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Abstract

One challenge when tracking objects is to adapt the ob-
ject representation depending on the scene context to ac-
count for changes in illumination, coloring, scaling, etc.
Here, we present a solution that is based on our ear-
lier approach for object tracking using particle filters and
component-based descriptors. We extend the approach to
deal with changing backgrounds by using a quick training
phase with user interaction at the beginning of an image
sequence. During this phase, some background clusters are
learned along with object representations for those clusters.
Next, for the rest of the sequence the best fitting background
cluster is determined for each frame and the correspond-
ing object representation is used for tracking. Experiments
show a particle filter adapting to background changes can
efficiently track objects and persons in natural scenes and
results in higher tracking results than the basic approach.
Additionally, using an object tracker to follow the main
character in video games, we were able to explain a large
amount of eye fixations higher than other saliency models
in terms of NSS score proving that tracking is an important
top-down attention component.

1. Introduction

In human robot interaction, an essential task of the robot
is to focus on the same targets of interest as a human part-
ner. For example, if a human shows an object to the robot,
the robot has to be able to quickly learn the appearance of
the object, to follow the object with the camera and, if told
to bring the object to the human, to redetect the object in
a different setting. Tracking interesting and task-relevant
objects is also an important top-down factor in control of
human visual attention [26].

In this work, we will focus on two problems 1) adap-
tive tracking of objects: we consider only camera-based
approaches here since these are best suited to capture the
appearance of arbitrary objects. Furthermore, cameras are
light-weight, low-cost, and passive sensors that can be
easily integrated on almost every robot platform and, 2)
saliency modeling based on object tracking.
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1.1. Object Tracking

Several approaches for object tracking have been pro-
posed during the last years (see survey in [1]). However, the
methods that are applicable for a certain task vary largely
depending on the requirements and the setting. In human
robot interaction, methods are needed that are quick enough
to deal with real-time requirements and are robust enough
to deal with illumination and viewpoint changes as well as
low resolution cameras. The approaches also have to work
on a mobile system which requires to deal with changing
backgrounds and motion blur. It is also desirable to be able
to track arbitrary objects from a quick training phase. An
exhaustive training phase, in which an object is trained un-
der all possible viewpoints, object deformations and illu-
mination changes from thousands of images is usually un-
acceptable. To meet all these requirements, feature-based
methods are an especially suitable approach. They track an
object based on simple features such as color cues or cor-
ners. An example is the Mean Shift algorithm [2] which
classifies objects according to a color distribution or the
CamShift algorithm which is based on the Mean Shift ap-
proach [3]. Other groups integrate color histograms into
a particle tracker [4, 5, 30]. In a previous work, we have
used a cognitive observation model for visual tracking that
was based on features inspired by human visual perception
[6]. In a recent work, we have extended this approach to
a component-based tracking method [8, 7]. Over the last
years, also techniques which use interest points, like col-
ored Harris corners [9] or SIFT features [10] have been in-
troduced for object tracking. Note that these approaches
usually rely on textured objects and a certain image resolu-
tion and quality to work well.

One challenge for feature-based tracking is the adap-
tion of the feature descriptor (representing object of inter-
est) over time. A descriptor that is learned from a single
frame can work well in the setting it was learned but might
perform poorly if background and illumination change too
strongly. Adapting the target descriptor accordingly is not
a trivial task since, without user feedback, the risk is high
that the system adapts the descriptor wrongly to the back-
ground. This happens especially if the target of interest is
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occluded for several frames. If this happens, the system will
lose the target and will never be able to redetect it again.
Most existing approaches ignore this problem by either not
adapting the descriptor or by making sure that the target is
not occluded within the image sequence.

