Abstract:
In this paper a novel evaluation framework for measuring the performance of real-time action recognition methods is presented. The evaluation framework will extend the ti...Show MoreMetadata
Abstract:
In this paper a novel evaluation framework for measuring the performance of real-time action recognition methods is presented. The evaluation framework will extend the time-based event detection metric to model multiple distinct action classes. The proposed metric provides more accurate indications of the performance of action recognition algorithms for games and other similar applications since it takes into consideration restrictions related to time and consecutive repetitions. Furthermore, a new dataset, G3D for real-time action recognition in gaming containing synchronised video, depth and skeleton data is provided. Our results indicate the need of an advanced metric especially designed for games and other similar real-time applications.
Published in: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Date of Conference: 16-21 June 2012
Date Added to IEEE Xplore: 16 July 2012
ISBN Information: