
Filling Large Holes in LiDAR Data By Inpainting Depth Gradients

David Doria
Rensselaer Polytechnic Institute

Troy, NY
doriad@rpi.edu

Richard J. Radke
Rensselaer Polytechnic Institute

Troy, NY
rjradke@ecse.rpi.edu

Abstract

We introduce a technique to fill large holes in LiDAR
data sets. We combine concepts from patch-based image
inpainting and gradient-domain image editing to simulta-
neously fill both texture and structure in a LiDAR scan. We
discuss the problems with directly inpainting a depth image,
and present a solution to this problem based on inpainting
the depth gradients. Once the inpainted depth gradients are
obtained, we use an image reconstruction technique to ob-
tain the final 3D scene structure. We present several real-
world examples of this technique with excellent results.

1. Introduction
Light Detection and Ranging (LiDAR) is used in survey-

ing, architecture, and visual effects to directly gather three-
dimensional information about an environment. A LiDAR
scanner collects point cloud data by inferring distances to
scene surfaces using the speed of light and the time taken
by laser pulses to reflect off surfaces in the scene (or the
phase differences of continuous-wave signals). While de-
vices for range scanning have recently become more widely
available, there is still much work to be done to improve the
experience of exploring such data sets.

In this paper, we are particularly interested in filling
holes in LiDAR data. Since the LiDAR laser cannot pene-
trate opaque objects, a “shadow” appears behind every fore-
ground object in the scene, as illustrated in Figure 1. These
shadows leave very large holes, or collections of missing
points, in the background structure of nearly every real-
world scan. Such holes are very distracting to the viewer
when exploring LiDAR scans in 3D, and significantly re-
duce their ease of visualization. As a result, LiDAR data
only seems “complete” when viewed from the original ac-
quisition viewpoint.

There has recently been substantial research on the im-
age inpainting problem in standard RGB images. That is,
given an image and a specified foreground region to remove
(the “hole”), we want to determine new plausible colors at

(a) (b)
Figure 1. Examples of LiDAR shadows. We can see there are
large portions of the scene background that were occluded from
the scanner’s viewpoint.

the hole pixels such that the background appears to seam-
lessly continue through the hole without introducing visi-
ble artifacts. Image editing software like Adobe Photoshop
now routinely includes tools to perform this type of inpaint-
ing operation for removing unwanted foreground objects or
repairing damaged photographs. However, the same prob-
lem of hole filling in point cloud data is significantly less
studied.

In this paper, we present a new algorithm to synthesize
realistic information inside large holes in LiDAR data. This
new information — both in terms of color and 3D struc-
ture — corresponds to a plausible explanation of what could
have been present at points in the scene that were not ob-
served during the acquisition process. We show that filling
holes allows the scan to be naturally viewed from positions
other than the original acquisition viewpoint. Our algorithm
leverages and extends existing greedy patch-based image
inpainting techniques and gradient-domain image editing
techniques to create a novel 3D inpainting algorithm. In
particular, we work in the depth gradient domain to intelli-
gently copy structure from elsewhere in the scene into the
hole. We then reconstruct the 3D scene by solving a varia-
tional problem resulting in a Poisson equation.

This paper is organized as follows. In Section 2 we dis-
cuss prior work on filling holes in 3D data, and introduce
the key concepts from image inpainting and editing upon
which our new algorithm is based. In Section 3, we de-

1

scribe an intuitive extension of image inpainting to depth
image inpainting, and discuss why it does not produce sat-
isfactory results. In Section 4, we discuss how to mitigate
the problems demonstrated in Section 3 by working in the
depth gradient domain. In Section 5, we show several real-
world examples of combined texture and structure inpaint-
ing in real LiDAR datasets. These examples highlight the
benefits of our proposed algorithm. Section 6 concludes the
paper with discussion and ideas for future work.