In the long run, an object tracking system should be
able to automatically detect when the descriptor shall be
adapted, when it is safe to adapt it, and how the new set-
ting is best integrated into the new target descriptor. Here,
we make one step into this direction: we learn the appear-
ance of backgrounds and the corresponding target descrip-
tors from a training sequence and cluster the resulting de-
scriptors according to the background appearance. This
gives us a sparse, context-based object representation. In
a test sequence, the context is analyzed automatically and
the best fitting descriptor is selected to find the target. As
target descriptor, we use a component-based descriptor that
we have developed in previous work [8]. It is integrated into
a CONDENSATION-based object tracker [11] that main-
tains a set of weighted particles over time. Each particle
represents a hypothesis for the current object position and
its weight is set according to the similarity to a target de-
scriptor.

1.2. Saliency Modeling

The term “saliency” is often referred to visual attention
where some parts of stimuli are selected for further pro-
cessing. Selection mechanism could be bottom-up where
it is derived by stimuli level competitions or top-down task-
relevance mechanisms based on demand. Several factors
have been shown to guide bottom-up visual attention such
as intensity contrast, color contrast, orientation contrast,
size, faces and text (see [19, 26] for a review). At the other
hand discovering features influencing top-down attention is
difficult due to their high dependency on task. However
some general factors have been proposed including looka-
head fixations [24], scene context (gist) [25], etc. Despite
this, defining a clear boundary between bottom-up and top-
down attention if not impossible, is very difficult.

Most of research on saliency modeling have been fo-
cused on bottom-up models on single static images. Re-
cently, some research have been reported on modeling
saliency in spatio-temporal domain (e.g. free viewing of
videos). There are few works on modeling top-down at-
tention in near real world scenarios (e.g. interactive game
playing, coffee making, driving) [17, 21, 20, 23, 18].

In this paper, we follow a different direction than spatio-
temporal saliency models by tracking a task-relevant object.
In the time course of attending to different objects in time,
an agent should decide what object to attend and extract
some information about it which needs to track its position
for a period of time. We simply assume that overall behav-
ior is selectively deciding what object to track.

In the rest, first we introduce the target descriptors in-
cluding component-based descriptor and color-histogram
features(Sec. 2), followed by a description of the context-
based clustering of backgrounds (Sec. 3). In Section 4, we
explain the visual tracking system. Section 5 presents ex-
perimental results on tracking. Section 6 shows results of
saliency modeling. We finally conclude in Section 7.

2. Computation of the target descriptor

The target descriptor consists of a collection of compo-
nents that have a strong contrast within a certain feature
dimension. These regions are automatically and object-
dependently extracted from the target region. The com-
ponents are color-based and the computation is motivated
from a cognitive perception model [12]. Details about the
descriptor computation can be found in [8], here we just
present a brief overview.

First, six feature maps F; are computed. They represent
intensity and color contrasts based on color-opponent cells
of the human visual system. The computation is performed
according to [8], resulting in maps for bright-dark, dark-
bright, green-red, blue-yellow, red-green and yellow-blue
contrasts. Examples of such feature maps are illustrated in
Fig. 1.

Second, we compute a component-based target descrip-
tor from the feature maps. A component is a peak in
one of the feature maps within the target region R =
(z*,y*,w*, h*), where z* y* denote the position and
w*, h* the width and height of the region. The peaks are
detected by first finding local intensity maxima and then
segmenting the region around each maximum with a re-
gion growing approach [13]. For easier computations, re-
gions are approximated by rectangular bounding boxes that
we call m;; = (Tm, ;»Ym;,;» Wm, ;> Pm, ;), Where i de-
notes the feature map and j the different maxima in a map.
Hereby, the number of components per map is flexible and
depends on the appearance of the object. Additionally, we
add the whole target region as one of the m; ; to make the
descriptor more robust.

The positions of the regions m; ; are stored relative to
the center of R* and represent a template Mp- = {m, ;li €
{1,..,6},5 € {1,..,1;}}, where [; is the number of compo-
nents detected in feature map F; (cf. Fig. 2, left). Now, we
compute a descriptor vector from the m; ;. For each m; ;,
we compute the ratio of the mean intensity value within
m; ; and the mean value of the background:

mean(m; ;)

d;; = (1)

mean(F;\m; ;)

The mean is computed with integral images [14], to
speed up processing and enable constant computation times
for each region, independent of the size of the region. Thus,
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Figure 1. a) Used objects in this paper and their corresponding component-based descriptors, b) Descriptor and feature maps F; for Person 1. From left to
right: bright-dark, dark-bright, green-red, blue-yellow, red-green and yellow-blue contrasts.

the target descriptor that we obtain is d*
{1,..,6},5 € {1,..,l;i}}.

Finally, we describe how the target descriptor d* is
matched to an image region R of arbitrary size and dimen-
sions. We first determine the factors f,, and f;, that repre-
sent the difference in size between the target region R* and
R’ These factors are used to compute an adapted template
My by extending or compressing all m; ; € Mp- with

{di,j|7; S

Jw and fp. From this template, a descriptor d’ is computed
equivalently to (1). The descriptors d* and &’ are matched
by computing the similarity of the vectors with the Tani-
moto coefficient. This measure produces values in the in-
terval [0, 1], the higher the value the higher the similarity.

We also tried another feature descriptor that has been of-
ten used in tracking applications. We used a particle filter in
a color-based context. Color distributions are used as target
models as they achieve robustness against non-rigidity, ro-
tation and partial occlusion. Assume that the distributions
are discretized into m-bins. The histograms are produced
with the function h(x;), that assigns the color at location
x; to the corresponding bin. In this paper, histograms are
calculated in the RGB space using 8 x 8 x 8 bins.

The color histogram p, = {pj }u=1..m at location y is
calculated as:

I
oy = £ 3= st

where I is the number of pixels in the region, ¢ is the
Kronecker delta function. k(.) is a weighting function that
assigns smaller weights to the pixels that are further away
from the region center. f is normalization factor ensuring
that area under histogram sums to 1.

To measure the distance between two distributions p(u)
and ¢(u), Bhattacharyya coefficient was used: (see [30]).

= V1=plp,diplp,a) =D Vp'a"

2

3)

Figure 2. Left: An illustration of the template M;—c* for the target region

R’. The three colored rectangles denote the m; ;. Note that each of them
comes from a different feature map which is illustrated here by different
colors. Right: the template M}/ adapted to region R’.

3. Clustering backgrounds to obtain context-
based feature descriptors

In this section we describe how to adapt the object
descriptors based on background changes. While the
component-based object detection system is capable of de-
tecting the same object in different backgrounds to a limited
degree, it needs to be enhanced to work for situations when
the background changes strongly. The reason is that when
the background changes, the same descriptor from the pre-
vious background is not always capable to detect the same
object in the new background. Due to this, it is necessary
to learn new descriptors for different backgrounds and au-
tomatically apply the appropriate descriptor to the observed
background or scene to detect the object of interest.

To do this, we first learn a number of background clusters
from a train image sequence and also their corresponding
object descriptors which can successfully detect the object
in those backgrounds. Then over a test sequence, for each
frame, first we find its background cluster and then apply
the descriptor of that cluster to the frame.

Two important points should be noticed: First, we
wanted our solution to be efficient, fast and comparable to
other approaches which have just used color-based features
(and not orientation maps). For this, we needed a repre-
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sentation of the image which could be calculated quickly
and allows to distinguish among many different background
classes. Therefore, we extended the representation for cal-
culating descriptors mentioned in Sec. 2, i.e. the 6D feature
vector b from the six feature maps F; where each value b;
is the average over the entire map F;. To make this repre-
sentation more discriminant, we derive feature values e; in
amn X m partition overlaid image:

F* g2 . pim
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where element F”? of E; matrix is the normalized mean

of F;((p — 1)w : pw, (¢ — 1)h : gh) region of map F; as in
(5) and (.) generates a row vector of matrix E;.

