
Addressing System-Level Optimization with OpenVX Graphs

Erik Rainey, Jesse Villarreal
Texas Instruments, Inc.

erik.rainey@ti.com, jesse.villarreal@ti.com

Goksel Dedeoglu
PercepTonic, LLC

goksel@perceptonic.com

Kari Pulli, Thierry Lepley, Frank Brill
NVIDIA

karip@nvidia.com, tlepley@nvidia.com, fbrill@nvidia.com

Abstract

During the performance optimization of a computer vi-
sion system, developers frequently run into platform-level
inefficiencies and bottlenecks that can not be addressed by
traditional methods. OpenVX is designed to address such
system-level issues by means of a graph-based computation
model. This approach differs from the traditional accelera-
tion of one-off functions, and exposes optimization possibil-
ities that might not be available or obvious with traditional
computer vision libraries such as OpenCV.

1. Introduction

Accelerating a computer vision application on an em-
bedded processor can be a non-trivial task. On modern
System-on-Chips, the optimization efforts fall under two
categories: system-level optimization and kernel-level op-
timization. System-level optimizations pay close attention
to the overall power consumption, memory bandwidth load-
ing, low-latency functional computing, SoC IP entitlement,
and Inter-Processor Communication overhead. These is-
sues are typically addressed via frameworks, as the parame-
ters of interest cannot be tuned with compilers or operating
systems. To date, kernel-level optimizations have tradition-
ally revolved around one-off or single function accelera-
tion. Typically this means that an implementer will re-write
a computer vision function with a more efficient algorithm,
with better compiler optimization switches (−O3), using
more efficient SIMD/MIMD instructions [1], or moving the
execution to accelerators such as a GPU using languages
such as OpenCL or CUDA [4]. However, this improves
only the execution of a single function, it does not necessar-
ily improve the entire use-case.

2. Solution

OpenVX [2] attempts to solve both of these issues on
behalf of the developer by containing the system-level op-
timization issue within a graph model, and the kernel-
level optimization via accelerators with graph-level opti-
mizations. This moves (part of) the onus of optimization
back to the implementor of OpenVX, which is frequently
where the most platform knowledge exists. OpenVX’s
approach to solving these system-level problems is not
new [3] or unique. What is new and unique is address-
ing them using a standardized interface, enabling portable,
high-performance computer-vision applications. The model
is similar to the standardization of 3D graphics APIs to
OpenGL [5] over 20 years ago; standardization allowed
software developers to separate innovations on the applica-
tion level from the hardware innovations of the companies
providing graphics accelerators.

To facilitate incremental adoption of OpenVX, the API
supports a single-function model, called immediate mode.
This mode of operation is specified to be equivalent to a
single-node graph. However, using the immediate mode
precludes many of the graph-level optimization possibilities
discussed below.

3. Architecture

OpenVX specifies a method of computation using
graphs. Graphs in OpenVX are directed, ordered by data-
dependencies, and acyclic. These graphs are constructed,
then verified (for correctness, consistency, connectedness,
and other attributes), and they can be processed (executed)
in the future, repeatedly if needed. Essentially, a developer
is declaring future work by aggregating processing stages
into a connected graph. By giving the future work as an
aggregation to the framework, many optimizations, which
would normally be hidden, can be identified and addressed
by the OpenVX framework.

1

3.1. Nomenclature, Hierarchy, and API

All objects within OpenVX exist within a context. Data
and graphs exist within this context. Graphs are composed
of nodes. Each of these nodes is an instance of a com-
puter vision function (a kernel) with its associated data ref-
erences, return value, and performance information (i.e., its
future call state). OpenVX further allows kernel and target
introspection, if needed. Targets in OpenVX are not neces-
sarily cores or devices (e.g., a CPU, GPU, DSP, or a special-
ized accelerator), but may also be any logically constructed,
functional-execution mechanisms (e.g., an OpenCL func-
tion, or an OpenMP-compiled set of functions). The specifi-
cation does not provide an exhaustive definition of possible
targets, so that implementors of OpenVX would have the
freedom to introduce even new kind of accelerators that do
not currently exist. Anything that can execute a conformant
kernel could be exposed as a target. The supported kernels
are summarize in Table 1.

