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Abstract

Evaluating multi-target tracking based on ground truth
data is a surprisingly challenging task. Erroneous or am-
biguous ground truth annotations, numerous evaluation
protocols, and the lack of standardized benchmarks make
a direct quantitative comparison of different tracking ap-
proaches rather difficult. The goal of this paper is to raise
awareness of common pitfalls related to objective ground
truth evaluation. We investigate the influence of different
annotations, evaluation software, and training procedures
using several publicly available resources, and point out the
limitations of current definitions of evaluation metrics. Fi-
nally, we argue that the development an extensive standard-
ized benchmark for multi-target tracking is an essential step
toward more objective comparison of tracking approaches.

1. Introduction
Measuring the performance of novel methods is not only

important for monitoring the progress compared to previous

approaches in absolute terms, but also for assessing which

contribution has the largest influence on the targeted appli-

cation. However, quantitatively evaluating computer vision

algorithms is not a straightforward task. The reasons for this

are varied. On one hand it is not always obvious what the

‘correct’ solution should look like. For some applications

this question may be easier to answer than for others. In

low-level tasks, such as image restoration or deblurring, the

goal is usually to precisely reconstruct the original, artifact

free image. But even in this seemingly clear case the ground

truth might be either unavailable, or contain some level of

noise itself [31]. For higher-level problems, e.g. image clas-

sification or object detection, it may seem easy to manually

determine whether a certain object is present in the image,

or not. The answer becomes ambiguous, however, if the

object is only partially visible, either due to occlusion or

cropping [28]. For tasks such as segmentation, the situation

becomes even more challenging. When multiple people are

asked to annotate the outline of the same object in the same

image, one will get many different contours [21].

This paper considers the problem of quantitatively eval-

uating multiple target tracking. Here, the ground truth is not

Figure 1. Three different publicly available ground ruth annota-

tions on the TUD-Stadtmitte sequence. The original annotations

[1] (white) do not contain any occluded pedestrians, while the

other two sets [4] (green) and [30] (blue) show large deviations

regarding the bounding box size.

always well-defined either. Although most human annota-

tors would agree on the presence or absence of a person in a

certain image region, pinpointing the precise location poses

a more difficult task. As a matter of fact, we will see in the

following how large the spatial displacement between inde-

pendent ground truth annotations can be (cf . Fig. 1). The

second challenge of evaluation is measuring the similarity

between the obtained solution and the ground truth. To that

end, several protocols and metrics have been proposed and

have in fact become widely accepted; we will review these

in Sec. 2. Nonetheless, their definition remains somewhat

ambiguous and involves meta-parameters, such as the over-

lap threshold. Another important issue specifically concerns

tracking-by-detection methods. These methods heavily rely

on the output of an object detector. As a consequence, a

better detector will most likely yield better tracking results.

Therefore, it is essential that the same input, i.e. the same set

of detections, is used if one is interested in only comparing

the merits of different tracking algorithms themselves.

This paper makes the following contributions: (i) We

summarize important multi-target tracking evaluation met-

rics and discuss their respective advantages and disadvan-

tages; (ii) we present the challenges of obtaining the ground

truth and investigate its influence on the reported perfor-

mance; (iii) we systematically compare different implemen-

tations of evaluation software; (iv) we discuss the impact of

parameter tuning on a limited ground thruth dataset; and

(v) we raise the question of the importance of more stan-

dardized ground truth benchmarks toward enabling a fair

comparison of future multi-target tracking research.
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Figure 2. Illustration of the CLEAR MOT components. Events that

are classified as correct are denoted with solid circles. Errors are

indicated with empty circles. The influence of track-to-ground-

truth assignments is illustrated on the right: A ‘wrong’ decision

at the beginning of a trajectory leads to persistent errors over the

whole sequence.