2. Related Work
There have been several previous approaches to filling

holes in 3D data sets. Sharf et al. [9] proposed a hole-filling
algorithm for point sampled surfaces that used a coarse-to-
fine approach. First, the rough geometry in the hole was
estimated, then detailed structure was copied from else-
where in the model to refine the initial estimate. Finally,
a series of elastic warps was applied to ensure the copied
patch matched the surrounding hole. While acceptable re-
sults were shown, the authors noted several problems with
this approach. These problems included the high number
of degrees of freedom in aligning two point-sampled sur-
face patches in 3D, the difficulty of defining a coordinate
system in which to work, and the boundary of a hole being
ill-defined in a point-sampled surface.

Park et al. [6] extended this work to point clouds with as-
sociated colors. In the final step, rather than applying elas-
tic warping transformations, a height field is formed and a
Poisson equation is solved to join the copied patch of points
smoothly to the points defining the hole. Becker et al. [1]
also proposed copying 3D patches of structure directly into
a 3D hole. This technique relies on solving a computation-
ally complex 3D registration problem at each iteration of
the inpainting. Additionally, there is no guarantee that the
inpainted 3D points correspond to a reasonable depth map
from the scanner’s original perspective. In this paper, we
take a similar approach to copying structure from elsewhere
in the scene into the hole, but since we work in the depth
image gradient domain rather than directly in 3D, the com-
plexity of the process is greatly reduced and we avoid the
problems mentioned above.

Other researchers have proposed to apply inpainting
techniques directly to depth or disparity images. Salamanca
et al. [8] projected a mesh with small holes into a depth im-
age, then used inpainting techniques to repair the holes in
the depth image. Weghorn et al. [13] created local height
fields on a tangent plane to the points surrounding a hole,
and then inpainted the resulting hole in this height field to
reconstruct missing 3D geometry. Stavrou et al. [10] ap-
plied 2D image repairing algorithms to the depth image of
a LiDAR scan. Their technique was demonstrated success-
fully, but only on scenes containing simple objects. He et
al. [4] remove small objects by explicitly applying depth

constraints to guide the inpainting. An example of one such
constraint is that the depth values that are filled must al-
ways be greater than the depth values of the object to be in-
painted. Wang et al. [12] and other researchers have studied
the problem of filling holes in pairs of stereo images. The
nature of the holes in these data sets is very different from
the data that we are interested in in this paper — they are
typically very thin halos or slivers around objects. As we
will show in Section 3, techniques for filling these kinds of
holes work poorly for large holes in LiDAR scans of com-
plex real-world scenes.

Wei and Klette [14] perform an extensive analysis of the
problem of reconstructing a surface from its gradients. They
note several potential problems with this procedure. First,
a gradient field may not correspond to a unique surface.
Second, they detail the theoretical requirement for the in-
tegrability of a gradient field. Though we are aware of these
problems, in practice we have found that our technique does
not seem to be affected by them.

In this paper we draw from two distinct sets of prior
work; patch-based image inpainting and gradient-domain
image editing. In the remainder of this section, we discuss
key concepts from these areas that we apply in our contri-
butions.

2.1. Patch-Based Image Inpainting

Image inpainting is the problem of filling new colors into
a specified region of an image I(x, y), so that the result is
visually convincing. We call this region the hole, and de-
note it by Ω. The hole is usually caused either by corrup-
tion of originally valid data or by occlusion in the scene
itself. For example, a photograph may have been folded or
torn, leading to missing data, or an undesirable object may
occlude part of a desired background. This problem is illus-
trated in Figure 2. We want to determine new pixel colors
in the specified region so that the object is removed but it is
imperceptible to an observer that the image was modified.

(a) (b) (c)
Figure 2. A demonstration of image inpainting. (a) The original
image. (b) The region to inpaint is shown in bright green. The goal
in this example is to remove the window frame from the image. (c)
The inpainted image. If an observer was presented with only this
image, they would likely not notice that it had been modified.

