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Abstract

In this paper we present a novel method for foreground
segmentation. Our proposed approach follows a non-
parametric background modeling paradigm, thus the back-
ground is modeled by a history of recently observed pixel
values. The foreground decision depends on a decision
threshold. The background update is based on a learn-
ing parameter. We extend both of these parameters to dy-
namic per-pixel state variables and introduce dynamic con-
trollers for each of them. Furthermore, both controllers are
steered by an estimate of the background dynamics. In our
experiments, the proposed Pixel-Based Adaptive Segmenter
(PBAS) outperforms most state-of-the-art methods.

1. Introduction
In many image processing and computer vision scenar-

ios, an important preprocessing step is to segment moving

foreground objects from a mostly static background. Ma-

jor application scenarios are in the field of mobile devices,

video games and visual surveillance, e.g. for detection of

unattended luggage, person counting, face recognition and

gait recognition.

The general idea of background segmentation is to auto-

matically generate a binary mask which divides the set of

pixels into the set of foreground and the set of background

pixels. In the simplest case, a static background frame can

be compared to the current frame. Pixels with high devia-

tion are determined as foreground. This simplistic method

might work in certain specialized scenarios. However, of-

ten an empty background frame is not available at all, back-

ground has subtle motion, or light is gradually changing.

Thus, to model the background, a multitude of more so-

phisticated methods have been developed in the recent past.

In this paper, we present a new method which builds

on several previous methods and adds ideas from control

system theory. We call the resulting method Pixel-Based

Adaptive Segmenter (PBAS), because several parameters

are adaptively adjusted at runtime for each pixel separately.

We evaluate our proposed method on the Change Detection
Challenge [3]. This collection of databases features a wide

range of scenarios from potentially relevant application sce-

narios making this database an ideal testbed for competitive

performance evaluation. On this challenge we present sig-

nificant performance gain on most current state-of-the-art

approaches.

First we present related background segmentation meth-

ods in Section 2. We then explain our Pixel-Based Adaptive

Segmenter in detail in Section 3. Our method uses a vari-

ety of parameter, which are evaluated and tuned in Section

4.1. The best set of parameters is fixed and declared as the

standard settings. In Section 4.4 we compare our results to

other background segmentation methods.

2. Related Work
Over the recent past, a multitude of algorithms and meth-

ods for background modeling have been developed. Men-

tioning all of them would go beyond the scope of this paper.

Excellent survey papers can be found in [6] and [7]. How-

ever, we want to mention relevant approaches, which our

method builds on:

One of the most prominent and most widely used meth-

ods are those based on Gaussian Mixture Models (GMM)

[8]. Here, each pixels is modeled as a mixture of weighed

Gaussian distributions. Pixels, which are detected as back-

ground are used to improve the Gaussian mixtures by an

iterative update rule. This parametric method has very

low memory complexity. In SACON (SAmple COnsensus)

[9], the background model is defined by a non-parametric

method. Each pixel in the background model is defined by

a history of the N most recent image values at each pixel.

The history of background images is filled using a first-in

first-out strategy. By contrast to this in-order filling, in ViBe

[1], which is also a non-parametric method, the N back-

ground values are updated by a random scheme. More over,

updated pixels can ”diffuse” their current pixel value into

neighboring pixel using another random selection method.

Our PBAS method can also be categorized as a non-

parametric method, since we also use a history of N image
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Figure 1: Overview of the Pixel-Based Adaptive Segmenter.

values as the background model as in SACON. We use a

similar random update rule as in ViBe. However, in Vibe,

the randomness parameters as well as the decision thresh-

old are fixed for all pixels. In contrast, we do not treat these

values as parameters, but instead as adaptive state variables,

which can dynamically change over time for each pixel sep-

arately.

3. The Pixel-Based Adaptive Segmenter

This section describes the Pixel-Based Adaptive Seg-

menter, which follows a non-parametric paradigm. Thus,

every pixel xi is modeled by an array of recently observed

background values.