2. Metrics for Quantitative Evaluation
To quantitatively measure the performance of one multi-

target tracking method and optionally to compare it with

others, a clearly defined protocol is required. Unfortunately,

objectively assessing the quality of a multi-target tracking

solution is not an easy task. Furthermore, the ‘perfect’ so-

lution, or ground truth, is needed to serve as reference. We

will discuss these issues and related challenges in Sec. 3.

Before doing so, we first review various protocols that are

currently used for evaluating multi-target tracking.

2.1. CLEAR MOT

To evaluate the correctness of any tracker at least three

entities need to be defined:

• the tracker output (or hypothesis)H, which is the result

of the tracking algorithm;

• the correct result, or ground truth GT ; and

• a distance function d that measures the similarity be-

tween the true target and the prediction.

Note that these requirements are kept very general without

any assumptions on the concrete representation or on the

exact definition of the distance function. Intuitively, one

wishes to incorporate and rate every possible error that a

solution may contain. One of the protocols that follow this

goal is the CLEAR MOT evaluation [9]. It emerged from

the CLEAR Workshop1 in 2006 and has since been widely

accepted as a standard evaluation tool by the tracking com-

munity. The two proposed quantities, MOTA and MOTP
on the one hand measure the number of errors that occur

during tracking, and on the other hand assess the tracker’s

precision, i.e. its ability to localize the target in the image.

Let us now take a closer look at the different components

that give rise to these quantities.

MOT Accuracy. As in object detection, the two most com-

mon errors in multi-target tracking are false positives (FP)
and false negatives (FN). The former correspond to spuri-

ous tracking results that do not match any ground truth tra-

jectory, while the latter ones are annotated targets that are

not identified by the tracker. To determine whether a tar-

get is being tracked, a correspondence between true targets

1http://clear-evaluation.org
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Figure 3. Measuring correspondence as bounding box overlap

(2D) or as distance on the ground plane (3D).

and hypotheses must be established. This is usually done

in a greedy manner in consideration of temporal matching,

rather than independently in each frame. More precisely, if

and only if a target is not tracked, it is assigned the clos-

est unmatched hypothesis. Otherwise, the correspondence

from the previous frame is maintained. To decide, whether

a track is a potential candidate for a match, a distance be-

tween all hypotheses and all targets must be computed. If

the distance between a track-object pair is small enough,

they can potentially be matched. Note that this procedure

to compute the correspondences is application and repre-

sentation specific. If both the output and the annotations

are described by bounding boxes, then usually the PASCAL
criterion

d(H,GT ) = bbox(H) ∩ bbox(GT )
bbox(H) ∪ bbox(GT ) , (1)

i.e. the intersection over union (Jaccard index) or the rela-

tive overlap of the true and the predicted bounding boxes,

determines the similarity between the two. Here, 0 means

no overlap and 1 means that both bounding boxes are iden-

tical. The most common threshold for considering a pair as

correct is 0.5. For 3D tracking, it may be more reasonable to

compute the correspondence directly in world coordinates

(cf . Fig. 3). In this case, the Euclidean distance between the

centroids of two objects gives a suitable estimate. For peo-

ple tracking, the foot position, i.e. the center of the bottom

edge of the bounding box, defines the target’s centroid and

a threshold of 1 meter is typically used.

Recall that the goal of multi-target tracking is not only

to find all objects and suppress all false alarms, but also

to correctly follow each object over time. In other words,

the reconstructed trajectory should adhere to one specific

object from the moment of entry until it exits the scene.

