ¢; and t5.
2. The feature must currently be within the ground ROI.

3. The feature must have sufficient visual disparity. Let
x; and xo be the feature’s ideal image coordinates
at frames t; and t5, respectively. Then we assert
lx2 — x1]| > dinin Where dpin = 20 pixels is the min-
imum disparity. This is to avoid using stationary fea-
tures since they may correspond to shadows or objects
moving with the vehicle, or points at infinity.

3.2. Planar Motion Estimation

The motion of the vehicle is estimated using the identi-
fied good ground features. A planar motion is most conve-
niently expressed in a coordinate system in which the nor-
mal is aligned with one of the axes. By choosing to align
the normal with the z axis, we may represent planar motion
as {R,, Tp}, where

cos(f) —sin(f) 0 ty
R,=| sin(@) cos(@) 0|, To=|1t, |. (2
0 0 1 0

Here 6 is the angle of rotation and [t,, ty]T is the translation
within the plane. So the camera motion {R, T}, in terms of
the vehicle’s planar motion {R,,, T;} and the relative ori-
entation of the camera w.r.t. the vehicle {R., T.} is:

R=R/R,R. and T=RI(R,-D1)T.+T,)
3)

The following algorithm is used to estimate camera motion:

1. For each image pair (x¢,x%) get the 2D world point
pair (g7, g5), where g% = w(x}, Z;) where w(-) is a
an image to world transformation. Here the world z-
components are assumed to be zero (on the ground).

2. Estimate the planar motion by running RANSAC for
the point pairs (g¢,g%), 4 = 1...N > 2 to get the mo-
tion parameters {6, ¢, t,} of the model {R,, T} }.

3. Transform the motion to camera coordinates by com-
puting {R, T} according to (3).

3.3. Snapshot Management

Triangulation of correspondence points requires a non-
zero translation of the camera. In fact, there must be
sufficient translation to overcome the discretization, noise,
and tracking error. To this end, we select keyframes for
which the estimated camera displacement between them
is greater than some appropriate threshold. We call these
keyframes snapshots. The snapshots are triggered by vehi-
cle displacement, rather than elapsed time. The faster the
vehicle moves, the more frequently snapshots are taken,
and vice versa. A snapshot is simply indicated by its
frame number. At any given time, we have a snapshot list
S = {s1, s2, ... $m} consisting of the numbers of all the
frames that were chosen as snapshots. If the number of fea-
tures within the ground ROI is less than N,,;,, we clear
the snapshot list. To avoid long-term tracking drifts and
make use of recently detected features, we also set a maxi-
mum snapshot interval threshold A; = 300. At 30 fps, this
amounts to a maximum snapshot interval of 10 seconds.

If there are sufficient features in the ground ROI, we es-
timate the planar motion. If the motion was successfully
computed (i.e. there are enough “good” ground features),
then we check if there is sufficient displacement between
the frames. Then the current frame is added to the snapshot
list if || T|| > ds. We have found a practical value for d to
be 0.2h, where h is the camera height.

If the current image is selected as a snapshot, then the
Detection Block is called. Otherwise, triangulated feature
locations are updated in the Feature Location Module.

3.3.1 Inter-Snapshot Motion Estimation

We now have a list of snapshots S = {s1 ... s,,} where s;
is the frame number of the i snapshot and s,,, is the current
frame. We want to estimate the motion between each snap-
shot in the list and the last one. These motion parameters
could be obtained from previous motion estimates with lit-
tle computational effort. However, to avoid the aggregation
of tracking error and motion estimation error, we estimate
these parameters directly each time a snapshot is taken.
The planar motion {R;, T } between the previous snap-
shot s,,_1 and the current one s,, is estimated in the
Snapshot Management module, so it need not be com-
puted again. We therefore begin by estimating the pla-
nar motion {Ro, T2} between snapshots s,,—o and s,
as described in Section 3.2. If {Rg, T2} is successfully

computed, then we estimate the motion between s,,_3
and s,,,. We continue until all the snapshot interval mo-
tions are estimated, or until one of the interval motions
cannot be computed. Once we are finished, we have a
list of k successfully computed planar motion parameters
{{Rh Tl} s {RQ, TQ}, . {Rk,Tk}}, with1 < k < m.

3.4. Feature Triangulation

Triangulation is the process of depth recovery of scene
points from known camera motion. For each tracked fea-
ture f, we must determine how many views (i.e. snapshots)
can be used for triangulation. If the position of feature f in
snapshot s,,_; is designated by x,, _,(f) or x; for simplic-
ity, then the following expression applies:

Zo(xixRixo):Tixxi i=1...k (4)

If we denote a; = x; xR;xg and b; = T; xx;, then we have
the system of k equations Zpa; = b;. If we stack all the a
and b vectors to form the vectors A and B, respectively, we
get an equivalent single vector equation; ZyA = B which
is equivalent to:

_ Zf:l (xi x Rixo) - (T; x x;)
S [I%s % Rixoll

Obviously, if the feature f has not been tracked in snapshot
Sm—i,» then x; does not exist and is therefore not included
in the least-square solution. Also, due to noise and tracking
error, point pairs are not guaranteed to obey the epipolar
constraint; point pairs too far from the disparity will then
be rejected. We also reject point pairs with insufficient dis-
parity or points located too close to the epipole (which is
always located in the image in the case of backward vehi-
cle motion) because they lead to unreliable estimates. More
details are given in [9]. If all point pairs of a feature are
rejected, then the depth remains undefined.

3.5. Feature Labelling

®)

With all the features robustly triangulated from multi-
ple views, the next step is to label the features as obstacles
or not, based on their 3D location. We define an obstacle
as any feature occupying the collision volume behind the
vehicle (cf Figure 1). The depth of the volume (along the
y-axis) can be made small if the user wants to remove long-
range detections. The height of the volume must be set to
reflect the sensitivity of the scene reconstruction; The vol-
ume height must be high enough such that there are not too
many false detections of noisy ground features. We have
found a practical collision volume height to be 0.2/, where
h is the camera height; point below this height are consid-
ered to be on the ground plane (or sufficiently close to it).

If triangulation of a given feature is successful, then we
can label that feature based on its 3D location. Any fea-
ture inside the collision volume is labelled an obstacle. For

features outside the collision volume, we have two possible
labels. If they are below the collision volume height, we la-
bel them ground. Otherwise, we label them above-ground.
This ground/above-ground distinction is not critical to the
detection aspect of the algorithm, but is useful in verifying
that the scene is correctly interpreted. Features that were
not successfully triangulated remain labelled as undefined.
We also provide an extra label for detecting moving ob-
stacles. If a feature has enough disparity on the image, but
does not move along its epipolar line, this could indicate a
moving object in the scene. When this occurs, we do not tri-
angulate the feature, but we label it moving. Now, because
we do multiview triangulation we must check these condi-
tions for each pair of views. If all point pairs fail, and the
majority reason for failure is that the point does not move
along its epipolar line, then we label this point as moving.

3.6. Feature Clustering

Unfortunately, due to smooth surfaces, edges and glare,
there remain a significant number of features that are mis-
tracked for which the epipolar constraint is still obeyed.
These mistracks cannot be disambiguated from good ones.
We have observed that these false detections tend to be spa-
tially sparse, both on the image and in the reconstructed
space. Then, to filter out these false detections, we spatially
cluster the detected features and set a minimum cluster size
N, for detection. The disadvantage to this, of course, is that
true detections from small, or sparsely featured obstacles
are also filtered.

We cluster detected features in the following way. First,
we randomly select a feature and create a cluster for that
feature. Then, all other features that have a similar distance
to the vehicle are added to the cluster. For all the features
that were not accepted into the cluster, the process is re-
peated to form a second cluster. This continues until every
feature is assigned to a cluster. Then we remove all clusters
with fewer than the minimum cluster size. The intention
here is to cluster large surfaces perpendicular to the ground,
so features are clustered based on their distance to the vehi-
cle only. Specifically, we use the relative difference in the
feature’s world y-coordinate. If feature 1 and feature 2 have
respective world y-coordinates Y,,; and Y, then feature 1
is clustered with feature 2 if

|Yu)1 - Yw2|
‘le‘

where w,. is the cluster width threshold. Of course, the final
cluster configuration depends on the randomly chosen seed
features. We would like a configuration that clusters the
most features in the least amount of clusters. To obtain this
we wrap the clustering process in a RANSAC process and
search for the configuration that maximizes ns /ne, where
ny is the number of features assigned to a cluster and n. is
the number of clusters.

We (6)

4. On-chip implementation
4.1. The APEX architecture

Parallel processing technology is extremely well suited
for the first stages of computer vision applications. The
Cognivue CV220X series of programmable ICPs enables
real-time embedded image and video analytics powered by
massively parallel low power array processor technology
called the APEX. The APEX includes: i) a massively par-
allel SIMD Array Processor Unit (APU) made up of 96
Computational Units (CUs) each with dedicated memory;
ii) General purpose dedicated RISC processor (ARM926) to
handle control and non-parallel algorithms iii) Multi chan-
nel DMA engines devised for efficient data movement into
and out of APEX device memory; iv) Hardware accelera-
tion blocks for control, entropy encoding/decoding and bit-
level processing.