Absolute Difference Integral Image
Image Pyramid Optical Flow Pyramid (LK)
Remap Scale Image
Histogram (generate, equalize) Thresholding
Accumulate (also squared, weighted) Image Arithmetics (+, -, *)
Filters (box, custom, Gaussian, median, Sobel) Corners (Fast, Harris)
Bitwise And, Xor, Or, Not Edges (Canny)
Channel combine, extract Phase, Magnitude
Convert (bit depth, color, table lookup) Dilate, Erode
Stats (mean, std. dev., min/max location) Warp (affine, perspective)

Table 1: OpenVX Base Kernels Version 1.0 (Provisional).

3.2. Data Opaqueness

Data objects in OpenVX are opaquely defined. When
direct memory access is required, the user must call the Ac-
cess and Commit API pair to get to the data. These APIs
are present in order to permit the framework control over
the memory location and layout of data.

3.3. User-defined Nodes

OpenVX provides for a feature where users of the API
can create their own nodes and insert them in a graph, as
in Figure 1. In the first version of the specification this is
purely host (CPU) code (allowing such nodes to run another
programmable unit such as a DSP or GPU would require a
vendor extension). The purpose in doing this is to

• leverage the independent nature of node execution to
provide parallelism in the work load while the frame-
work potentially executes other nodes on other targets,
and to

• clearly define a run-time verified functional boundary
for the user-defined node so that it can be componen-
tized for later (re-)use elsewhere.

Figure 1: User-defined Nodes provide useful computation
not provided by the API, yet allow the framework to deter-
mine an efficient order of processing.

Authors of user-defined nodes should be aware that their
code can be invoked at any time, potentially in multiple
threads or processes, and should follow guidelines in the
OpenVX specification [2]. One such guideline is to not ac-
cess unmanaged resources (with respect to OpenVX) with-
out some external protection mechanism as OpenVX may
not serialize the User-defined Node invocations.

3.4. Callbacks

Users of OpenVX may attach a host callback to any node
so that the results of that node’s computation is available to
the host callback after execution of the node. The state of
the rest of the graph (which was not a predicate) is undeter-
mined. This mechanism allows a user to add flexible condi-
tional logic to a graph to determine actions. For example, a
user may determine that the maximum value from an image
indicates that the image is too dark to continue processing
and halt graph execution.

4. Example Graph

To facilitate discussion of the API and optimization pos-
sibilities, we introduce an example schematically (Figure 2)
and the corresponding code listing (Figure 3). The for-
mat of the graph diagram only expresses nodes, and not
data (arcs only order operations). We declare that the input
data (e.g., an RGB camera image) is (N1): color-converted
(RGB to YUV), (N2): channel-extracted (Luma), (N3):
blurred, (N4): gradient operator (such as Sobel) is applied,
producing components Sx and Sy , which are used to com-
pute (N5): phase and (N6): magnitude. These are fed into a
(N7): non-maximum suppression node, and finally (N8):
thresholded to produce a “pseudo-Canny-edge-detection”
result. We shall discuss optimizing this graph for a device of
three heterogeneous targets. The actual specifics or details
of the targets (e.g., a CPU, GPU, and DSP) are irrelevant.