_ Avg(F;((p — D)w : pw, (¢ — 1)h : gh)) — m¥}

" il — ]
)
In (5), w and h are width and height of a partition cell and

mP? and m’y are minimum and maximum of F? which

are used for normalizing values to the range of [0, 1]. The
resulting vector €; is of size 6 x n x m. In this paper m and
n are set to 4 thus having feature vectors of size 96.

The second point is the way adaptive object tracking is
done. When tracking starts, the user interacts with the track-
ing system online by spotting when background changes
until the train phase is over. The tracking system may
add more clusters by analyzing the frames between clusters
spotted by the user. Training is online where user interac-
tively sketches the object extent in a new background.

In what follows the algorithm for learning background
clustering is described. The sequence containing the object
is shown to the user and he/she starts to mark the object
when a change in background occurs. To create a back-
ground cluster, user marks the extent of the object and the
component-based descriptor (as mentioned in sec. 2) is cal-
culated for this object. To eliminate the subjectivity in de-
tecting background change, frames up to this point are pro-
cessed and clustered using Basic Sequential Algorithmic
Scheme (BSAS) [15] algorithm. So, from the last pause by
the user till the current pause either 1 or more background
clusters will be generated. The derived object descriptor is
associated to the newly created cluster. In the rest we for-
malize this argument in more detail.

The first frame is considered as the first background clus-
ter C'1. Let f; and f; be the current and previous frames
paused by the user and d; and d; be the corresponding de-
scriptors derived from the object in those frames. Assume
that up to this point n clusters have been generated. To clus-
ter (j —¢) frames in between, the j-th frame is considered as

the first cluster center by the BSAS clustering algorithm in
this range. To cluster a frame f, in this range, the distance
of this frame to all clusters generated from these frames at
any time is calculated and if the minimum of these distances
is less than a threshold 6, it is assigned to the nearest cluster
C}, and then cluster center of this cluster is updated accord-
ing to (6). Otherwise, a new cluster is generated with this
frame as its center.

S oold | =
. (nepew — 1) + €
ecnew — k Ck # (6)

k
Nnew
Ck

The parameter threshold 6 controls the sensitivity of the
clustering thus number of clusters. Here, we set this value as
0.4. In (6), nc, denotes the number of elements in the k-th
cluster and €. (€'?) is the prototype of cluster Cj, after
(before) the assignment of €, to it. The descriptor of the j-
th frame is assigned as the descriptor of all newly generated
clusters. This process is continued online and interactively
until the user decides to stop it, for example when there is
no new background cluster. After this process the rest of
the sequence is considered as test sequence and for each
frame of the rest, first the nearest background cluster of that
frame is determined and the descriptor of this cluster is used
for tracking the object via updating the descriptor of each

individual particle as is mentioned in the next section.

4. Particle filter based tracking

The tracking system we present uses the target descrip-
tors from Sec. 2 for the observation model of a particle filter
approach. The descriptor is updated according to Sec. 3 if
the background changes strongly. The tracker employs the
standard Condensation algorithm [ | I ] which maintains a set
of weighted particles over time using a recursive procedure
based on the following three steps: First, the system draws
particles randomly from the particle set of the previous time
step, where each particle is drawn with a probability pro-
portional to the associated weight of the particle. Second,
the particles are transformed (predicted) according to a mo-
tion model. Finally, all particles are assigned new weights
according to an observation model and the object state is
estimated.

Initialization of the target region is done manually here
but could also be done automatically by a detection mod-
ule. The motion model is realized by a simple first order
autoregressive process in which the state of a particle de-
pends only on the state of the particle in the previous frame.
This makes few assumptions on the movement of the target
and thus enables to deal with arbitrary tracking situations.