Typically, the APEX performs all the heavy parallel pro-
cessing that would typically require an FPGA, while the
ARM processor analyzes the extracted feature results, in
parallel. As importantly, this parallel operation is non-
blocking (unlike a traditional multi-core approach) because
the CUs are working on their own local memory leaving the
main external SDRAM memory free for the ARM’s use.
By locating the computational units (CUs) close to the de-
vice memory without other extra level of cache, APEX can
offer speed per area and power advantages over traditional
Harvard architecture, VLIW based DSPs or even GPGPU.
Also, since there are many more CUs operating in paral-
lel than the largest number of functional units or ALUs in a
DSP, the operating frequency can be kept lower for the same
number of operations per cycles, thereby reducing power.

4.2. Implementation of the algorithm on APEX

Feature tracking is by far the most time consuming pro-
cess of the algorithm. Our initial implementation used the
KLT tracker [14]. However, to decrease the execution time,
we finally adopted an alternative approach in which motion
estimation is performed on a top-view transformed image.
Running the algorithm on a top-view has two strong ad-
vantages. Ground features on the top-view are not perspec-
tive skewed, but undergo only translation and (slight) rota-
tion. As such, we can track features using a simple block-
matching (BM) scheme, which is much faster than the KLT
tracker. Moreover, the APEX’s CUs have optimized instruc-
tions to perform SADs which makes the BM-Tracker imple-
mentation more efficient than the KLT-Tracker. In addition,
using a top-view effectively narrows the detector’s focus to
the region directly behind the vehicle, the periphery of the
input image not being processed.

The implementation is described by Figure 3. We will
not describe here the portion of the application controlling
the image sensor and the display but rather focus on the ac-

Object Deteotion
Task

ectory
FOs

Y

LI

Image:

action &

Tracking Task
APEX Process
RISC Process

Feature Exir;

Figure 3. Algorithm implementation on APEX.

tual object detection algorithm. CogniVue’s CV220x series
ICP processors have 2 ARM926 RISC core, one of them
running Nucleus OS being used as the host (ARM-1) and
from which the APEX control code (APEX Core Frame-
work) executes. The algorithm is implemented by 2 tasks
running on the host processor. The Feature Extraction and
Tracking (FDT) task is a combination of APEX and RISC
processing. For simplicity we will call APEX any process-
ing not executing on the host ARM core. The Obstacle
Detection (OD) task is a pure RISC task. The two tasks
run completely asynchronously so that the Object Detec-
tion task can fill up the processing cycles unused by the
FDT tasks. Those cycles are available when the FDT task
is waiting on the APEX to complete its processing.

APEX is programmed by creating process graphs. A
process graph is a representation of a specific sequence
of operations. APEX process graphs are shown in green
in Figure 3. They implement one processing pass during
which the data is moved from external DDR to the device
memory for the graph operations to execute and the data
is moved back to external DDR. The first processing graph
take a YVU 422 image input I[n], does a bilinear remapping
on the Y component and apply Good Feature To Track on
the result. The output is a perspective corrected image IP[n]
and a feature point response image C[n]. The perspective
corrected image IP[n] is then fed along with the previous

perspective corrected image IP[n-1] and the previous list of
feature points to the BM-Tracker module. The BM-Tracker
output is a list of tracked old features O[n]. We use the
list O[n] to compute a vacancy map V[n]. The last stage
is done by the RISC processor and uses the vacancy map
V[n] and the corner response C[n] to compute a list of new
features N[n]. When processing the next frame IP[n+1] the
list of features F[n] is the sum of the two lists O[n] and
N[n]. The remapping and GFTT detection takes on aver-
age 9.2ms to run on one frame. BM tracking requires an
average of 22.1ms

The OD task was completely implemented in fixed point
on the host ARM processor. It was implemented asyn-
chronously to the FDT task since its processing time varies
greatly. It executes the bulk of the processing (the recon-
struction) only when a snapshot is detected and its process-
ing time per snapshot was greatly dependant on the number
of current snapshots in the list and on the number of obstacle
features. It takes about 1.7ms to update the vacancy map
while the reconstruction process takes on average 35.5ms
per snapshot.

As a result, the system is capable of processing up to 30
fps VGA when tracking between 500 and 600 features per
frame.