A well-known approach to this problem, exemplified by
Criminisi’s algorithm [3], is to copy patches of pixels from
elsewhere in the image into the hole. These patches should
continue the surrounding image colors into the hole with-
out introducing visual artifacts. Such techniques are col-
lectively referred to as “exemplar-based” or “patch-based”
inpainting methods. The idea is shown in Figure 3.

Ψt

Ψs

Ω

(a)

Ω

Ψt

Ψs

(b)
Figure 3. A conceptual illustration of patch-based inpainting. (a)
The region of the image Ω to be filled is shown in white. A target
patch ψT and a good candidate source patch ψS are indicated.
(b) The source patch colors are copied into the target patch. The
linear structure (the boundary between the blue and gray regions)
has been continued appropriately.

Candidate patches that consist entirely of pixels from
the known region of the image are referred to as source
patches, Ψs. Likewise, a target patch, Ψt, is any patch
whose center is on the current hole boundary. A typical
patch-based inpainting algorithm proceeds as follows. First,
we determine which target patch to fill. The hole is typically
filled from the outside in, with an attempt to first fill patches
that continue linear structures in the image. Next, we search
for the source patch that best matches the selected target
patch. We then copy colors from the source patch into cor-
responding pixels of the target patch that intersect the hole.
Finally, we update the hole and the hole boundary and re-
peat the process until the target region is empty.

The problem of finding the best patch can be stated as a
minimization problem as shown in Equation 1.

argmin
Ψs∈I−Ω

d(Ψs,Ψt) (1)

That is, we search for a patch in the known region of the
image with the minimum score according to some patch dis-
tance function, d(Ψs,Ψt). Typically, this distance is com-
puted as the sum of the squared differences of RGB color
vectors at corresponding non-hole pixels in the two patches.

2.2. Reconstructing an Image from its Gradients

There has been much recent research interest in gradient-
domain techniques for image processing. Pérez et al. [7]
applied gradient-domain techniques to convincingly copy
large regions of one image into an entirely different im-
age. Bhat et al. [2] presented a generalized framework

for gradient-domain image filtering that can produce sev-
eral types of manipulated images. Such techniques rely on
the problem of reconstructing an image from its gradients,
which we summarize below.

We begin with an intensity image I(x, y), a target re-
gion Ω inside the image, and the desired gradients Gx(x, y)
and Gy(x, y) inside Ω. We wish to reconstruct new intensi-
ties I∗(x, y) inside Ω subject to the constraint that I and I∗

agree on the hole boundary ∂Ω. That is, we want to solve

min
I∗(x,y)∈Ω

∫∫
Ω

(I∗x(x, y)−Gx(x, y))2

+ (I∗y (x, y)−Gy(x, y))2 dx dy

s.t. I∗(x, y)|∂Ω = I(x, y)|∂Ω

(2)

Using the Euler-Lagrange equation from variational cal-
culus, it can be shown that the solution to Equation 2 satis-
fies Equation 3 below:

∇2I∗(x, y) = div (Gx(x, y), Gy(x, y)) ∀(x, y) ∈ Ω

s.t. I∗(x, y)|∂Ω = I(x, y)|∂Ω (3)

where ∇2 represents the image’s Laplacian and div is the
divergence of a 2D vector field. We discuss the solution to a
discretized version of this equation in Section 4, which re-
sults in a simple system of linear equations. The approach
is applied to color images by processing each channel inde-
pendently.

3. A Framework for Depth Inpainting
In this section, we discuss an extension to patch-based

inpainting to fill holes in depth images. We show why fill-
ing holes directly in the depth image is not appropriate, and
propose a solution to these problems in Section 4.