The tracker maintains a population of J particles (here:
J = 500) over time ¢t. Each particle d_;g has the following
form: ¢} = (8,7, d), j e {1,..,J}. Here, & is a
state vector §] = (z,y, vz, vy, w, h) that specifies the parti-
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cle’s region with center (z, y), width w and height h. The v,
and v,, components specify the current velocity of the parti-
cle in the x and y directions. Each particle additionally has
a weight 7} determining the relevance of the particle with
respect to the target, and the component-based descriptor dz
that describes the appearance of the particle region.

The most crucial part of the tracker is the observation
model that is based on the component-based descriptor.

First, we compute for each particle a descriptor d{ accord-
ing to sec. 2, where j denotes the number of the particle and
t the number of the current frame. That means, the target
template M}* is adapted to the size of the current particle

and the descriptor d{ is computed for the resulting template
M7} . Then, the weight of a particle is computed based on
the Tanimoto coefficient T as:

J
t

T =cC- e)\-T((I*,(iZ)7 (7)

where d* denotes the target descriptor. This function pri-
oritizes particles which are very similar to d by assigning
an especially high weight. A value of A = 14 has shown to
be useful in our experiments. The parameter c is a normal-
ization factor which is chosen so that ijl = 1.

The target descriptor d* represents the target and may
either be determined from the first frame (as in our previous
work [8]) or from a previously learned set of descriptors. In
this paper, it is determined as context-based descriptor that
fits best to the current background, as described in sec. 3.

Finally, the current target state, including target position
and size, is estimated as weighted average of the particles:

J
Fy=y w8 (8)
j=1

To adapt the particle tracking to account for background
changes, for each frame in a sequence we find its clus-
ter among the learned background clusters from training
frames and then use the descriptor of that cluster. Particles
in the current population are updated with this new descrip-
tor. The rest is the same as before.

5. Object Tracking Experiments

In this section, results of our approach for object and per-
son tracking using component descriptors are shown. Six
objects (e.g Can, Cell, Box) and a persons (cf. Fig.1) in dif-
ferent settings were tracked in natural setups with fixed and
moving camera, other moving objects and partial and com-
plete occlusions. We used image sequences from a hand-
held camera with a resolution of 320 %240 pixels in colored
PNG format. The lengths of the sequences is mentioned in
Tab. 1. The same set of parameters was used in all experi-
ments. The first parts of a sequence of an object is consid-
ered as training data and used for derivation of background

clusters and the rest is considered as test data. The tracking
algorithm runs in real-time (30Hz) on a 2.9 GHz PC.

Results of object and person tracking using particles are
shown in two cases: in the first case, “first-frame case”, the
descriptor for the object is derived from the first frame of
its corresponding train set and is used to track the object in
frames of the test set. To derive the descriptor, the user se-
lects the object extent manually in the first frame and then
the object descriptor is calculated in the way presented in
Section 2. In the second case, “clustering case”, the nearest
cluster for each test frame is determined and then the corre-
sponding descriptor of this cluster is used for updating the
descriptor of all particles (refer to Section 4).

Fig. 3 shows some frames of test sequences with parti-
cles and estimated rectangles locating objects. Yellow rect-
angles show that the tracker has high confidence (average
confidence of all particles) while blue means less confi-
dence. The confidence of each particle is the similarity of
the object region that it points to and the descriptor of the
cluster of the frame (or descriptor of the object in the first
frame in first-frame case) [8].

Figure 4 shows traces in x and y dimensions for the Gad-
get and Cell objects, respectively over test sequences. It
can be seen that the clustering case performs better than the
first-frame case and is closer to the ground truth traces in
both x and y dimensions. Ground truth values are center of
the rectangle encompassing the object. The total Euclidean
distance between the positions by the first-frame (cluster-
ing) case and ground truth positions are 1908 (1091) for
Gadget in test phase except occluded frames, respectively.
These values for the Cell are 3240 and 1517 for first-frame
and clustering cases, respectively. In train frames from 1203
to 1269 and from 1674 to 1746, the Cell was not in the field
of view. This object was out of view in test frames from
1116 and 1153 (black vertical lines in Fig. 4). As can be
seen tracking is robust to occlusions and the out-of-view
problem and is able to reacquire the object as it reappears.