Whenever there is a mismatch between a hypothesis and

the corresponding ground truth trajectory, an identity switch

(ID) occurs, which is counted as an error. A simple example

illustrating these three error types is depicted on the left-

hand side of Fig. 2. Although temporally-aware target-to-

tracker matching suppresses unnecessary identity switches,

it may lead to undesirable artifacts, as illustrated in Fig. 2

(right).
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To formally define MOTA, let FP(t), FN (t) and ID(t)
denote the number of false positives, missed targets and

identity switches at time t, respectively. Further, let NGT(t)
denote the number of annotated targets at time t. Then the

MOTA score is computed as

MOTA = 1−
∑

t

(
FP(t) + FN (t) + ID(t)

)
∑

t NGT(t)
. (2)

Note that if a solution contains no errors, i.e. the numerator

sums up to 0, then the accuracy equals 100%. This value

decreases as the number of failures increases. The MOTA
score can also result in negative values and is in fact un-

bounded (from below). Allowing for a negative accuracy

may seem unnatural, but this can only occur when the num-

ber of errors is larger than the number of targets in the scene,

which only rarely happens in practice. Combining the qual-

ity of a tracking result into a single number has both positive

and negative consequences. On the one hand, it enables a

simple comparison. On the other hand, the strengths and

weaknesses of a particular method may become concealed.

It is therefore preferable to present all available numbers.

MOT Precision. The MOTA described above measures the

discrete number of errors made by the tracker. On the con-

trary, the MOTP avoids such hard decisions and instead es-

timates, how well a tracker localizes the targets. Again, in

its general form it is defined as

MOTP =
∑
t,i

d
(
GT t

i,Ht
g(i)

)/∑
t

mt, (3)

where GT t
i and Ht

g(i) are the target and its associated hy-

pothesis, respectively, and mt is the number of matches at

time t. Intuitively, it provides the average distance over

all matched pairs. In 2D, this number directly represents

the average overlap of matched bounding boxes, while for

the evaluation in 3D it is usually normalized to the hit/miss

threshold such that it provides a percentage value between

0 and 100%. We point out that MOTP is a rather rough

estimate of the performance, because it heavily relies on

the quality of the annotations, which are often inaccurate or

even ambiguous as we will see below.

2.2. Further metrics

Next to the widely used CLEAR metrics, other perfor-

mance measures have been introduced in the literature.

Trajectory-based measures [29] assess the performance

on entire trajectories rather than on a frame-by-frame basis.

Their definition has later been refined [18] to capture some

ambiguous cases. A target is often tracked correctly only for

a certain period and not for its entire presence in the scene.

To quantify this property, a trajectory can be classified as

mostly tracked (MT), partially tracked (PT) and mostly lost
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Figure 4. Trajectory-level measures [18].

(ML), see Fig. 4. A target is considered mostly lost when

it is found during less than 20% of its presence. Similarly,

a target is mostly tracked when at least 80% of its ground

truth trajectory is found. Consequently, all other trajectories

are partially tracked. Note that identity switches do not play

any part in the computation of these figures. Finally, track

fragmentations (FM) count how many times a ground truth

trajectory changes its status from ‘tracked’ to ‘not tracked’,

i.e. each time it is lost by the current hypothesis.

Configuration distance and purity proposed by [24] pro-

vide a more detailed inspection of each tracker, each trajec-

tory and the configuration state. In particular, they allow

multiple tracker-to-target assignments, but count these as

multiple trackers or multiple objects errors. The configu-

ration distance measures the difference between the num-

ber of predicted and true targets, and indicates the bias to-

ward more false alarms or toward missed targets. Further

measures, such as tracker or object purity, are somewhat re-

lated to the mostly tracked definition above, but provide a

more detailed evaluation on the produced hypotheses and

not only on the ground truth trajectories. Since these met-

rics are rarely used, we do not employ them here.

Global mismatch error (gmme) [7] is an extension of the

traditional count of ID switches. Instead of only counting

the number of instantaneous swaps, gmme counts all frames

after the swap as erroneous.

Related applications, such as people counting or queue

length estimation also require quantitative evaluation, but

a standardized protocol has not been defined yet.

To summarize so far, there is no single objective measure

for the quantitative ground-truth evaluation of multi-target

tracking algorithms that incorporates all important aspects.

Many proposed protocols follow a similar intuition, but are

somewhat ambiguous in their exact definitions. As a result,

the computed numbers usually give a fair assessment of the

overall performance, but may vary depending on the con-

crete implementation of the evaluation software. We will

discuss this aspects further in Sec. 3.4.