Modern LiDAR scanners typically produce a grid of col-
ored 3D points. That is, at each point, we know the depth
(i.e., distance) from the scanner, as well as an RGB value
associated with the point (usually obtained by a collocated
camera). We can view the resulting dataset as a 4-channel
RGBD image (Red, Green, Blue, Depth) over a 2D pixel
grid. As a first attempt at inpainting holes in this type of
data, we could simply extend the technique described in
Section 2.1 to operate on these RGBD images. In this case,
Ψs and Ψt are patches of 4D vectors defined over the 2D do-
main (x, y). The distance function d(Ψs,Ψt) in Equation 1
is defined as the sum of squared differences of correspond-
ing RGBD vectors at non-hole pixels. Before comparison,
we normalize the channels in each RGBD image so that the
standard deviations of the RGB channels sum to the stan-
dard deviation of the depth channel.

To determine the order of the patch filling, we use the
priority term defined by Criminisi et al. [3]. We defer to [3]

for a full explanation, but the intuition is that we prioritize
patches based on two values. First, patches that are near the
original hole boundary should be filled first, as we are more
confident that the known data in these patches is accurate.
At the same time, we attempt to continue linear structures in
the image by filling patches where the image isophote direc-
tions (the vectors perpendicular to the gradient vectors) are
strong and aligned with the normals of the hole boundary.

Patch-based image inpainting relies on the idea that a
patch that “looks like” the one we would expect to appear
in the hole exists somewhere else in the image. In many
RGB images, this is indeed the case. However, in depth im-
ages, this is typically not the case. For example, consider
Figure 4, in which a hole interrupts a planar surface seen
from above. Though several patches with the correct struc-
ture are available, no source patch exists that has the correct
depth value at the interior of the hole.

LiDAR Scanner

Hole

Figure 4. An illustration of why direct depth inpainting fails. We
wish to fill the hole (yellow) by copying an existing depth patch to
the location of the blue patch. Unfortunately, the closest patches in
the depth image, though having the structure we need, do not occur
at the appropriate depth. Using the green patch would result in
3D structure in front of the appropriate location (the green dashed
patch), and using the red patch would result in 3D structure behind
the appropriate location (the red dashed patch).

An example of this problem in a real data set is shown in
Figure 5. We see that many of the patches that were copied
were actually located at incorrect depths.

Another approach one might investigate is inpainting the
RGB values as usual and then finding the smoothest pos-
sible depths to fill the hole. While this may work on very
small holes or holes that appear in planar surfaces, in Figure
6 we show that the result is usually unacceptable for large

(a) (b)

(c) (d)
Figure 5. A demonstration of the result of directly inpainting a
depth image. (a) The image associated with the original LiDAR
scan. (b) The region to inpaint is indicated in bright green. (c) The
structure after inpainting directly in the RGBD image. (d) A side
view showing many patches at incorrect depths.

holes with complex backgrounds. In Figure 6b the hole in
the depth image has been smoothly filled, resulting in very
incorrect 3D structure, shown in Figure 6d.

4. Inpainting 3D Structure Using Depth Gra-
dients

To prevent the problem of copying depth patches which
have very similar structure but different absolute depth val-
ues, we instead work in the depth image gradient domain.
We observe that depth patches with the correct structure to
complete the hole are typically available in the known re-
gion of the image.

Similar to the RGBD images discussed in Section 3, we
now construct a 5-channel image consisting of the RGB val-
ues, as well as the x and y components of the depth image
gradient Dx(x, y) and Dy(x, y). We normalize the chan-
nels of this image so that the sum of the standard deviations
of the R, G, and B channels equals the sum of the standard
deviations of the Dx and Dy channels.

We perform the inpainting procedure in these 5-channel
RGBDxDy images, where the patch distance function now
operates on 5D vectors defined over the 2D pixel domain.
After inpainting the hole by cutting and pasting patches, we
can color the new scene points directly using the first three
channels of the resulting patches. However, an additional

(a) (b)

(c) (d)
Figure 6. A demonstration of smoothly filling a hole in the depth
image. (a) The depth image corresponding to Figure 5a (blue =
close to the scanner, red = far from the scanner). (b) The resulting
depth image after removing the trashcan and filling the hole with
a smooth surface. We note that the sharp edge at the boundary
between the wall and the ground is not preserved. (c) The resulting
3D structure. (d) A side view of the 3D structure. It is clear that
this result is unacceptable, since a surface that does not make sense
in the scene has been created.

step is now required to obtain the depth values for the new
points.