Detection rate (percentage of frames with the object cor-
rectly detected) and detection enhancement rate (in paren-
theses) are reported in Tab. 1. In both train and test cases
except the Box? (since it was a small easy case and with-
out large changes in background) we observed an increase
in detection rate of clustering compared to the first-frame
case. An object is considered as detected if the center of the
rectangle M, proposed by the tracker is on the manually
tagged target region M; in each frame.

For Box and Can, we applied the clusters learned from
one train sequence to other test sequences to check the gen-
eralization of the approach (5.b, 5.c and 10.b). Results are
more reliable for the first 4 sequences since they are longer.
For these objects variations in background were more (e.g
Cylinder and Cell). Larger number of clusters for these se-
quences have been generated and have resulted in higher
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Figure 3. Sample frames from Cell, Person? and Drill test sequences and estimated target rectangles. Green dots: particles that matched to target, cyan
dots: particles that did not match. Yellow rectangle means high confidence and blue means less confidence.
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Figure 4. Traces of object position in = and y dimensions for Gadget and Cell objects. Black vertical bars show the occluded frames for Cell object.

enhancements. The average detection enhancement of the
clustering case over all objects in train and test phases are
27.4% and 24.6%, respectively.

6. Saliency Modeling Experiments

In this section we aim to see how well a saliency model
based on tracking the main character of a video (here Nin-
tendo gamecube games) could predict eye fixations of hu-
man observers. The Main character was tagged in the first
frame and particle filter was used to track the object in the
course of the video game. Color-histogram based tracking
was used in this section.

A subset of freely available CRCNS eye-1 database [29]
was used. Since we were interested in object tracking, we
chose those game playing videos with a main character do-
ing a task (c.f. Fig. 5). There is no constraint in these
stimuli and the appearance of the target changes dramati-
cally. Between 5 to 8 normal, young adult human subjects

have freely viewed the stimuli while an ISCAN RK-464
eye-tracker recorded their eye movements with 240Hz sam-
pling frequency. Images were shown in 640 x 480 pixels
resolution. As a metric to quantify how well a model pre-
dicts the actual human eye focusing positions, we used the
normalized scan-path saliency (NSS) used in [27].

We compared our proposed saliency method based on
tracking (“T*) with the following models: 1) Inter-Observer
model. This is not a really a computational model but a
map that is constructed from eye fixations of other subjects
over the same frame of the movie. Eye movements of other
subjects (each one convolved with a small Gaussian filter)
is used to predict the eye position of the remained subject
in a leave-one-out way, 2) a classic saliency model (de-
noted CIOFM) consisted of contrast, intensity, orientation,
flicker and motion channels [16], and 3) Motion channel
alone (“M”), 4) Bayesian surprise (denoted surprise) [28].
Since we observed that human subjects do not always fol-
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Table 1. Detection results for both first-frame and clustering cases.

Object #of frames  # of frames  # Detection rate (Train) Detection rate (Test)
in train set in test set Clusters
first-frame case  clustering case  first-frame case  clustering case

1 Gadget 1200 1500 3 91.6 97.6 (6) 66.6 96.7 (30.1)
2 Cell 2400 1200 8 82.9 95.6 (12.7) 49.6 95 (45.4)
3 Drill 2400 3300 10 67.1 93.5(26.4) 713 80.3 (9)
4 Cylinder 2665 2100 13 78.3 82.6 (4.3) 36.8 69.2 (32.4)
S.a Box! 75 75 2 61.3 100 (38.7) 50.6 88 (37.4)
5b - - 53 - - - 40 61.3 (21.3)
S5.c - - 43 - - - 28 45.3 (17.3)
6 Box?2 100 100 3 63 100 (37) 67 90 (23)
7 Box?3 97 101 3 52.5 96.9 (44.4) 40.6 92 (51.4)
8 Box* 50 65 2 100 100 (0) 100 100 (0)
9 Can' 70 70 3 61.4 100 (38.6) 443 82.8 (38.5)
10.a  Can? 75 100 3 64 100 (36) 57 78 (21)
10b - - 100 - - - 67 90 (23)
11 Person! 84 100 3 96.4 100 (3.6) 86 100 (14)
12 Person? 158 161 5 41.8 93 (51.2) 87.5 92.5(5)