3. Ground Truth for Multi-Target Tracking
3.1. Obtaining ground truth

Annotating images is a tedious task. The most naive, but

very common way is to draw rectangles around the objects

of interest to define their bounding boxes frame by frame.

There are, however, several software packages that assist

the user in order to facilitate the annotation process.
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(a) AnnoTool (b) MultiView (c) VATIC

Figure 6. User interfaces of three different annotation tools.

(a) (b) (c) (d) (e)

Figure 5. Ambiguous cases. The mannequin in the display window

(a), a man inside a phone booth (b), a clearly visible reflection (c),
a child (d) and a partially occluded person (e) are all missing in the

ground truth and can potentially cause erroneous false positives.

Annotation tools. Annotations for TUD, EPFL and many

of the PETS2009 sequences2 were created using Anno-

Tool2. It allows one to linearly interpolate the location and

the size of the bounding box between key frames, which

leads to a significant speed up. The tracks were smoothed

afterwards to reflect natural people motion. While key-

frame interpolation facilitates the annotation process, one

must bear in mind that it also leads to an approximation,

since the ‘true’ target motion hardly ever precisely follows

a linear (or a higher order polynomial) pattern. VATIC3

is a more recent annotation tool [27]. It offers an inte-

grated interface to Amazon’s Mechanical Turk such that one

can leverage the power of crowdsourcing for the annotation

task. Finally, [26] provide an annotation software specif-

ically designed for a multi-camera setup4. Interestingly,

there a target is defined by its actual height in world units

and the rectangular area that it occupies on the ground plane

instead of the usual bounding box representation. Screen-

shots of all three annotation tools are shown in Fig. 6.

3.2. Annotation quality

As we already briefly discussed above, different annota-

tions of the same video sequence may vary quite severely,

both in terms of quality and in terms of the actual informa-

2http://www.gris.tu-darmstadt.de/˜aandriye/data
3http://mit.edu/vondrick/vatic
4http://web.eee.sztaki.hu/˜ucu/mvatool

(a) (b) (c)

Figure 7. Different level-of-detail. Next to unordered bounding

boxes (a), annotations for multi-target tracking should also provide

the corresponding ID of each box (b). In some cases even a pixel-

level segmentation mask is available (c).

tion that is provided (see Fig. 7). Many of the widely used

tracking datasets, including the ETHMS [12] and the TUD
[1, 2] sequences, were originally annotated for the purpose

of evaluating person detection. The annotations provided by

the authors of these datasets only included bounding boxes

of people without their corresponding IDs. Moreover, par-

tially occluded pedestrians (approximately 50% and more)

are ignored by the annotators, since they are not expected to

be found by the detector. An important ability of a multi-

target tracker, however, is to keep track of individuals over

time, even through complete occlusions. Therefore, perfor-

mance results reported on these sequences either ignored

the number of identity switches [10] or resorted to manual

counting [19], which is both tiresome and inaccurate.

Annotations can also be provided on different levels-of-

detail, both spatially and in terms of temporal resolution.

For example, [17] provide pixel-level segmentation masks

for each person in the TUD-Crossing sequence. Due to the

required effort in obtaining such detailed information, it is

only available every 10th frame. The authors of the Park-
ingLot sequence [23] annotate every 3rd frame in two ver-

sions; one includes only fully visible targets, the other also

includes occluded ones. The ground truth for the EPFL
datasets [14] is discretized both spatially and temporally.

These annotations include the cell occupancy of a ground

plane grid every 25th frame, i.e. only once every second.

Ambiguities are inevitable in annotations of real-world se-

quences. Some of the more common ones are illustrated

in Fig. 5. While objects that look like targets, such as the

732732732738



Table 1. Evaluating the same tracking result obtained with the pub-

lic implementation of [3] w.r.t. different ground truth annotations.

Gr. truth Rcll Prcn GT MT ID FM MOTA MOTP

white [1] 90.1 97.1 18 11 3 3 87.1 83.3

green [4] 69.3 99.5 10 4 7 6 68.3 76.6

blue [30] 72.1 99.1 10 4 7 6 70.8 71.9

mannequin, or reflections should not be annotated, small,

occluded or blurred targets ought not be ignored. One diffi-

culty arises at image borders where targets become partially

cropped. Especially in crowded scenarios where targets fre-

quently enter and exit the field of view, such errors tend

to accumulate, preventing any tracking method to achieve

100% accuracy. To mitigate this effect, we propose to use

several annotation sets and average the performance. To an-

alyze how much different annotations affect the measured

performance we conduct two experiments: (i) We evaluate

the identical tracker output on three different sets of ground

truth data. (ii) We evaluate the accuracy of one ground truth

annotation w.r.t. the others for all three combinations.

The TUD-Stadtmitte sequence [1] has become fairly

popular and is frequently used for evaluating detection as

well as tracking quality. Somewhat surprisingly, several

‘ground truths’ are publicly available for this short se-

quence, which differ significantly from one another [1, 4,

30]. The reasons for this may be that the original anno-

tations do not contain target IDs and that occluded pedes-

trians are not annotated. For the following experiment we

obtained the IDs by greedy nearest neighbor linking, but

did not connect trajectories across occlusion gaps. The

other two sets were annotated independently by two differ-

ent groups [4, 30]. Bounding boxes from all three ground

truth sets are overlaid and shown in Fig. 1. A coarse

qualitative assessment reveals that the boxes in the dataset

from [30] (blue) are much larger than those in the other

two. Quantitative results are listed in Tab. 1. The num-

bers are computed in 2D with an overlap threshold of 0.5.

As expected, the recall is much higher on a ground truth

with fewer annotated bounding boxes (white). But there is

still a noticeable gap in tracking accuracy MOTA, and an

even larger one in tracking precision MOTP between the

two other annotation sets that were created specifically for

multi-target tracking evaluation. This observation clearly

demonstrates that the computed figures may vary greatly

depending on what ground truth annotation is used.

In our second experiment we use one of the three sets of

annotations as the “solution” and evaluate it with respect to

the other two. Obviously, one cannot expect that the bound-

ing boxes are always perfectly aligned to each other across

various sets. However, it is reasonable to assume that at

least different annotations would agree on the presence or

absence of targets in the image. The figures shown in Ta-

ble 2 are rather disillusioning. For instance, the top two

rows show how the white ground truth scores when eval-

uated on the green and on the blue one. Obviously, the

recall stays low since occluded people are not present in

this annotation. But even when comparing the more com-

plete annotations to each other (rows 4 and 6), the overall

accuracy (MOTA) remains below 70%. The reason here is

that the difference in bounding box sizes leads to an overlap

that is less than 50% in many cases, hence the annotations

are counted as false positives. This is particularly problem-

atic, since the output of the tracker given in Table 1 actually

produces better quantitative results than a different ground

truth. This once again shows that bounding box annotations

are in fact quite ambiguous.

To conclude, both the quality and the level-of-detail can

vary significantly across annotations, even for the same

video sequence. A misalignment of bounding boxes in dif-

ferent annotation sets may not only lead to a lower tracking

precision, but can severely impair the overall performance

numbers due to wrongly counted errors. It is therefore al-

ways important to state which ground truth data was used

for measuring performance of a certain tracker output.

3.3. Metrics ambiguity

Having analyzed the impact of different ground truth

annotations on the resulting performance, we now take a

closer look at the protocols themselves. In Sec. 2, we for-

mally defined several methods for measuring the perfor-

mance of a tracking system and discussed some of the prob-

lems related to the quantitative evaluation. Here, we will

follow up on this issue and point out concrete deficits of the

existing definitions. Throughout this paper, we employed

two sets of evaluations metrics, CLEAR MOT [9] and the

trajectory-based measures of [18]. As we will see in Sec.

3.4, computing the same error measure is not clearly de-

fined since various evaluation scripts do not produce iden-

tical numbers. Besides possible implementation discrepan-

cies, the metrics’ definitions themselves carry ambiguities.

Distance. To establish correspondences between the true

objects and the produced results, a distance measure is re-

quired to assess how similar or how close the hypothesis is

to the ground truth object. One possible choice is the PAS-
CAL VOC criterion, which measures the overlap between

two bounding boxes (cf . Eq. (1)). When tracking is per-

formed directly in the world coordinate system, the stan-

dard Euclidean distance between the objects’ centers can be

employed. In both cases, a threshold is required that deter-

mines whether a target-hypothesis pair constitutes a poten-

tial match or not. In other words, the evaluation procedure

itself is dependent on at least one parameter that should al-

ways be stated. For the overlap criterion, a threshold of 0.5
has been widely accepted. For measuring distances in world

coordinates, [25] propose 500mm. However, the main ap-

plication there is to track multiple people in meetings in a

733733733739



Table 2. A quantitative comparison of various ground truth annotations with respect to one another.

“Solution” Ground truth Rcll Prcn GT MT ML ID FM MOTA MOTP

white green 75.1 100.0 10 6 0 8 288 74.4 81.1

blue 77.2 98.5 10 6 0 10 252 75.2 68.9

green white 100.0 75.1 18 18 0 0 0 66.8 81.1

blue 85.1 81.5 10 9 1 0 165 65.8 66.7

blue white 98.5 77.2 18 18 0 2 13 69.2 68.9

green 81.5 85.1 10 8 1 0 214 67.2 66.7

rather small area. We found that such a threshold is too

conservative for outdoor scenes for two reasons: First, in

surveillance settings cameras are usually far away from the

scene showing a much larger area of interest, such that tar-

gets only occupy a small image region. Second, the camera

calibration may be unreliable, e.g. due to a low view point.

In both cases targets that are only slightly misplaced on the

image induce a large 3D error. Consequently, a threshold

that is too small will lead to an undesirable behavior when

correct results are counted as false alarms, while the true tar-

get remains untracked. We therefore use a 1 meter hit/miss

threshold throughout all experiments.

Assignment. One further ambiguity of tracking metrics lies

related to how the output hypotheses are assigned to the

ground truth objects, which is not specified explicitly. A

greedy assignment strategy is arguably the simplest choice,

but does not lead to the best matching. A typical case of

non-optimal assignment is illustrated in Fig. 2 (right). One

way to avoid this is to perform a two-pass matching with

the Hungarian algorithm, as is done, e.g., by [30].

Error weighting. Recalling the definition of MOTA from

Eq. (2), all three types of errors (FP, FN and ID) are

weighted equally as suggested by [9, 25]. Naturally, each

error type can be weighted individually according to its im-

portance for the respective application. For offline motion

analysis it may be important to reconstruct correct, identity

preserving trajectories, while finding absolutely all present

targets is less crucial. A higher weight for identity switches

may therefore be more desirable. On the contrary, a driver

assistance system should detect every single pedestrian and

at the same time maintain a low number of false positives

to avoid unnecessary warnings. On the other hand it is less

relevant to keep the identity of each person over time. In

such case, the aim is to achieve the highest possible preci-

sion and recall while less attention is paid to the number of

ID switches. This may also be the motivation of [11], who

impose a logarithmic weight on the number of mismatch

errors when computing the MOTA score.

3.4. Evaluation software

We will now investigate whether the particular imple-

mentation of the evaluation protocol has an impact on the

computed measures. To that end we evaluate the same

tracking result from Tab. 1 on one particular ground truth,

but with different evaluation scripts. All tested scripts pro-

vide the raw number of false alarms and missed targets,

such that precision and recall can easily be computed. An

evaluation script by Masi and Lisanti5 computes the CLEAR
MOT metrics, but not the trajectory-based ones [5]. Yang’s

software [30], which operates on bounding boxes in 2D,

additionally computes the number of mostly tracked and

mostly lost trajectories, but does not provide the average

overlap. Unfortunately, these are difficult to extract, since

only the binary executables are available. We also em-

ploy Bernardin’s implementation provided for the original

CLEAR challenge [9]. Finally, our own Matlab script6 com-

putes all sets of metrics and can operate on bounding boxes

as well as on the ground plane. All available numbers are

listed in Table 3. The values in parentheses are not part of

the script output but are rather computed based on the pro-

vided number of false positives, false negatives and identity

switches. Note the extremely high number of detected mis-

matches in Masi & Lisanti’s implementation. This number

is probably not very reliable because the authors state in

their documentation that “ID switches should be carefully

counted by visual inspection”. Other than that, the figures

in Table 3 do not deviate substantially. Nonetheless, for a

meaningful comparison it is crucial to use exactly the same

evaluation software.

3.5. Training and testing

Many tasks in computer vision are approached by de-

signing models that need to be trained or tuned, i.e. fitted

to the annotated training data, to make predictions about

unseen data. To enable a fair comparison between vari-

ous methods, some areas offer well-established benchmarks

with pre-defined training and test sets. To name a few, there

is the PASCAL challenge for object detection or segmenta-

tion [13], the Middlebury benchmark for multi-view stereo

[22], or KITTI for stereo or optical flow [15]. Although sev-

eral multi-target tracking datasets are frequently used in the

literature [3, 20, 23], there is no established consensus of

how to separate the data into training and testing sets. The

5http://www.micc.unifi.it/masi/code/clear-mot
6http://goo.gl/8ZTrM
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Table 3. Evaluating the same tracking result [3] with respect to the same ground truth [4], but with different evaluation scripts. The top part

considers an evaluation in 2D, while the bottom results are computed in 3D on the ground plane.

Space Evaluation software Rcll Prcn FP FN GT MT ML ID FM MOTA MOTP

2D Andriyenko et al. [4] 69.3 99.5 4 355 10 4 0 7 6 68.3 76.6

Bagdanov et al. [5] 67.9 99.7 4 355 10 - - 16 - 67.6 77.0

Yang & Nevatia [30] 67.6 98.0 16 373 10 2 1 2 3 (66.0) -

3D Andriyenko et al. [4] 59.4 85.3 118 469 10 2 0 9 9 48.4 59.8

Bernardin & Stiefelhagen [9] (59.4) (85.3) 118 469 10 - - 10 - 48.4 (59.8)

Table 4. Influence of training procedure.

Tracker Training Rcll Prcn ID FM MOTA MOTP

[3] per seq. 68.6 93.8 49 30 62.8 64.7

global 59.1 95.5 29 22 54.9 66.7

cross val. 60.3 90.9 31 24 49.2 65.2

[20] per seq. 57.1 95.4 160 124 49.2 66.0

global 57.6 92.6 149 123 48.5 65.6

cross val. 57.1 92.5 144 119 47.7 65.6

[4] per seq. 64.7 92.4 61 46 58.0 64.5

global 60.7 90.7 52 41 52.1 65.4

cross val. 60.7 90.7 52 41 52.1 65.4

common strategy to report the performance of a tracking

method is to tune the parameters to a fixed set of sequences,

thereby treating them as training and test data at the same

time. Obviously, this is not ideal since the model is overfit-

ted to the chosen data and will usually perform considerably

worse on unseen data. To nonetheless reduce the effect of

overfitting, it is considered good practice to choose several

datasets that exhibit strong variations in person count, view

point and resolution, while keeping the parameters fixed.

To examine the influence of training, we perform an ex-

periment on six datasets: five PETS sequences and TUD-
Stadtmitte. We tune the parameters for three tracking meth-

ods [3, 4, 20] in three different ways: A per-sequence

search, a global tuning over all sequences simultaneously,

and leave-one-out cross validation. Parameter tuning is per-

formed by a random search [8] w.r.t. MOTA starting from

the default set in all cases. The results are summarized

in Tab. 4. Our intention here is not to compare the per-

formance of different tracking approaches to each other,

but rather to point out that the particular choice of training

data and training procedure may have a large impact on the

computed performance. Note that [3] is more flexible than

[4, 20] and can be tuned much more accurately to each spe-

cific sequence. However, using cross validation, the mean

accuracy (MOTA) drops by over 10 percentage points. This

case study shows that the two other methods generalize bet-

ter to unseen data, and suggests that cross-validation may

need to be considered seriously for evaluating the robust-

ness of multi-target tracking algorithms.

3.6. Toward a benchmark

We believe that a standardized multiple target track-

ing benchmark consisting of a variety of diverse video se-

quences is needed to facilitate comparison between state-of-

the-art methods. The only currently existing method (that

we are aware of) to objectively measure the performance of

a tracking algorithm is to send the results on the S2L1 se-

quence (represented by bounding boxes) to the PETS orga-

nizers [11]. The computed CLEAR MOT metrics, evaluated

with respect to unpublished ground truth, are then sent back

to the authors. Provided that current methods achieve near

perfect results on that particular sequence, it is time to move

on to more challenging datasets. Clearly, such benchmarks

entail the risk of shifting the research goals from develop-

ing innovative techniques to pushing the numbers higher on

that particular data. However, previous benchmarks, such

as Middlebury [6] or PASCAL [13] for example, show that

the raw ranking is not the only criterion for how a specific

method is valued in the community. In fact, despite caveats

of benchmarks both projects considerably boosted research

in their respective area of vision. In the following, we point

out some of the main issues to be considered in future when

compiling a benchmark for multi-target tracking.

Data selection. Most of the current approaches can be eas-

ily tuned to a specific sequence to achieve good perfor-

mance. To assess the general applicability of a particular

method, it is crucial to test it on a wide range of various

scenarios using a single set of parameters. A benchmark

should therefore contain several scenes that show substan-

tial variability in camera angle and motion, person count

and resolution. Furthermore, a clear separation of data for

training and validation on the one hand, and for testing on

the other hand should be defined to enable consistent pa-

rameter tuning or learning.

Detections. Another issue further complicates elementary

comparison. Most current multi-target trackers perform

tracking-by-detection, i.e. the actual input data are not the

raw images, but a set of independently precomputed detec-

tions. Clearly, the performance of both the data association

and the reconstruction of trajectories will greatly depend on

the quality of the detector. One way to evaluate various

trackers fairly might be to provide a standard detection set
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for each method. However, this is not straightforward to

implement in practice, since different methods require dif-

ferent types of input. Some rely on plain bounding boxes

[20], others also consider the confidence value of each de-

tection [3, 4] – which is non-trivial to calibrate in general

– while other approaches work on contours of pedestrians

[16]. A solution may be to offer several test categories so

that each method can be compared in a meaningful way.

Evaluation. Obviously, one single ground truth and evalu-

ation script should be made available for a fair comparison.

It is conceivable to withhold the annotations of the test set

to avoid overfitting. This would, however, require a cen-

tralized evaluation tool. It may be beneficial to restrict the

number of evaluations of the same method, similar to the

practice followed by the Middlebury benchmark.

4. Conclusion and Outlook

In this paper we presented several common pitfalls re-

lated to evaluating multiple target tracking. We systemat-

ically investigated the influence of different ground truth

annotations, evaluation scripts, and training procedures on

publicly available data. We found that all of these aspects

may have a significant impact on the resulting numbers,

making a fair comparison rather challenging. Hence, we

argue that a unified benchmark is important toward a more

meaningful quantitative evaluation. At least it is essential to

state which ground truth and which evaluation script the re-

ported numbers are based on, or, even better to make the ac-

tual results publicly available alongside every publication.
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