We have the desired depth gradient (Dx(x, y), Dy(x, y))
inside the hole, but what we need is the actual depth in
the hole, D(x, y). To perform this reconstruction of the
depth image from its gradients, we apply the techniques
described in Section 2.2. Here, Gx(x, y) and Gy(x, y) in
Equation 2 are exactly our inpainted depth image gradients.
We know the depth values immediately outside of the hole,
so these serve as the boundary condition for the reconstruc-
tion problem. The system of equations that must be solved
for D∗(x, y), the reconstructed depth image, is shown in
Equation 4.

∇2D∗(x, y) =
∂Dx

∂x
(x, y) +

∂Dy

∂y
(x, y) ∀(x, y) ∈ Ω

s.t. D∗(x, y)|∂Ω = D(x, y)|∂Ω (4)

Explicitly, a pixel whose 4-neighbors are fully inside the
hole generates Equation 5.

D∗(x + 1, y) + D∗(x− 1, y) + D∗(x, y + 1)

+ D∗(x, y − 1)− 4D∗(x, y)

=
∂Gx(x, y)

∂x
+

∂Gy(x, y)

∂y

(5)

A pixel that has at least one 4-neighbor outside the hole
generates an equation similar to Equation 6, which shows
the case where the pixel (x + 1, y) is outside the hole:

D∗(x− 1, y) + D∗(x, y + 1) + D∗(x, y − 1)− 4D∗(x, y)

=
∂Gx(x, y)

∂x
+

∂Gy(x, y)

∂y
−D(x + 1, y)

(6)

Thus, if there are N pixels in the whole, Equations 5-6
can be written as a matrix equation Ad = b, where A is
a known N × N matrix, b is a known N × 1 vector, and
d is an unknown N × 1 vector containing the depths to be
determined. Since A is extremely sparse, containing 5 or
less non-zero entries per row, this system can be solved very
efficiently, even for large N .

Once we have solved for the depths in the hole, we con-
struct the new 3D points by placing points along the original
LiDAR rays at the distances prescribed by the new depth
image. We describe the entire procedure algorithmically in
Algorithm 1.

Algorithm 1 FillLargeHoles(LiDAR scan)
Construct the RGBDxDy image from the source data
Normalize the RGBDxDy image
Inpaint the RGBDxDy image:
while Hole pixels remain do

TargetPatch← SelectTargetPatch()
SourcePatch← FindMatch(TargetPatch)
Copy SourcePatch into TargetPatch
Update the hole and hole boundary

end while
Extract the inpainted Dx and Dy inside the hole
Reconstruct the hole depths D∗ by solving Equations 5-6
Create the new 3D points at the prescribed depths along
the original LiDAR rays

5. Experiments
In this section, we demonstrate our algorithm on several

real-world data sets. The results are convincing, even with
complicated backgrounds. The resulting hole completions
we obtain appear as if the points had been acquired by the
actual LiDAR scanner, making the completions look very
natural.

(a) (b) (c)
Figure 7. (a) A LiDAR scan of a trashcan in front of a background consisting of concrete, grass, and a brick wall. (b) The inpainted 3D
structure behind the trashcan. (c) A composite of the trashcan with the structure behind it.

In Figure 7, we demonstrate our algorithm on a LiDAR
scan of a trashcan in front of a brick wall. The hole left by
the removal of the trashcan spans three textures including
concrete, grass, and brick. The algorithm is able to success-
fully fill this large hole with convincing color and structure.

Figure 8(a)-(b) shows the depth gradient image before
and after inpainting. The inpainted gradient image looks
like the gradient field we would expect if the trashcan had
not been present in the scene. Figure 8(c)-(d) shows the
depth image before and after reconstruction from the in-
painted depth gradient image, indicating that the results are
realistic.