5. Experimental results

For testing the algorithm, we have installed a Boyo Vi-
sion CMOS rear view colour camera (VTB170) at the rear
of a minivan and calibrated it using OpenCV’s calibration
routine, which estimates the camera matrix and distortion
parameters from a series of checkerboard images. The cam-
era’s orientation, w.r.t. the ground was manually estimated
based on the corresponding homographic top-view trans-
formation. We captured 14 videos of the vehicle backing
into various stationary obstacles. The raw video resolution
was 640x480 at 30 fps and the resolution after dewarping
and cropping was 576x370. The obstacles include large
objects (parked vehicles, shrubs, dumpster), medium sized
objects (garbage can, fire hydrant, leaf bag), and narrow ob-
jects (bike parking rack, wooden 2x4 used as construction
site barricade). For performance evaluation, we have estab-
lished a ground truth of obstacle position by manually mark-
ing the base of the objects on the image, for every frame. A
series of tests were performed in order to determine the op-
timal set of parameter values.

To evaluate the obstacle detection range we calculate the
detection rate for a given true obstacle distance. Specifi-
cally, we divide a 5m detection range into 20cm bins. Let
n; be the number of snapshots for which an obstacle is
located in bin 7. Let m; be the number of snapshots for
which an obstacle in bin ¢ was detected. Both n; and m;
are counted over all fourteen videos. Then, the overall de-
tection rate for the i bin is given by m;/n;. This can be

thought of as the likelihood of detecting an obstacle, given
the obstacles distance from the vehicle.

Detection Rate
x

Distance (m)

Figure 4. Detection rate as a function of obstacle distance.

As we see in Figure 4, the detection rate is roughly in-
versely proportional to the obstacle’s distance. The detec-
tion rate for obstacles 1m is 1. That is, in all fourteen
videos, obstacles within 1m are detected 100% of the time.
Obstacles at 2m are detected half of the time, and obstacles
at 3m are detected one third of the time. The rapid drop in
the detection rate is due to the unfortunate fact that obstacles
are always in the vehicle’s (and so, the camera’s) direction
of travel. This results in obstacle features having the least
amount of disparity for a given camera displacement (com-
pared to the most favorable situation of sideways motion).
It is this “minimal disparity” situation that is the greatest
technical challenge in scene reconstruction in the context of
a parking camera.

05

o
=

o
w

=)
¥

Standard Deviation (m)

=)
i

Distance (m)

Figure 5. Standard deviation of distance-to-obstacle estimate as
a function of distance. The data is fit to a straight line passing
through the origin.

To measure the precision of the distance-to-obstacle es-
timate provided by the detector, we compared the computed
distances with the true ones. Again, we divide the detection
range into 0.2m bins. We then compute the standard devia-
tion of dywe — dop (the difference between the true distance
and the reported distance) for all occurrences within a given
bin. From Figure 5, we see that the standard deviation of
dirye — dop 1s proportional to dyye. If we define the uncer-
tainty of the detector as being one standard deviation, then
the reported distance has a relative uncertainty of 18%.

Finally, Figure 6 shows the output of the OD algorithm
for three different obstacles; (a) a large dumpster, (b) a
garbage can and (c) a bicycle parking rack. For each ob-
stacle, we show a snapshot of the output when the obstacle
is at an approximate distance of 2m (top), 1m (center) and
0.5m (bottom). The points drawn on the images are the fea-
tures tracked by the Feature Tracking Module. These points
are coloured to indicate the labeling provided by the OD
module: green points are on the ground, blue points are be-
low the ground, yellow points are above the ground (but not
inside the collision volume), red points are obstacles and
white points have not yet been labeled. The distance to the
nearest obstacle feature is displayed at the top-left of the
image, and the projection of that distance on the ground is
the horizontal red line. Note that the images shown are the
dewarped images.

6. Conclusion

This paper presented a successful implementation of an
obstacle detection algorithm for a driver-assistance backup
system. The designed solution uses a single rear-view cam-
era and a real-time implementation has been achieved on
a parallel SIMD array processor unit embedded in a smart
automotive system.

The proposed system successfully meets the objectives
of reliability and efficiency as demonstrated by experimen-
tation. Namely, we have shown a very high detection rate
for obstacles within 1m of the vehicle. The algorithm runs
at 25fps on an image cognition processor.