Our method consists of several components which are

depicted as a state machine in Figure 1. As a central com-

ponent, the decision block decides for or against foreground

based on the current image and a background model B(xi).
This decision is based on the per-pixel threshold R(xi).
Moreover, the background model has to be updated over

time in order to allow for gradual background changes. In

our model, this update depends on a per-pixel learning pa-

rameter T (xi).

Now, the essential and novel idea of our PBAS approach

is that both of these two per-pixel thresholds dynamically

change based on an estimate of the background dynamics.

In the following, we first describe the decision process

and the update of the background. Then we detail our dy-

namic update method of both the decision threshold R(xi)
and the learning parameter T (xi).

3.1. Segmentation Decision

The goal of every background segmentation method is

to come to a binary decision, whether a pixel belongs to

the foreground or to the background. This decision pro-

cess takes the input image and compares it in some way to

a model of the background. In our case, the background

model B(xi) is defined by an array of N recently observed

pixel values:

B(xi) = {B1(xi), . . . , Bk(xi), . . . , BN (xi)} (1)

A pixel xi is decided to belong to the background, if its

pixel value I(xi) is closer than a certain decision threshold

R(xi) to at least #min of the N background values. Thus,

the foreground segmentation mask is calculated as

F (xi) =

{
1 #{dist(I(xi), Bk(xi)) < R(xi)} < #min

0 else

(2)

Here, F = 1 implies foreground. It can thus be seen, that

the decision making involves two parameters: (1) The dis-

tance threshold R(xi), which is defined for each pixel sepa-

rately and which can change dynamically; and (2) the min-

imum number #min, which is a fixed global parameter.

3.2. Update of Background Model

Updating the background model B is essential in order

to account for changes in the background, such as lighting

changes, shadows and moving background objects such as

trees.

Since foreground regions cannot be used for updating,

the background model is only updated for those pixels that

are currently background (i.e. F (xi) = 0). Updating

means that for a certain index k ∈ 1 . . . N (chosen uni-

formly at random), the corresponding background model

value Bk(xi) is replaced by the current pixel value I(xi).
This allows the current pixel value to be ”learned” into

the background model. This update, however, is only per-

formed with probability p = 1/T (xi). Otherwise no update

is carried out at all. Therefore, the parameter T (xi) defines

the update rate. The higher T (xi), the less likely a pixel

will be updated.

We also update (with probability p = 1/T (xi)) a ran-

domly chosen neighboring pixel yi ∈ N (xi). Thus, the

background model Bk(yi) at this neighboring pixel is re-

placed by its current pixel value V (yi). This is contrary to

the approach in [1] where Bk(yi) is replaced by the pixel



value I(xi) of the current pixel (called ”diffusion” in their

approach).

In general, a pixel xi is only updated, if it is classified

as background. However, a neighboring pixel yi, which

might be foreground, can be updated as well. This means

that certain foreground pixels at the boundary will grad-

ually be included into the background model. With this

method, every foreground object will be ”eaten-up” from

the outside after a certain time, depending on the update

parameter T (xi). The advantage of this property is that er-

roneous foreground objects will quickly vanish. Obviously

this will also include slowly moving foreground objects into

the background. Therefore, in Section 3.4 we present a dy-

namic adaptation of the update parameter T (xi), such that

big objects are only ”eaten-up” a little bit, while small erro-

neous blobs are ”eaten” completely.

3.3. Update of the Decision Threshold R(xi)

In a video sequence, there can be areas with high back-

ground dynamics (i.e. water, trees in the wind, etc.) and ar-

eas with little to no changes (i.e. a wall). Ideally, for highly

dynamic areas, the threshold R(xi) should be increased as

to not include objects to the foreground. For static regions,

R(xi) should be low, such that small deviations lead to a

decision for foreground. Thus, the threshold R(xi) needs

to be able to automatically adapt accordingly. To allow for

these changes, there needs to be a measure of background

dynamics, which is done as follows:

First of all, besides saving an array of recently observed

pixel values in the background model B(xi), we also cre-

ate an array D(xi) = {D1(xi), . . . , DN (xi)} of mini-

mal decision distances. Whenever an update of Bk(xi)
is carried out, the currently observed minimal distance

dmin(xi) = mink dist(I(xi), Bk(xi)) is written to this ar-

ray: Dk(xi) ← dmin(xi). Thus, a history of minimal

decision distances is created. The average of these values

d̄min(xi) = 1/N
∑

k Dk(xi) is a measure of the back-

ground dynamics.