In Figure 9, we demonstrate the algorithm with a less
regular background. In this LiDAR scan, several electrical
boxes are present in a grassy field, with a very complicated
background of bushes and trees. Again, we show that the
algorithm was able to fill in convincing color and structure
in both the smooth ground region as well as the noisy region
of trees.

In Figure 10, we show a LiDAR scan of a mailbox with
a building in the background. The mailbox occludes multi-
ple linear structures, and a harsh shadow is present on the
building. Despite these challenges, the algorithm is able to
produce a satisfying result.

A summary of the data sets shown throughout this pa-
per, including image size, hole size, and timing of the entire
LiDAR inpainting process, is provided in Table 1. The ex-
periments were performed on a computer with an Intel Core
2 Duo 3 GHz CPU.

About 75% of the time is spent in the inpainting process,
while the remaining time is spent reconstructing the depth
image from its gradients.

6. Discussion and Future Work
We presented an algorithm to fill large holes in LiDAR

data. We inpaint the data in the depth gradient domain,

(a) (b)

(c) (d)
Figure 8. A demonstration of our depth gradient inpainting ap-
proach. (a) The magnitude of the original gradient (blue = low
gradient magnitude, red = high gradient magnitude). (b) The mag-
nitude of the inpainted depth gradient. (c) The original depth im-
age (blue = close to the scanner, red = far from the scanner). (d)
The depth image reconstructed from the inpainted depth gradient.
We note that the structure of the corner between the wall and the
ground was successfully preserved.

then reconstruct geometry in the original scanner coordinate
system. The experiments demonstrate that the method can
plausibly fill large holes, making the data easily viewable
from multiple viewpoints without perceptual artifacts.

We note that our LiDAR inpainting technique is more
sensitive to poor patch choices than a standard image in-
painting problem. For example, in Figure 11 we show a

(a) (b) (c)
Figure 9. (a) A LiDAR scan of several electric boxes in a grassy field, with a complex background consisting of bushes and trees. (b) The
inpainted scene structure behind the electric boxes. (c) A composite of the electric boxes with the inpainted scene behind them.

(a) (b) (c)
Figure 10. (a) A LiDAR scan of a mailbox with a building in the background. The LiDAR shadow interrupts multiple linear structures in
the background. (b) The inpainted scene structure in the LiDAR shadow. (c) A composite of the mailbox with the background filled behind
it.

Table 1. A summary of the data sets shown throughout this paper.

Data set Image size Hole size (pix) Total time
Mailbox 459 × 489 30171 1m5s

Electric boxes 688 × 478 45434 2m19s
Trashcan 572 × 517 42734 1m59s

Air conditioners 400 × 496 13709 23s

case where the image completion would have been deemed
perfectly acceptable, but the resulting 3D structure exhibits
strange behavior.

In this case, the pixels of grass above the yellow line in
Figure 11b should have actually been filled with brick. In
the image alone, the human visual system can hardly per-
ceive this error. However, in the reconstructed 3D scene,
the error manifests as a warp in the wall.

Also, as with image inpainting, there are cases where we
cannot expect the algorithm to compute a reasonable com-

(a) (b) (c)
Figure 11. A demonstration of sensitivity to error in the inpainting.
(a) An image of the inpainted colors of a scene. The red rectan-
gle indicates a region in which a small error has occurred in the
inpainting. (b) A zoomed-in version of the red rectangle from (a),
showing that several rows of pixels were filled with grass when
they should have been filled with brick to correctly continue the
wall/ground boundary. (c) A 3D view of the resulting error in the
reconstructed LiDAR points.