References

[1] P. Batavia and S. Singh. Obstacle detection in smooth high
curvature terrain. In Proceedings of the IEEE Conference on
Robotics and Automation (ICRA °02), May 2002. 2

[2] J.R. Bergen, P. Anandan, T. J. Hanna, and R. Hingorani. Hi-
erarchical model-based motion estimation. pages 237-252.
Springer-Verlag, 1992. 2

[3] T.Chang, S. Legowik, and M. N. Abrams. Concealment and
obstacle detection for autonomous driving. In Proceedings
of the Robotics & Applications, pages 28-30, 1999. 2

[4] W. Enkelmann. Obstacle detection by evaluation of optical
flow fields from image sequences. Image Vision Comput.,
9(3):160-168, 1991. 2

[5] B. K. P. Horn and E. J. Weldon. Direct methods for re-
covering motion. International Journal of Computer Vision,
2(1):51-76, 1988. 2

[6] I. Horswill. Visual collision avoidance by segmentation.
In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 902-909. IEEE Press, 1994. 2

[7] B.Kitt,J. Rehder, A. Chambers, M. Schonbein, H. Lategahn,
and S. Singh. Monocular visual odometry using a planar road
model to solve scale ambiguity. In Proc. European Confer-
ence on Mobile Robots, September 2011. 2

(a)

(b)

(c)

Figure 6. Output of the OD algorithm for three objects: (a) a dumpster, (b) a garbage can and (c) a bicycle parking rack. The points drawn
on the image are tracked features and are colour-coded as follows: Green = ground, blue = below ground, yellow = above ground (but not
in the collision volume), red = obstacles and white = unknown.

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

W. Kruger. Robust real-time ground plane motion compensa-
tion from a moving vehicle. Mach. Vision Appl., 11:203-212,
December 1999. 2

J. R. Lalonde. Monocular Obstacle Detection for Moving
Vehicles. Master’s thesis, University of Ottawa, Ontario,
Canada, 2011. 4

G. Lefaix, ric Marchand, and P. Bouthemy. Motion-based
obstacle detection and tracking for car driving assistance. In
ICPR (4)°02, pages 74-77, 2002. 2

L. M. Lorigo, R. A. Brooks, and W. E. L. Grimson. Visually-
guided obstacle avoidance in unstructured environments. In
IEEE Conf. on Intelligent Robots and Systems, pages 373—
379, 1997. 2

M. I. A. Lourakis and S. C. Orphanoudakis. Visual detec-
tion of obstacles assuming a locally planar ground. In Pro-
ceedings of the Third Asian Conference on Computer Vision-
Volume II, ACCV 98, pages 527-534, London, UK, 1997.
Springer-Verlag. 2

S. Lovegrove, A. J. Davison, and J. Ibanez-Guzman. Accu-
rate visual odometry from a rear parking camera. In Intelli-
gent Vehicles Symposium, pages 788 — 793, 2011. 2

B. D. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision (ijcai). In Pro-
ceedings of the 7th International Joint Conference on Arti-
ficial Intelligence (IJCAI ’81), pages 674—679, April 1981.
5

D. Nister, O. Naroditsky, and J. Bergen. Visual odometry.
In Proc. of Computer Vision and Pattern Recognition, vol-
ume 1, pages [-652 — I-659 Vol.1, june-2 july 2004. 2

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

D. Scaramuzza, F. Fraundorfer, and R. Siegwart. Real-time
monocular visual odometry for on-road vehicles with 1-point
ransac. In Proc. of The IEEE International Conference on
Robotics and Automation (ICRA), May 2009. 2

J. Shi and C. Tomasi. Good features to track. In 7994
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR’94), pages 593 — 600, 1994. 3

G. P. Stein, O. Mano, and A. Shashua. A robust method
for computing vehicle ego-motion. In In IEEE Intelligent
Vehicles Symposium (IV2000), 2000. 2

T. Suzuki and T. Kanade. Measurement of vehicle motion
and orientation using optical flow. In 1999 IEEE/IEEJ/JSAI
International Conference on Intelligent Transportation Sys-
tems., pages 25 — 30, 1999. 2

A. Talukder, R. Manduchi, A. Rankin, and L. Matthies. Fast
and reliable obstacle detection and segmentation for cross-
country navigation. In In IEEE Intelligent Vehicles Sympo-
sium, pages 610-618, 2002. 2

L. Ulrich and I. Nourbakhsh. Appearance-based obstacle de-
tection with monocular color vision. In Proceedings of AAAI,
2000. 2

D. Willersinn and W. Enkelmann. Robust obstacle detection
and tracking by motion analysis. pages 717 — 722, 1997. 2
K. Yamaguchi, T. Kato, and Y. Ninomiya. Moving obsta-
cle detection using monocular vision. 2006 IEEE Intelligent
Vehicles Symposium, pages 288-293, 2006. 1, 2

Z. Zhang, R. Weiss, and A. R. Hanson. Obstacle detection
based on qualitative and quantitative 3d reconstruction. I[EEE
Trans. on PAMI, 19:15-26, 1997. 2