Figure 2: An example pseudo-Canny-edge-detector graph in OpenVX.

v x c o n t e x t c = v x C r e a t e C o n t e x t () ;
v x g r a p h g = vxCrea teGraph (c) ;
vx image rgb = vxCrea te Image (c , w, h , FOURCC RGB) ;
vx image iyuv = v x C r e a t e V i r t u a l I m a g e (g , 0 , 0 , FOURCC IYUV) ;
vx image y = v x C r e a t e V i r t u a l I m a g e (g , 0 , 0 , FOURCC VIRT) ;
vx image by = v x C r e a t e V i r t u a l I m a g e (g , 0 , 0 , FOURCC VIRT) ;
vx image gx = v x C r e a t e V i r t u a l I m a g e (g , 0 , 0 , FOURCC VIRT) ;
vx image gy = v x C r e a t e V i r t u a l I m a g e (g , 0 , 0 , FOURCC VIRT) ;
vx image ang = v x C r e a t e V i r t u a l I m a g e (g , 0 , 0 , FOURCC VIRT) ;
vx image mag = v x C r e a t e V i r t u a l I m a g e (g , 0 , 0 , FOURCC VIRT) ;
vx image non = v x C r e a t e V i r t u a l I m a g e (g , 0 , 0 , FOURCC VIRT) ;
vx image o u t = vxCrea t e Image (c , w, h , FOURCC U8) ,
v x t h r e s h o l d t = v x C r e a t e T h r e s h o l d (c ,

VX THRESHOLD TYPE RANGE) ;
v x u i n t 8 uppe r = 240 , lower = 1 0 ;
vx node n [] = {

vxColorConver tNode (g , rgb , i yuv) ,
vxChanne lEx t r ac tNode (g , iyuv , VX CHANNEL Y, y) ,
vxGaussian3x3Node (g , y , by) ,
vxSobel3x3Node (g , by , gx , gy) ,
vxPhaseNode (g , gx , gy , ang) ,
vxMagnitudeNode (g , gx , gy , mag) ,
vxNonMaxSuppressionNode (g , ang , mag , non) ,
vxThresholdNode (g , non , t , o u t) ,

} ;
v x S e t T h r e s h o l d A t t r i b u t e (t , VX THRESHOLD ATTRIBUTE UPPER ,

&upper , s i z e o f (uppe r)) ;
v x S e t T h r e s h o l d A t t r i b u t e (t , VX THRESHOLD ATTRIBUTE LOWER,

&lower , s i z e o f (lower)) ;
i f (vxVer i fyGraph (g) == VX SUCCESS)

vxProces sGraph (g) ;

Figure 3: Code for example graph.

5. Optimization Strategies
Here we discuss some optional optimization strategies.

5.1. Remote Processing

Remote Processing is simply the practice of computing
results on a non-host core such as a GPU, a DSP, or other
specialized core such as an accelerator. In the following
sections, we will refer to Equation 1 to discuss its impact on
optimization strategies. This equation expresses the latency
of remote processing for a single function call.

Lr(1) = Clf + IPCsend + Cri+

execr(data, params) + Crf+

IPCrecv + Cli,

(1)

where

• Lr — Latency of remote processing.

• Clf — Host Core Cache Flush of impacted data.

• IPCsend — Total latency from Host-to-Remote-Core
activation time. This accounts for line transmission,
and possibly also system-thread switching and OS ker-
nel/driver overheads.

• Cri — Remote Core Cache invalidate for affected data.

• execr(data, params) — Remote Execution time,
varies on data size and other parameters.

• Crf — Remote Core Cache flush for affected data.

• IPCrecv — Total latency from Remote-Core-to-Host
activation time (with overheads as in IPCsend).

• Cli — Host Core Cache Invalidate of impacted data.

Typically all cache operations depend on the data size.

5.2. Aggregate Function Replacement

Aggregate function replacement is the practice of iden-
tifying a specific set of nodes in a graph and replacing (po-
tentially multiple nodes) with a single node which “does-it-
all” (aggregate function). In the example above, a strategy
might be to replace sets of nodes with matching functional-
ity. Reasonable examples include, but are not limited to:

• N1 & N2 — RGB to Luma (omits U, V computation).

• N1 & N2 & N3 — RGB to Blurred Luma (e.g., a
three-channel weighted Gaussian on GPU).

• N1 & N2 & N3 & N4 — RGB to Sobel Sx, Sy .