low the main character and some bottom-up salient regions
sometimes grab attention we also combined Tracking model
and bottom-up models to build up two other models: 5)
Tracking model plus (pixel-wise addition) motion channel
(“MT”) and 6) Tracking plus CIOFM (“CIOFMT”).

Results of saliency modeling and eye movement predic-
tion are shown in Fig. 5. Average NSS score for each
game and overall all games are shown. Our results indi-
cate that “CIOFMT* model performed slightly better (NSS
= 1.01) than MT model (NSS = 0.98) and pure tracking (T)
model (NSS = 0.85) but all significantly better than other
bottom-up models (CIOFM, M and Surprise) averaged over
all games. Inter-observer which is the agreement among
subjects is the best model. These results imply that our
proposed method can estimate human visual attention with
high accuracy. A video demonstrating saliency modeling
results is included as a supplementary material.

7. Conclusions

In this paper, we presented an approach for object and
person tracking that takes into account changes in back-
ground and scene context. The descriptor of an object is
updated based on the cluster of the frame it appears in. In
some cases, e.g Cylinder, Cell and Person?, the object is
occluded for a while but the adaptation approach is able to
find and track it after it reappears. One advantage of this ap-
proach is its ability to handle situations when an object ap-
pears in different forms in different background as for Cell.

In comparison to the basic approach [8] without particle
adaptation, our approach shows enhanced detection results.
The detection rate in the clustering case is higher than the
first-frame case when the descriptor of the first frame is ap-
plied to all frames of the test set (see Fig. 4 and Table 1).

We also showed that a particle filter based on the his-
togram of color features performs better than bottom-up
saliency models. Best results were achieved where tracking
model was combined with bottom-up salient regions (here

addition). The best model is the inter-observer model again
indicating that the best model of saliency over movies (as
well as static scene) is the eye movements of other subjects.
Our results highlight that developing tracking approaches
with higher accuracy not only has promises in robotics and
computer vision but could be also used to predict human
overt attention and eye movements.
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Figure 5. Saliency model based on tracking. a) sample frames from six game stimuli used in the experiments: Super Mario Sunshine (left two), Pikmin, Super Monkey ball,
PacMan World (last two). Below each sample frame is the average NSS score over 1668, 1082, 2483, 687, 1863, 1548 frames, respectively for all mentioned models. b) A
sample frame of Mario Sunshine game with particles overlaid. Sample saliency maps of models are also shown. The panel at the bottom-right is the instantaneous NSS score
for this frame. Since subjects did not agree much in this frame NSS score for IO model is smaller than Tracking model. NSS scores for CIOFM, M and Surprise are negative
indicating that bottom-up salient stimuli do not capture task-relevant attention, however when adding saliency map of Tracking model to this models NSS score increased to above
0. c¢) Average NSS score over all six games. As it shows CIOFM + Tracking model achieved the best score followed by Motion + Tracking. Tracking alone is higher than other
pure bottom-up saliency models indicating that subjects most of the time tracked the main character in these games. There is still a big difference in performance of models and
Inter-Observer model (more than 1.5 difference in NSS score). It means that there are some other task-relevant factors that has not been captured leaving room for future works.
Over exploring games like Mario Sunshine and Pikmin NSS scores of models are small while in others performances are closer to Inter-Observer model.
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