For example, assuming a completely static background,

d̄min(xi) will be zero. For more dynamic background, there

will always be a (small) deviation of the currently observed

value to the previously seen ones, and thus d̄min(xi) will be

higher.

With this estimate of the background dynamics, the de-

cision threshold can be dynamically adapted as follows:

R(xi) =

{
R(xi) · (1−Rinc/dec), if R(xi) > d̄min(xi) ·Rscale

R(xi) · (1 +Rinc/dec), else

(3)

Here, Rinc/dec, Rscale are fixed parameters. This can be

seen as a dynamic controller for the state variable R(xi).
For a constant d̄min(xi), the decision threshold R(xi) ap-

proaches the product of d̄min(xi) ·Rscale. Thus, a (sudden)

Figure 2: Example for the local distribution of R(xi).

increase in background dynamics leads to a (slow) increase

of R(xi) towards a higher decision threshold R(xi).
Controlling the update rate in the way presented above

leads to robust handling of varying amounts of background

dynamics. An example picture with high dynamic back-

ground showing the spatial distribution of the state variable

R(xi) is depicted in 2. In this, brighter pixel values indicat-

ing a higher value for R(xi).

3.4. Update of the Learning Rate T (xi)

As mentioned in section 3.2, independent of the fore-

ground state F (xi), eventually, every object will be merged

into the background depending on the learning parameter

T (xi). To alleviate the problem, the idea is to introduce a

(second) dynamic controller for T (xi), such that the proba-

bility of background learning is (slowly) increased when the

pixel is background and (slowly) decreased when the pixel

is foreground. A problem of this is, that wrongly classified

foreground is only slowly learned into the background and

thus remains foreground.

It can be assumed that pixels are mostly wrongly clas-

sified as foreground in areas of high dynamic background.

Thus, the strength of the adjustment in the controller can be

adapted using the dynamic estimator d̄min(xi). We define:

T (xi) =

{
T (xi) +

Tinc

d̄min(xi)
, if F (xi) = 1

T (xi)− Tdec

d̄min(xi)
, if F (xi) = 0

(4)

Here, Tinc, Tdec are fixed parameters. There are different

parameters for the two cases, because we assume that most

of the time the pixels are background, which is true in most

cases. Choosing independent parameters for background

and foreground therefore leads to a balanced regulation of

T (xi). Furthermore we define an upper and lower bound

Tlower < T < Tupper, such that values cannot go out

of a specified bound. The above controller ensures, that

in case of highly dynamic background (i.e. big d̄min(xi)),
the learning parameter T (xi) stays constant or only slightly

changes. In this case of highly dynamic background, erro-

neously detected foreground will not remain for long, be-

cause the probability to update p = 1/T (xi) does not reach

zero too fast. In the other ideal case of a fully static back-

ground, a classification as foreground is quite solid, hence



Figure 3: Example for the local distribution of T (xi).

T (xi) rapidly increases, validating the background model,

in the way that it retains less updates.

Figure 3 depicts the update parameter T (xi) in case of

a slowly moving, but significantly large foreground object.

For the pixels corresponding to the person, a high T (xi) in-

dicates low update probability. Assume a background pixel

just outside of the person’s silhouette. This pixel can up-

date a foreground silhouette boundary pixel by means of the

neighbor update rule. Thus, a boundary pixel can become

background and therefore the silhouette is ”eaten-up” from

the outside. The low update probability at this pixel, how-

ever, will avoid further shrinking of the silhouette, such that

the majority of the silhouette is still detected as foreground.

3.5. Implementation Details

In practice, the input image I(xi) is a three channel color

image. In our approach, we treat each channel indepen-

dently and run our algorithms in three parallel threads. The

final segmentation F (xi) results from a bit-wise OR opera-

tion of the three segmentations FR(xi), F
G(xi), F

B(xi).
For each color channel, in addition to the pixel value,

we also use gradient magnitudes. Thus, the input I(xi) =
{Iv(xi), I

m(xi)} consists of the pixel value Iv(xi) itself

and the gradient magnitude Im(xi) at the pixel. Conse-

quently, each element of the background history Bk(xi) =
{Bv

k(xi), B
m
k (xi)} (in Eq. 1) also consists of two corre-

sponding entries. For the distance calculation in Eq. 2, we

use the following equation:

dist(I(xi), Bk(xi)) =
α

Im
· |Im(xi)−Bm

k (xi)|+ |Iv(xi)−Bv
k(xi)| (5)

Here, Im is the average gradient magnitude over the last ob-

served frame. Thus, the fraction α
Im

weighs the importance

of pixel values against the gradient magnitude.

4. Evaluation
We evaluate our approach on the database provided for

the Change Detection Challenge [3]. This database features

31 videos from six categories including scenarios with in-

door views, outdoor views, shadows, camera jitter, small

objects, dynamic background and thermal images. Human-

annotated ground truth is available for all scenarios and is

used for performance evaluation. Thus, exhaustive compet-

itive comparison of methods is possible on this database.

4.1. Parameter Settings

Our methods consists of a multitude of tunable parame-

ters, which have to be adjusted for optimal system perfor-

mance. Since we evaluate on the database of the Change

Detection Challenge, a multitude of possible scenarios are

covered. We seek one unique optimal set of parameters

which gives the best performance on the complete dataset.

Never the less, for certain applications, parameters could be

fine tuned for a specific need. Overall, the 9 parameters,

detailed below, need to be tuned:

(a) N = 35: N is the number of components of the

background model. It can be seen that ”easy” scenarios

such as baseline, shadow and thermal require as little as 10

background components. At N = 35, performance satu-

rates for all scenarios. Increasing N further only increases

memory and computational complexity.

(b) #min = 2: The number of components that have to

be closer than R(xi) in order to set the pixel to be back-

ground. An optimum is found at #min = 2. The same

optimal value has been found in [1] and in [9].

(c) Rinc/dec = 0.05: The rate, at which the decision

threshold R(xi) is regulated by the controller. Recognition

rate is not very sensitive to this value. Camera jitter and dy-

namic background seem to perform best for low regulation.

(d) Rlower = 18: Lower bound of the decision thresh-

old. Setting it too low leads to ghosts and false positives

(thus, low precision), too high will lead to misses (and thus

low recall).

(e) Rscale = 5: Scaling factor in the controller for the

decision threshold. This controls the equilibrium value

d̄min(xi) ·Rscale and thus low values lead to low precision,

while high values lead to low recall.

(f) Tdec = 0.05: If xi is background, Tdec is the rate at

which T (xi) is decreased (i.e the rate at which the proba-

bility of background update is increased).

(g) Tinc = 1: If xi is foreground, Tinc is the rate at

which T (xi) is increased (i.e the rate at which the proba-

bility of background update is decreased). Because a priori,

foreground is less likely than background, a lower adapta-

tion for foreground is beneficial (e.g. to keep standing fore-

ground objects).

(h) Tlower = 2: Lower bound of T (xi). Quite constant

in the tested range. In case of intermittent objects and cam-

era jitter there is a slight decrease for high values.

(i) Tupper = 200: The upper bound may not be chosen

too low. Values higher than 200 lead to good results. This

concludes that a minimum update probability of 1/200 is

required.
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Figure 4: F1 performance of PBAS on each category as well as overal performance with changing parameter settings.

4.2. Post-Processing with Median Filter

Our proposed method is a pixel based method, which

means that the segmentation decision is made indepen-

dently for each pixel. The resulting output can thus benefit

from spatial smoothing, which is done using simple median

filtering. Table 1 depicts results for different median filter

sizes. It can be seen that strong median filtering leads to

better results. It is important to note that while median fil-

tering reduces noise, it also smoothes the blobs and leads

to less sharp boundaries. Thus, we decided to use a 9 × 9
median filters for all our experiments.

Table 1: Overall results in F1 and PBC measure, with dif-

ferent sizes of median filter for post processing.

none 3x3 5x5 7x7 9x9 11x11

F1 0.7185 0.7351 0.7446 0.7500 0.7531 0.7542

PBC 2.1011 1.9393 1.8559 1.8037 1.7699 1.7525

4.3. Influence of Gradient Magnitudes

As described in Section 3.5, we added gradient magni-

tudes to our input features. As an optimal weighting pa-

rameter we used α = 10 (in Eq. 5) for all our comparative

evaluations. At this setting, we get an F1 of 0.7532 and a

PBC of 1.7693. Setting α = 0, disables gradient magni-

tudes and only uses pixel values. Here, we get an F1 of

0.7333 and a PBC of 1.8985. Therefore, we can observe a

slight performance gain when adding gradient magnitudes.

4.4. Performance Evaluation

In Table 2 results using the seven proposed performance

measures are shown for all six scenarios. Our method per-

forms best for the categories baseline, shadow and thermal.
In Table 3, the results of our PBAS is compared to several

state of the art methods (those that were available prior to

the change detection workshop). It can be seen that at the

chosen optimal operating point, PBAS greatly outperforms



Table 2: Results of PBAS on all six scenarios using all seven measures.

Scenarios Recall Specificity FPR FNR PBC F1 Precision

Baseline 0.9594 0.9970 0.0030 0.0021 0.4858 0.9242 0.8941

Camera Jitter 0.7373 0.9838 0.0162 0.0100 2.4882 0.7220 0.7586

Dynamic Background 0.6955 0.9989 0.0011 0.0045 0.5394 0.6829 0.8326

Intermittent Object Motion 0.6700 0.9751 0.0249 0.0222 4.2871 0.5745 0.7045

Shadow 0.9133 0.9904 0.0096 0.0039 1.2753 0.8597 0.8143

Thermal 0.7283 0.9934 0.0066 0.0104 1.5398 0.7556 0.8922

Overall PBAS 0.7840 0.9898 0.0102 0.0088 1.7693 0.7532 0.8160

Table 3: Comparison of PBAS to several state-of-the-art methods using all seven proposed performance measures.

Recall Specificity FPR FNR PBC F1 Precision

SOBS [5] 0.7882 0.9818 0.0182 0.0094 2.5642 0.7159 0.7179

GMM — KaewTraKulPong [4] 0.5072 0.9947 0.0053 0.0291 3.1051 0.5904 0.8228

ViBe [1] 0.6821 0.983 0.017 0.0176 3.1178 0.6683 0.7357

KDE [2] 0.7442 0.9757 0.0243 0.0138 3.4602 0.6719 0.6843

GMM — Stauffer & Grimson [8] 0.7108 0.986 0.014 0.0202 3.1046 0.6623 0.7012

GMM — Zivkovic [10] 0.6964 0.9845 0.0155 0.0193 3.1504 0.6596 0.7079

our PBAS 0.7840 0.9898 0.0102 0.0088 1.7693 0.7532 0.8160

most other methods in F1 measure as well as in ”percent-

age of bad classification” (PBC). These two measures seem

to be best for a balanced comparison of methods. Also in

the other measures, PBAS outperforms most other methods,

except [4], which seems to be tuned towards high precision

at the cost of low recall and low F1.

5. Outlook and Conclusion

We have presented a highly efficient background model-

ing method. The basic idea behind this method is to use two

controllers with feedback loops for both the decision thresh-

old as well as for the learning parameter. Tuning the result-

ing parameters leads to results that outperform the state of

the art.

Future work will focus on reducing the number of nec-

essary parameters, as well as on further research on the un-

derlying system dynamics. Currently, no explicit shadow

modeling is performed which could be addressed in future.
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