5.3. IPC Aggregation

Inter-Processor Communication aggregation is the prac-
tice of co-locating the computation of functions (which may
themselves be aggregate functions) on remote cores with-
out any “master” intervention. This is an IPC optimization
which reduces system “chatter” or messaging overhead. An
example of a set of non-aggregated IPC transactions can be
seen in Figure 4.

In Figure 4, a sub-graph is passed to the remote core in
a single IPC transaction. If the remote core is sufficiently
efficient at computation, the data set of sufficiently large and
the IPC overhead is significant, this methodology reduces
the number of IPC transactions and saves time which would
be otherwise wasted with this IPC overhead.

host target

call

exec

return

call

exec

return

call

exec

return

(a) No Aggregation

host target

call (3)

exec

exec

exec

return (3)

(b) Aggregated

Figure 4: IPC overhead is reduced with aggregation

host target1 target2

call (3)

exec

pass

exec

exec

return (3)

Figure 5: Peer-to-peer IPC with aggregation.

Aggregating IPC only charges the remote latency com-
ponent of Equation 1 once, instead of multiplying it by the
number of functions F . Instead, when F functions are ag-
gregated together, only the execution times are largely af-
fected, though some cache operation latency may be lin-
early increased due to how data is laid out. See Equation 2.

Lr(F) = F ∗ (Clf + Cri + Crf + Cli) + IPCsend +

F∑
execr(data, params) + IPCrecv

(2)

5.4. Peer-to-peer IPC Topologies

Use of peer-to-peer IPC topologies builds on top of the
previous method by further removing the “master” that ar-
bitrates the communication stream. This can only be fully
realized in a system with more than two targets which are
independently operating devices. Underlying peer-based
frameworks further remove IPC overhead by directly com-
municating completed work to the next target (whether it is
co-located or not). An example of a peer-to-peer IPC with
aggregation can be seen in Figure 5.

5.5. Compilation Strategies

For implementations which utilize internally run-time-
compilable kernels, many optimization strategies exist that
are well known in the compiler domain. OpenVX further
improves this by providing the compiler with the future

call state. Strategies may include in-lining, loop unrolling,
restricting pointers, replacing tail-recursive functions with
their iterative counterparts, etc. These have been covered in
numerous other papers and will not be improved upon here.
We only note that pertinent data for those strategies is now
contained in the graph and context.

5.6. Parallelism

In the example graph of Figure 2 there is an opportunity,
expressed in nodes N5 and N6, for independent node exe-
cution. On platforms which support multiple targets, or if
the targets support multiple execution units, these nodes can
be executed in parallel. Parallelism, itself, is not directly
expressed in the graph, but its prerequisite, independence,
can be extracted from the graph structure.

5.7. Block/Tile Processing

Tilable kernels are typically ones where the output de-
pends on only a subset of the input, not the entire data set.
In Figure 6, the data to be processed is automatically bro-
ken into tiles which are then fed into the graph. Each node
then processes only a tile’s worth of data at a time, such that
the graph executes N times for a single image, where N is
equal to the number of tiles in the image. This is useful
for several reasons. First, if the intermediate data tiles are
stored in on-chip memory, then external memory usage and
memory bandwidth are reduced by a factor of how many
intermediate images there otherwise would have been. This
has the effect of reducing Lr(F) by eliminating intermedi-
ate write/read round-trips of data to/from external memory.
Second, tiling speeds up processing by keeping the graph
inside a domain tied to an optimized memory interface (e.g.,
DMA). This will reduce Crf and Cri terms to zero. Finally,
it is possible to use hardware which is able to pipeline tile
processing (see below).

5.8. Pipelining

Multiple tiling kernels can be connected to form a
pipeline in order to take advantage of platform resources
(e.g., DMA, Cache, specialized hardware). The input data
may be separated into any variety of shapes or sizes depend-
ing on system requirements, but cannot be broken down fur-
ther than a basic algorithmic unit. Not all kernels share
this minimum algorithmic unit and a least common multi-
ples (LCM) approach may be needed to find a usable size
between tiling kernels. For example, a 8× 3 → 6× 1
(input→ output) SIMD algorithm tiled with a 2× 2 →
2× 2 algorithm will need an intermediate tile size of some
multiple of 6× 2. The tile’s neighborhood would then be
set to 1 on each side to accommodate the additional area
around the tile needed by the 8× 3 input. The pipeline then
becomes 8× 4→ 6× 2.