pletion. For example, Figure 12 shows a LiDAR scan of
a corner of a building, with air conditioning units on the
ground. When we attempt to inpaint these air conditioners,
we have to construct the intersection of two walls and the

ground that does not appear elsewhere in the scene. The
way that these multiple linear structures should be joined
inside the hole is ambiguous. This problem might be miti-
gated by allowing the user to draw guidelines inside the hole
to indicate the way linear structures should be merged, as
in [11]. Another potential difficulty is having very limited
structure to either side of the hole, so patches are repeated
multiple times. For example, in Figure 12b we can see that
there is only a very small piece of the image to the left of
the hole at the wall/ground boundary. The results in many
of these hard cases could potentially be improved by substi-
tuting the greedy inpainting algorithm we used here with a
globally optimal technique (e.g. [5]), at the cost of slower
performance.

(a) (b)

(c) (d)
Figure 12. A data set for which we do not expect a good result.
There is no information to guide the algorithm to fill the corner
that results from the intersect of the two walls and the ground.
(a) An image of the LiDAR scan.(b) The region to inpaint. (c)
The holes appear to be filled correctly when hidden by the objects.
(d) Visible artifacts are present in the resulting scene, including a
warped corner and wall.

Finally, we could apply a similar technique to achieve
a different goal. Rather than filling large holes in LiDAR
data by copying the gradients from elsewhere, we could cor-
rect sampling inconsistencies in LiDAR scans introduced in
places where the laser is nearly parallel to scene surfaces or

passes through spotty occlusion like foliage. By redistribut-
ing the depth gradient values in particular regions of the
scan, we might be able to resample the 3D geometry using
the same technique presented here.

References
[1] J. Becker, C. Stewart, and R. J. Radke. LiDAR inpainting

from a single image. In International Conference on 3-D
Digital Imaging and Modeling (3DIM), 2009. 2

[2] P. Bhat, C. L. Zitnick, M. Cohen, and B. Curless. Gradi-
entShop: A Gradient-Domain Optimization Framework for
Image and Video Filtering. ACM Transactions on Graphics,
29(2), 2010. 3

[3] A. Criminisi. Object removal by exemplar-based inpainting.
In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2003. 3

[4] L. He, M. Bleyer, and M. Gelautz. Object Removal by
Depth-guided Inpainting. In Austrian Association for Pat-
tern Recognition. 2

[5] N. Komodakis and G. Tziritas. Image completion using
global optimization. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2006. 8

[6] S. Park, X. Guo, H. Shin, and H. Qin. Shape and appearance
repair for incomplete point surfaces. In IEEE International
Conference on Computer Vision, 2005. 2

[7] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing.
ACM Transactions on Graphics, 22(3):313–318, 2003. 3

[8] S. Salamanca, P. Merch, A. Adan, C. Cerrada, and E. Perez.
Filling holes in 3D meshes using image restoration algo-
rithms. In International Symposium on 3D Data Processing,
Visualization, and Transmission, 2008. 2

[9] A. Sharf, M. Alexa, and D. Cohen-Or. Context-based surface
completion. ACM Transactions on Graphics, 23(3):878–
887, Aug. 2004. 2

[10] P. Stavrou, P. Mavridis, G. Papaioannou, G. Passalis, and
T. Theoharis. 3D object repair using 2D algorithms. 2006. 2

[11] J. Sun and J. Jia. Image completion with structure propaga-
tion. ACM Transactions on Graphics, 24(3):861–868, 2005.
8

[12] L. Wang, J. Hailin, R. Yang, and M. Gong. Stereoscopic
Inpainting : Joint Color and Depth Completion from Stereo
Images. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2008. 2

[13] H. Weghorn, H. W. Ed, M. Kochanowski, P. Jenke, and
W. Straßer. Analysis of texture synthesis algorithms with
respect to usage for hole-filling in 3D geometry. In Annual
Meeting on Information Technology and Computer Science,
2008. 2

[14] T. Wei and R. Klette. On depth recovery from gradient vector
fields. In Algorithms, architectures and information systems
security, pages 75–95. 2009. 2