Figure 6: Memory Tiling.

5.8.1 Pipelining Targets

If there are multiple targets that are compatible with this
mode of operation then a multi-target pipeline can be cre-
ated. Tiles may be processed in or out of order, and con-
currently or in parallel depending on system resources and
graph structure.

In the example above, N1, N2, N3, and N4 may be
pipelined to reduce the overall execution time of these
nodes. Part of this optimization relies on the OpenVX im-
plementation providing adequate memory bandwidth to a
multi-target pipeline and the other part of the optimization
requires an IPC system capable of triggering multiple tar-
gets simultaneously.

5.8.2 Multiple Invocations of Graphs

In addition to segmenting the data processing within a
graph, future versions of OpenVX may be able to pipeline
multiple invocations of the same graph. In this model, the
graphs are scheduled asynchronously and are triggered con-
secutively after dependent data for each invocation has been
freed for use in the next invocation.

5.9. Cache Operations

Another side-effect of having a graph model is that the
system understands the data relationship between two or
more nodes, and can efficiently operate on system and core
caches, reducing unnecessary flushing and invalidation. De-
pending on the operating system latency and cache opera-
tion costs, this could result in significant savings at run time

by reducing some cache operations in Equation 1 to zero.

6. Resource Management
Since the structure of the graph is known ahead of time,

there can be several look-ahead resource management sys-
tems put in place. These help prevent critical resources
from being over-subscribed, and divert the load to other
resources. This is possible with OpenVX graphs, as the
underlying kernel may be implemented for more than one
target. The framework has the possibility to dynamically
switch targets as needed. This opens the door to many dy-
namic resource management schemes. These schemes may
be implemented at verification or execution time. Graphs
in OpenVX may be executed synchronously (i.e., a block-
ing call) or asynchronously (a nonblocking call). These
could possibly emanate from multiple calling threads in ei-
ther case.

However, dynamic resource management is not appro-
priate for every user and use-case. There are use-cases
where fixed-resourcing is critical which OpenVX supports
by allowing the user to statically assign the target for a node
(e.g., force Gaussian3×3 to run on the GPU). However, for
the remainder of this section, we consider the flexible case
only.

6.1. Target Execution Priority

Given that a kernel may be implemented on multiple
targets available on the same platform (CPU, GPU, etc.),
the framework needs to determine which one is the best
(with respect to some measure, such as execution time or
power usage) for a particular use-case. Typically, the pri-
mary consideration is simply performance. To that end, an
implementation may institute a priority ranking scheme for
searching through its kernels to find an appropriate target.
In practice, this may mean that an internal table of ranked
targets is searched to determine the best target for a partic-
ular kernel. Below is an example ranking based on which
target the kernel runs on:

• Accelerator — fastest, but limited data type support,

• GPU — fast, but uses more power than an accelerator,

• DSP — medium, has more optimizations than CPU,
but fewer functional units than a GPU,

• CPU — slowest, but permits standard C code.

Once the best target is determined, the node is assigned
to that target. Other graphs with identical kernels (but sep-
arate instantiations) may be assigned to different targets by
run-time resource manager.

These assignments would be then successfully accepted
if the resource model for these targets permit such opera-
tions. If the resource is oversubscribed in some respect, the

next resource in the list is selected. The following sections
mention possible models to account for these constraints.

6.2. Predictive Load Balancing

A predictive load-balancing system determines whether
the target can execute the nodes of the graph in the future
without exceeding its capacity, and if the added load sat-
urates (exceeds capacity), then uses the next best target to
dynamically execute the node. Node “load” values must
be ranked per target per data volume to accurately gauge
the predicted load value. These load values are typically
expressed as cycles

window (over a relevant time window). Fre-
quently the chosen window size relates to the capture or
processing rate of the system. A fast resource manager is
typically needed in these implementations as resource needs
are scheduled, used and released, quickly. Saturation of
all available targets leads to a FIFO style of processing.
Smarter implementations can use captured latency informa-
tion to re-estimate target load values for a given data vol-
ume.

6.3. Latency Guarantees

A latency-guarantee system attempts to maximize re-
sponsiveness of all the targets. It schedules work based on
a desired worst-case expected latency Lworst of currently
processing graphs and tries to keep each target saturated
with work, but not strictly the work it is best at perform-
ing. This means work is re-scheduled or re-assigned to tar-
gets where it is possible to meet Lworst even if there may
be a faster target available. If the best-performing (i.e.,
least-cost) targets are saturated, then higher-cost (slower-
performing) targets are chosen as long as the worst-case re-
sponse can be met. If the response cannot be met, the work
either cannot be scheduled (user sees a failure), or the work
is done, but latency guarantee is lost (user sees graph pro-
cessing time exceeding the desired worst case).

7. Trade-offs
Programming with a graph model comes with some con-

siderations that must be weighed to determine if the situ-
ation warrants the benefits of some of the methodologies
mentioned above.

7.1. Data Size vs. Remote Processing

In some instances for HLOSes (High-Level OS, such as
Linux), the latency of IPC can be on the order of millisec-
onds when considering the overhead of returning from a
kernel call. Further, the latency may be non-deterministic
(without an RTOS), given an unknown load upon the sys-
tem. In these circumstances, if the latency of processing the
nodes locally is smaller than the IPC latency and remote-
processing latency, the framework should decide to not off-

load the work. See Equation 4.

Lo = Lr(1)− execr(data, param) (3)

Location =

{
if Lo >= Llocal then local
else remote

(4)

7.2. Framework Overhead

Every framework comes with some non-trivial over-
head cost, which the implementor should attempt to min-
imize. The specification [2] does not mandate any mini-
mum or maximum latencies, but in practice there are obvi-
ous benefits to streamline graph execution as much as pos-
sible. Those overheads which are unavoidable are typically
moved to other areas which are not time critical, such as
verification.

7.2.1 Verification Overhead

Depending on the optimization strategies chosen by the ven-
dor, some implementations will have a relatively small ver-
ification overhead, while others may have rather large over-
heads. In either case, the verification step is assumed to
be a heavy-weight operation and should not be done dur-
ing “tight-loop” execution time, but rather during a setup
phase, and then not altered again without some transition
into a phase which allows for potentially long delays.

8. Conclusion
OpenVX tackles a non-trivial problem: in a fast-paced

industry where vision algorithms keep evolving, how to fa-
cilitate both system- and kernel-level optimization of fu-
ture workloads? OpenVX prescribes the aggregation of
a directed set of acyclic, data-dependency-ordered graphs,
which permits system-level optimizations that are simply
not possible under a single-function paradigm. As always,
an expert implementation will be necessary to achieve good
performance on any given platform, and the trade-offs im-
plicit in this model of computation must be well understood,
both by the implementers and users of the API.

References
[1] G. Dedeoglu, B. Kisacanin, D. Moore, V. Sharma, and

A. Miller. An optimized vision library approach for embedded
systems. In Embed. Comp. Vis. Workshop (in CVPR), 2011. 1

[2] S. Gautham and E. Rainey. The Khronos OpenVXTM1.0 Spec-
ification. The Khronos Group, 2014. 1, 2, 6

[3] T. J. Olson, R. J. Lockwood, and J. R. Taylor. Programming a
pipelined image processor. CVGIP, 1996. 1

[4] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov. Real-
time computer vision with OpenCV. CACM, 55(6), 2012. 1

[5] M. Segal and K. Akeley. The OpenGL Graphics System: A
Specification. Silicon Graphics Inc., 1994. 1

